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Abstract

Heart failure is prevalent in the elderly population. Inflammatory processes can contribute to the
progression of heart failure by altering the balance of tissue healing and pathological remodeling
during the injury response. New findings show that aging can alter immune cell phenotypes
through the process of clonal hematopoiesis. This condition results from acquired somatic DNA
mutations in specific driver genes that give rise to clonal expansions of mutant hematopoietic
cells with overactive inflammatory properties. Recent clinical and experimental studies have
shown that clonal hematopoiesis is prevalent in heart failure patients and associated with poor
prognosis. In this review, we summarize current evidence that associates clonal hematopoiesis
with the progression of heart failure. We further describe the mechanistic links between clonal
hematopoiesis and the pro-inflammatory responses that can contribute to pathological outcomes
in the heart. Finally, we provide perspectives on future research directions in the area of clonal
hematopoiesis and heart failure.
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Introduction

Heart failure is a prevalent disease with poor prognosis that affects 6.2 million adults in the
United States (1), and its predicted prevalence will increase ~30% over the next decade due
to the ageing of the population (2). Growing evidence suggests that inflammation contributes
to the pathogenesis of heart failure. Proinflammatory cytokine levels correlate with worse
outcomes in patients with this condition (3-8). Similarly, the circulation, infiltration, and
expansion of immune cells in myocardial tissue is correlated to poor outcomes in clinical
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studies of heart failure (9-12). Recent clinical trials indicate that targeting proinflammatory
pathways can have beneficial effects in patients with heart failure (13-15). Immune cells
have also been shown to contribute to pathological cardiac remodeling in mouse models

of heart failure (12, 16-18). Collectively, these data suggest that alterations in the immune
response towards tissue injury can lead to the progression of heart failure.

An elderly individual’s immune response can be altered through acquired somatic gene
mutations in hematopoietic stem cells (HSC). When these mutations occur in a “driver”
gene, the mutant HSC can gain a competitive growth advantage which leads to clonal
expansion of that mutant cell (19). This process, referred to as “clonal hematopoiesis”,
can lead to a condition in which a substantial fraction of an individual’s leukocytes is
derived from one or more mutant HSC clones. The frequency of clonal hematopoiesis
increases with age (20-22), and clonal hematopoiesis is associated with an increase

in mortality due in large part to an increased risk of cardiovascular disease (20).

Clonal hematopoiesis was initially associated with increased risk of inflammation-related
atherosclerotic cardiovascular diseases including coronary heart disease and myocardial
infarction (20, 23). However, more recent studies have also investigated the link between
clonal hematopoiesis and heart failure, and how this may be mediated by alterations in
immune system function.

In this review, we discuss clinical studies showing a correlation between clonal
hematopoiesis and heart failure progression. We also discuss experimental models that
reveal mechanistic links that involving altered immune system responses to cardiac injury.

Clinical studies associating clonal hematopoiesis with heart failure

progression

Cohorts of heart failure patients have been analyzed to investigate the association between
clonal hematopoiesis and long-term prognosis (24-28). These studies used chromosomal
DNA from blood cells collected from chronic ischemic heart failure patients, and advanced
targeted sequencing techniques to identify DNA mutations in clonal hematopoiesis driver
genes. Mutations are identified as variants from the standard DNA sequence, and the
percentage of that mutant variant sequence compared with all sequencing reads of the
specific gene is defined as the Variant Allele Frequency (VAF). A key aspect of clonal
hematopoiesis is a lack of absolute blood cell number expansion, which would be indicative
of blood cancer. Instead, the mutant HSC clone expands and replaces non-mutant HSC in a
clonal expansion event, resulting in a greater percentage of blood cells that arise from the
mutant HSC and contain the mutation for the driver gene.

