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Abstract Hidden hunger is leading to extensive health prob-

lems in the developing world. Several strategies could be used

to reduce the micronutrient deficiencies by increasing the

dietary uptake of essential micronutrients. These include diet

diversification, pharmaceutical supplementation, food fortifi-

cation and crop biofortification. Among all, crop biofortifica-

tion is the most sustainable and acceptable strategy to overcome

the global issue of hidden hunger. Since most of the people

suffering from micronutrient deficiencies, have monetary

issues and are dependent on staple crops to fulfil their recom-

mended daily requirements of various essential micronutrients.

Therefore, increasing the micronutrient concentrations in cost

effective staple crops seems to be an effective solution. Potato

being the world’s most consumed non-grain staple crop with

enormous industrial demand appears to be an ideal candidate

for biofortification. It can be grown in different climatic con-

ditions, provide high yield, nutrition and dry matter in lesser

time. In addition, huge potato germplasm have natural varia-

tions related to micronutrient concentrations, which can be

utilized for its biofortification. This review discuss the current

scenario of micronutrient malnutrition and various strategies

that could be used to overcome it. The review also shed a light

on the genetic variations present in potato germplasm and

suggest effective ways to incorporate them into modern high

yielding potato varieties.

Keywords Micronutrients � Potato � QTL � GWAS �
Transgenics

Introduction

Feeding the world is a massive challenge because the

global population is increasing at alarming rates. It is

estimated that world population will increase to 9.6 billion

by 2050 (Mishra et al. 2018). At present, nearly 800 million

people are undernourished (FAO 2017) and around 2 bil-

lion people are suffering from micronutrient malnutrition,

which is called as hidden hunger (IFPRI 2016; UN General

Assembly 2016). Among all the micronutrients, the defi-

ciencies of Zinc (Zn) and Iron (Fe) are widespread.

Worldwide 1.6 billion people are Fe deficient (McLean

et al. 2009) and about 17% of the global population is Zn

deficient (Wessells and Brown 2012; Hefferon 2019). This

situation becomes even worse in developing countries like

India (Talsma et al. 2017; Harding et al. 2018). Approxi-

mately, 50% of the global micronutrient deficient popula-

tion live in India (Ritchie et al. 2018). During the last

decade, a lot of progress has been made to reduce this

hidden hunger by various ways such as food fortification,

dietary supplements and biofortification (Obersteiner et al.

2016; FAO 2017; Allen and de Brauw 2018).

Crop biofortification has emerged as a powerful tool to

combat micronutrient malnutrition. It is a cost-effective

approach, which paves its way towards sustainable

micronutrient supply to the poor. Since the twenty-first

century, a number of biofortified crops have been released

worldwide (Garg et al. 2018; Meena et al. 2018). However,
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being the staple food a large portion of world’s population

depends upon cereals, which however provides insufficient

amounts of micronutrients (Pérez-Massot et al. 2013;

Garcia-Oliveira et al. 2018). Therefore, to reduce the

micronutrient malnutrition globally, there is an urgent need

to improve the world’s most consumed non-grain food

crop ‘Potato’. It is already a rich source of micronutrients

(Navarre et al. 2016, 2019; Zaheer and Akhtar 2016; Furrer

et al. 2018), especially when consumed along with skin

(Subramanian et al. 2011). Its biofortification could be a

boon for people suffering from hidden hunger. More than

50% potatoes are produced by developing countries (FAO

2009), where the micronutrient malnutrition is highly

prevalent (Perez-Escamilla et al. 2018; Wakeel et al.

2018). Thus, importance of micronutrient biofortification

in potato becomes high from the human health perspective

as it is consumed in high amounts by a larger portion of

world population.

Hidden hunger: a silent epidemic

Micronutrients play vital roles in both humans and plants.

Their deficiencies may lead to serious health issues in

humans and it may cause yield or quality losses in plants

(Quintaes and Diez-Garcia 2015; Dimkpa and Bindraban

2016). Insufficient intake of micronutrients by humans is

called as hidden hunger (Ritchie et al. 2018). Worldwide,

micronutrient malnutrition is somehow associated with

more than 50% deaths (Lyons 2018). About 150 million

children below the age of five show stunted growth and

about 50 million are under weighed (UNICEF 2018).

Nearly, 52 million children below five years suffer mal-

nutrition globally, including * 36 million children in Asia

and 2 million in India (Singh et al. 2015). Hidden hunger is

widespread in developing countries and become an abys-

mal for the poor (Harding et al. 2018). The major reasons

exacerbating the hidden hunger are; low monetary

resources, lack of diversity in diet, dependence upon high

yielding cereals which are often less micronutrient dense

(Von Grebmer 2018; Zikankuba et al. 2019). The

micronutrient malnutrition due to Fe and Zn deficiencies is

most prevalent and have most devastating effects (Bailey

et al. 2015). The recommended levels of Fe, Zn, Cu and I

required for the ideal functioning of the human body has

been compiled in Table 1.

Current strategies to overcome hidden hunger

There are several ways to reduce the hidden hunger, which

could be implicated to increase dietary intake of essential

micronutrients such as dietary diversification, medical T
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supplementation, food fortification and crop biofortifica-

tion (Fig. 1) (Wakeel et al. 2018). The choice of strategies

for reducing hidden huger depends upon several factors

such as availability of resources, financial status of target

population, sustainability, accessibility and acceptability of

consumers. Dependence upon one type of food on regular

basis may lead to a specific type of micronutrient malnu-

trition. Therefore, diet diversification is a simple, effective

and natural way to increase micronutrient bioavailability

(Gibson and Hotz 2001). For example, adequately diver-

sified dietary intake helps to reduce serious health issues

during pregnancy (Agrawal et al. 2015). Diet diversifica-

tion can be achieved via different strategies; (1) agriculture

based (use of diverse vegetables, fruits and other plant

based products), (2) animal based (incorporation of dif-

ferent animal based food and/or seafood products into diet)

and (3) integration of processed food products (Maqbool

and Beshir 2019). However, changing the regional food

habits of people is a challenging task. Worldwide, the

dietary supplements are used to reduce the effects of

malnutrition. Previous studies have shown that diet sup-

plements are not just to reduce the hidden hunger but these

are also used to enhance the performance of athletes

(Maughan et al. 2018). A number of physiological disor-

ders related to micronutrient malnutrition can be eradicated

by dietary supplementation (Stewart et al. 2015; Petry et al.

2016). However, most of the times dietary supplements

cause some adverse side effects too (Wu and Tsai 2016).

Moreover, the hidden hunger is highly prevalent in poor,

who cannot afford diversified diet and dietary supplements.

Thus, government’s financial support is required to make

this intervention effective for the poor (Meenakshi et al.

2010).

Food fortification is another way to enhance nutritional

value of food by adding vital trace elements and vitamins

to it with minimal risk to health (Garrett 2018). Food

fortification can be done at industrial level (Mannar and

Hurrell 2018) and/or directly at consumer’s plate (Somassè

et al. 2018). The foods that are economical, easily available

and consumed in high amounts in a region can be targeted

Fig. 1 Different strategies to reduce the burden of global hidden hunger
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for industrial fortification. Studies have revealed that,

micronutrient powders (MNP) are effective to reduce

anaemia and gain weight in children under 2 years of age

(Lazzerini 2013; Somassè et al