Clonal hematopoiesis in heart failure

In addition to atherosclerotic diseases, recent epidemiological studies have revealed an
association between clonal hematopoiesis and heart failure. Dorsheimer et al. initially
analyzed bone marrow-derived mononuclear cells from 200 patients with ischemic heart
failure employing deep, error-corrected sequencing on 56 driver genes (24). Using the
VAF threshold of 2%, they identified 38 patients carrying clonal hematopoiesis where the
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top two driver gene mutations were DNMT3A and TETZ. In this cohort, the frequency

of clonal hematopoiesis in patients with heart failure increased with age, reaching ~10%

of patients 50-59 years old, ~21% in 60-69 years old, ~28% in 70-79 years old, and

~50% in >80 years old. These findings were recently corroborated by a study from Pascual-
Figal et al. that investigated clonal hematopoiesis in patients with either ischemic and
non-ischemic heart failure with reduced left ventricular ejection fraction (29). This study
found clonal hematopoiesis driver gene mutations at VAF >2% in ~21% of patients 60-67
years old, ~41% of patients 68-75 years old, ~40% of patients 76-83 years old, and ~67%
of patients >84 years old. These rates of clonal hematopoiesis are generally higher than that
reported in other cohorts (20, 21), indicating that the incidence of clonal hematopoiesis is
enriched in patients with heart failure (Figure 1). Both studies further investigated clinical
outcomes of patients with the top 2 mutations, DNMT3A and TETZ. Dorsheimer et al.

(24) described that clonal hematopoiesis with either of these two mutations was associated
with worse outcome with the hazard ratio of 2.09 compared to patients without clonal
hematopoiesis, which is slightly higher than the increased all-cause mortality risk from
clonal hematopoiesis that was reported in other populations. Intriguingly, when the VAF
threshold was lowered to 0.5%, leading to the identification of 119 additional mutated
clones (66 and 53 clones for DNMT3A-and TET2-mutation, respectively) affecting 69
patients, a dose-dependent relationship between clone size and the mortality was indicated.
While mortality in the <1% VAF group was comparable to control group, the 1-2% VAF
and VAF>2% groups showed increasing worse outcomes. Additionally, Pascual-Figal et al.
found that clonal hematopoiesis associated with TETZ2or DNMT3A mutations is predictive
of worse outcomes in patients with heart failure, regardless of etiology, and this increased
risk was also found in patients with only 7E£7.2mutations or DNMT3A mutations compared
to patients without clonal hematopoiesis (29).

An important question is raised by this finding: what is the threshold of VAF that affects
cardiovascular outcomes? In the early epidemiological studies, clonal hematopoiesis of
indeterminate potential (CHIP) was typically defined as VAF>2% in individuals without
overt hematologic disorders. However, this threshold is somewhat arbitrary and influenced
by technical limitations in the detection of low-abundance mutations rather than reflecting
the biological or epidemiological findings. Advances in sequencing technologies have
allowed researchers to identify clones with driver gene mutations as small as 0.03% VAF
(30), revealing a greater prevalence of clonal hematopoiesis in healthy individuals (31).
Thus, it is critical to clarify the biological significance of small VAF clones and assess

their impact on human diseases. Recently, Zeiher’s group provided additional insights about
this issue. In a study that employed error-corrected DNA sequencing, an analysis of 419
patients with chronic heart failure identified 154 patients with clonal hematopoiesis above
newly defined VAF thresholds caused by mutations in 9 driver genes (26). Employing a
receiver operating characteristic-curve analysis allowed the optimized VAF cut-off value to
predict mortality for each of 9 driver genes (and 233 mutations in total): DNMT3A (1.15%),
TET2(0.73%), PHF6(0.62%), SMC1A (0.62%), PPM1D (0.59%), EZH2(0.58%), CEBPA
(0.55%), SRSF2(0.53%), and SETBP (0.5%). In another study, the same group focused

on the patients with mutations in DNMT3A and/or TETZin this cohort and reported that
the patients with VAF larger than the aforementioned thresholds displayed significantly
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worse 5-year mortality compared to those with VAF values below the threshold (28, 32). A
separate study also employed error-corrected DNA sequencing in 399 ischemic heart failure
patients to identify the consequences of relatively rare clonal hematopoiesis driver gene
mutations that are present at low VAF values (33). In this study, patients were excluded if
they exhibited mutations TET2or DNMT3A, or other clonal hematopoiesis mutations with
a VAF > 2%. This analysis found that somatic mutations with low VVAF in a set of genes
(CBL, CEBPA, EZHZ2, GNB1, PHF6, SMC1A and SRSF2), are associated with mortality
independently of the prevalent mutations in DNMT3A and TETZ2(33). Furthermore, it has
been shown that the sum of all VAF values derived from mutant genes within an individual
also increased with mortality (26). Specifically, it was shown that a mutated gene VAF sum
of greater than 3% is more predictive of a poor prognosis compared with individuals with
total mutation burden less than 3%. These lines of evidence indicate that the pathology of
heart failure may be impacted by clonal hematopoiesis, and that the association between
VAF and the pathological phenotype may depend upon the identity of the driver gene
mutation and the size of the mutant clone.

Increased chronic inflammation in heart failure patients with clonal hematopoiesis

mutations

The pathophysiology of heart failure is associated with immune cell infiltration to

cardiac tissue and dysregulated cytokine expression. In clonal hematopoiesis, the progeny
leukocytes of the mutant HSC also harbor the mutation(s) such that the phenotypes

of these circulating mutant immune cells can be altered and contribute inflammatory
processes in the failing heart (34). The role of inflammation in clonal hematopoiesis-driven
disease was highlighted by a study showing that a genetic mutation in /L6R, resulting

in reduced IL6 signaling, is associated with reduced cardiovascular disease risk for
individuals DNMT3A or TETZ clonal hematopoiesis (35). A study employing single cell
RNA sequencing on mononuclear blood cells from individuals with heart failure revealed
that patients with DNMT3A-induced clonal hematopoiesis have increased expression of
pro-inflammatory genes /L 1B, IL6R, NLRP3, and CD163(25). It was also reported that
TETZ-mediated clonal hematopoiesis elevates CD14dim CD16+ nonclassical monocytes,
whereas DNMT3A-mediated clonal hematopoiesis increases the Th17/Treg ratio, although
within the normal blood count range (36). CD14dim CD16+ nonclassical monocytes can
secrete pro-inflammatory cytokines TNF-a, IL-1B, and IL-6 (37), and Th17/Treg ratio is
used to determine the pro-inflammatory profile of T-cells (38). These data indicate that
mutation-specific alterations in the immune system could contribute to the pathophysiology
of heart failure.

Mechanisms of clonal hematopoiesis-mediated heart failure progression

Experimental mouse models of clonal hematopoiesis have been generated to investigate

the effects of different driver gene mutations on heart failure progression. Currently, three
driver gene mutations have been tested in clonal hematopoiesis-mediated models of heart
failure: Dnmt3a, Tet2, and JAK2VEL7F In these models, the chromosomal DNA of HSC are
altered to mimic the driver gene mutations that cause clonal hematopoiesis. Mutations in
DNMT3A and TETZthat result in loss-of-function will lead to clonal hematopoiesis (39).
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Therefore, Dnmt3a or TetZ2 mutant HSC have been generated through knockout approaches,
including Cre-lox recombination or CRISPR/Cas9-mediated gene silencing (40-43). On

the other hand, JAK2V617F s an activating driver mutation, and this mutation has been
modeled through lentivirus-mediated transduction of HSC and the specific expression of

the mutant gene in myeloid cells (44). In these studies, the genetically engineered HSC

are transplanted into recipient mice to recapitulate the clinical presentation of clonal
hematopoiesis. In some cases, this can be accomplished through a competitive bone

marrow transplant method where mice are lethally irradiated and transplanted with a
mixture of mutant and wild-type HSC to replenish the bone marrow. Alternatively, this

can be accomplished through an adoptive transfer method where donor mutant HSC are
administered intravenously to recipient in non-conditioned mice (45). The latter approach
results in a low percentage of mutant HSC that engraft in the recipient and then can undergo
a slow expansion process, while avoiding complications arising from unintended effects of
radiation on the bone marrow stem cell niche and leukocyte composition (43, 45). These
models of clonal hematopoiesis have then been combined with experimental models of heart
failure to elucidate how clonal hematopoiesis affects the biology of injury-induced cardiac
remodeling. As revealed by these studies and described in detail below, clonal hematopoiesis
accelerates cardiac dysfunction largely through pro-inflammatory immune responses that
promote greater cardiac remodeling (Figure 2).

Clonal hematopoiesis promotes heart failure in mouse models

Experimental mouse models of clonal hematopoiesis display greater cardiac dysfunction
in aging mice or in young mice that are challenged by injury. To date, four heart failure
models have been employed to assess the effects of clonal hematopoiesis in mice: infusion
of angiotensin I1, transverse aortic constriction (TAC) surgery, permanent left anterior
descending (LAD) artery ligation, and age-associated cardiomyopathy in the absence of
induced cardiac injury (46). These experimental systems have been applied to different
models of clonal hematopoiesis that have focused on the driver genes 7et2, Dnmt3a, and
JAK2VEITF,

The initial study to investigate the effects of clonal hematopoiesis on heart failure examined
the consequences of the 7et2driver gene (47). In the experimental heart failure models of
LAD artery ligation and TAC surgery, 7et2-mediated clonal hematopoiesis was modeled

by competitive bone marrow transplantation, and this condition led to worsened cardiac
remodeling in the later stages of heart failure (47). In both heart failure models, 7et2-
mediated clonal hematopoiesis mice showed reduced cardiac output and increased cardiac
fibrosis, with the LAD ligation model resulting in increased left ventricular systolic and
diastolic volumes and the TAC model resulting in increased heart size and left ventricular
posterior wall thickness.

In another study, the ablation of 7et2or Dnmt3ain isolated HSC was achieved by
lentiviral-mediated CRISPR/Cas9 gene editing, followed by bone marrow transplantation
and angiotensin Il infusion to induce heart failure (41). In this study, it was shown that
employing CRISPR/Cas9 to edit 7ef2led to a similar reduction in cardiac function when
compared with a conventional bone marrow transplantation model. This study was also the
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first to investigate Dnmt3a-mediated clonal hematopoiesis in cardiovascular disease model,
showing that angiotensin Il infusion induced greater cardiac remodeling and dysfunction

in the Dnmt3a-deficient condition than in control mice (41). The lentivirus-mediated
approach for transducing HSPC prior to transplantation was then applied to overexpress
the JAK2V617F mutation in myeloid cells in the experimental heart failure models of

LAD artery ligation and TAC surgery (44). After LAD artery ligation or TAC surgery,

the JAK2V617F clonal hematopoeisis model displayed reduced cardiac output and worsened
cardic remodeling, resembling the results from 7et2-mediated clonal hematopoeisis mice.

In addition to the experimental models of heart failure, the effects of ageing on cardiac
function of mice with 7et2-mediated clonal hematopoiesis was also examined (45). This
study avoided the negative effects of radiation treatment in the bone marrow transplantation
procedure by implementing an adoptive transfer method for inducing clonal hematopoiesis.
In this procedure, driver gene-manipulated, lineage-negative bone marrow cells are injected
into the circulation of the mice and the HSC are allowed to naturally engraft into their niches
and then slowly expand over time (45). Non-conditioned mice implanted with 7et2-deficient
HSC displayed time-dependent cardiac dysfunction, with systolic dysfunction, hypertrophy
and fibrosis occurring at an earlier age (18 months) in the 7e£2clonal hematopoiesis model
than in control mice. Collectively, these data show that clonal hematopoiesis induced by
multiple driver gene mutations can promote cardiac dysfunction in mouse models of heart
failure and advanced age.

Clonal hematopoiesis contributes to experimental heart failure through pro-inflammatory
mechanisms

Consistent with clinical findings of increased inflammation associated with clonal
hematopoiesis, experimental models of clonal hematopoiesis and heart failure show

greater levels of cardiac inflammation through increased leukocyte infiltration and
increased cytokine expression from mutant leukocytes. After heart failure induction,

mice with Dnmt3a-mediated clonal hematopoiesis showed enhanced cardiac infiltration

of macrophages and increased myocardial inflammation with greater gene expression of
markers for monocytes (Cd68) and T cells (Cd3e, Cd4, Cd8) in cardiac tissue (41). This
pro-inflammatory signature is similar to what was subsequently observed in heart failure
patients with DNMT3A-mediated clonal hematopoiesis, where single cell RNA sequencing
of peripheral blood showed an increased inflammatory profile of monocytes and an increase
in monocyte-T cell interactions in patients with DNMT3A mutations (48). In the lentivirus
overexpression model of JAK2Y617F-mediated clonal hematopoiesis, greater macrophage
infiltration of the heart was observed following cardiac injury (44). Similarly, models of
TetZ2-mediated clonal hematopoiesis identified greater leukocyte infiltration in the heart
following injury and greater myocardial cytokine production (47). In cell culture studies,
the expression of pro-inflammatory cytokines is increased in myeloid cells with clonal
hematopoiesis driver gene mutations. Myeloid cells lacking Dnmt3aor Tet2 showed greater
induction of //6, /11b, Cxcl1, Cxcl2, and Ccl5 genes after LPS stimulation (41). JAK2V617F
mutant myeloid cells showed increased expression of /16, 1116, Tnfa, CclZ, and AimZ2 after
LPS stimulation (44).
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In some of these models, the NLRP3 inflammasome was found to have a causal role in
accelerated heart failure progression. The NLRP3 inflammasome consists of a group of
proteins that promote inflammation by inducing the secretion of IL-1f in macrophages upon
activation by various stimuli (49). Prior studies have shown that NLRP3 inflammasome
activation has a role in heart failure (15). In experimental clonal hematopoiesis mediated by
Tet2 mutations, NLRP3 inflammasome inhibition by treatment with the MCC950 small
molecule inhibitor negated the detrimental effects of clonal hematopoiesis on cardiac
parameters after TAC or LAD ligation surgeries (47). Similarly, inflammasome inhibition
has been shown to reverse the adverse effects of Tet2-mediated clonal hematopoiesis in
models of atherogenesis (40) and insulin resistance caused by diet-induced obesity (50).
Taken together, these results highlight that acquired driver gene mutations in HSC will affect
the biology of progeny leukocytes and promote myocardial inflammation in models of heart
failure.

Mutations in TET2 or DNMT3A may promote hyper-active inflammatory reactions through
epigenetic modifications in immune cells. DNMT3A promotes methylation of DNA to
inhibit gene expression which can promote hematologic malignancies (51), whereas TET?2
is a multifunctional epigenetic regulator that can affect gene expression through diverse
mechanisms (52). While TET2 and DNMT3A have opposing roles on DNA methylation
(53), multiple lines of evidence suggest that TET2 regulates IL-1p and the production

of downstream cytokines, such as IL-6, through a histone deacetylation mechanism (54—
56). Supporting an HDAC-mediated mechanism of IL-1p regulation by TET2, our lab has
reported that TET2-deficient macrophages show greater histone H3 acetylation at the //16
promoter region and treatment of macrophages with an HDAC inhibitor increased IL-1b
expression in macrophages and abolished expression differences between TET2-deficient
and wild-type genotypes (40). Furthermore, a catalytically inactive form of TET2, unable to
oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine, was able to suppress IL-1b
expression in macrophages as efficiently as wild-type TET2. Therefore, although DNMT3A
and TET2 can promote opposing effects on DNA methylation, mechanistic studies on
macrophage function and IL-1p production suggest that mutations in DNMT3A or

TET2 promote hyper-active inflammatory reactions through different epigenetic regulatory
mechanisms.

As noted above, a key question is what proportion of the mutant peripheral blood cells is
sufficient to modify the pathophysiology of heart failure, particularly when a very low VAF
can be associated with disease prognosis (26, 28). Thus, how can such a small population
change lead to a physiologically relevant alteration in disease progression? Findings from
experimental studies in a mouse atherosclerosis model may provide potential explanations
(40). Clonal hematopoiesis resulting from 7et2-deficiency leads to overactivation of IL-1p
in myeloid cells. This can activate vascular endothelial cells and further recruit monocytes
to the plaque regardless of their 7et2genotype (40). Further, since IL-1p can augment its
own expression, a positive feedback loop can potentially be initiated by a small population
of mutant myeloid cells. In future experimental studies on clonal hematopoiesis, it will be
important to develop a better understanding of how the somatic mutations can potentially
exert non-cell autonomous effects, that may provide insights about disease processes can be
impacted by low VAF clones.
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Finally, during heart failure progression, excessive fibrosis can interfere with cardiac
contraction and worsens heart failure (57, 58). Immune system perturbations will

promote myofibroblast extracellular matrix deposition (59), and it is reasonable to expect
that immune cell perturbations by clonal hematopoiesis will trigger fibrotic responses.
Supportive of this supposition, all of the experimental models of clonal hematopoiesis
(Dnmt3a, Tet2, and JAK2V617F) have displayed greater levels of cardiac fibrosis (41, 44,
47). Additionally, elevation of renal fibrosis was noted in the angiotensin Il infusion models
of 7et2-and Dnmt3a-mediated clonal hematopoiesis (41). In some of these systems, it was
shown that reducing inflammatory response through inhibition of the NLRP3 inflammasome
can diminish the increases in fibrosis that are brought about by the clonal hematopoiesis
model (47).

Future Directions

Recent clinical and experimental studies have provided ample evidence that heart failure
can be accelerated by the condition of clonal hematopoiesis. However, many questions
remain unanswered. First, the number of patients with heart failure in investigations for
clonal hematopoiesis has been limited. Future studies increasing patient number could
strengthen the association between clonal hematopoiesis and heart failure, particularly
elderly patients. An analysis of inflammatory phenotype and patient outcome as a function
of VAF would strengthen the hypothesis that aberrant inflammatory responses are a critical
of the pathological mechanism. Additionally, numerous driver gene mutations have been
discovered in patient populations, but the role of only a few of these mutations have been
investigated in heart failure models to date. It is reasonable to assume that the mutations

in different driver genes will exert functionally different effects on cardiac pathophysiology,
but current studies have yet to elucidate this level of granularity in the data. It is also
possible that as-yet-unidentified clonal hematopoiesis driver genes may play a role in

the pathogenesis of heart failure. Currently, most studies have focused on mutations in
driver genes that are recurrently mutated in hematologic disorders. However, an unbiased
genome wide survey has suggested that as many as 80% of these aberrant clonal events

in the hematopoietic system are caused by unknown drivers (22). Future studies that aim
to discover novel clonal hematopoiesis driver mutations would be of interest and would
advance the field.

Beyond age, the underlying causes of clonal hematopoiesis are relatively unknown. In
addition to genotoxic stress (60) and smoking (22, 61-63), the roles of other environmental
factors on this process require further attention. In addition, numerous genomic loci, in
particular the TERT locus, have been associated with a propensity to develop clonal
hematopoiesis (22, 61). However, the molecular connections between these heritable loci
and the prevalence of clonal hematopoiesis are unknown.

With regard to heart failure, epidemiological studies have indicated that relatively small
hematopoietic clone expansion can be indicative of poor prognosis. It is worth noting that
standard next generation DNA sequencing has an inherent error rate that limits the detection
of low-abundance DNA mutations (64, 65). However, a recent advance in error-corrected
DNA sequencing, that incorporates internal DNA barcodes, can greatly reduce sequencing
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error and allow for accurate detection of mutations as low as 0.01% VAF (27, 28, 66).
Although error-corrected sequencing is costly and typically only provides information about
a select group of driver genes, these more advanced techniques will be helpful in assessing
conditions that contribute to the genesis of clonal hematopoiesis in longitudinal studies.
Furthermore, advanced sequencing techniques can identify patients with multiple driver
gene mutations with low VAF values. In this regard, Cremer et al. (26), showed with
error-corrected sequencing that the combined VAF of multiple driver gene mutations within
a single patient can be predictive of poor outcome in heart failure. Thus, more sensitive
methods to identify driver gene mutations may give a more accurate description of overall
clonal hematopoiesis burden and its impacts on disease processes.

Additional research into the mechanisms by which inflammation is regulated by clonal
hematopoiesis driver gene mutations can yield novel insights about this new disease
mechanism. As many of the clonal hematopoiesis driver genes are epigenetic modifiers,
additional studies of their effects on chromatin structure in hematopoietic cells could be
fruitful. In this regard, epigenetic modulation of DNA methylation patterns are associated
with an individual’s age (67), and epigenetic age is markedly increased in individuals that
harbor with clonal expansions in their blood. Thus, clonal hematopoiesis driver genes may
accelerate the biological aging process in part through the direct epigenetic alteration of
chromatin (68). Thus, additional studies that employ Assay for Transposase Accessible
Chromatin using Sequencing (ATAC-Seq), to reveal transcriptionally active regions in
chromatin (69-71), may prove useful in understanding how clonal hematopoiesis driver
gene mutations confer inflammatory phenotypes to hematopoietic cells.

Conclusions

Clonal hematopoiesis is prevalent in the elderly and prognostic of worse outcome in patients
with heart failure. To the extent that it has been studied, the mutations that cause clonal
hematopoiesis also confer pro-inflammatory phenotypes to leukocytes. Experimental studies
have shown that clonal hematopoiesis elevates myocardial inflammation leading to cardiac
dysfunction, hypertrophy, and fibrosis. Identifying clonal hematopoiesis in individuals with
heart failure could provide diagnostic information as well as guidance for therapeutic
strategies that target the immune system to treat this condition.
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Figure 1. Clonal hematopoiesis prevalence and mortality risk in various patient cohorts.
Prevalence of clonal hematopoiesis from mutations in known driver genes (>2% VAF)

at different ages as presented in chronic heart failure (CHF) patient cohorts (CHF -
Dorsheimer et al., CHF — Pascual-Figal et al.) compared to other patient cohorts or the
general population (All - Jaiswal et al., All - Genovese et al.). Original clinical data from
Dorsheimer et al. JAMA Cardiology 2018 (24), Pascual-Figal et al. JACC 2021 (29), Jaiswal
et al. NEJM 2014 (20), and Genovese et al. NEJM 2014 (21).
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Figure 2. Mechanisms of how clonal hematopoiesis promotes heart failure progression.
Driver gene mutations including 7E72, DNMT3A, and JAK2V617F will lead to aberrant

clone expansions in hematopoietic stem cells (HSCs) that increasingly give rise to

mutant progeny leukocytes. The mutant leukocytes display altered immune responses,
shifting the balance away from a healing and towards an overt inflammatory response
involving the increased expression of IL-6, IL-1pB, and TNFa in addition to other immune
cell perturbations. These mutant leukocytes promote myocardial cardiac dysfunction,
hypertrophy and fibrosis, and accelerate the progression of heart failure.
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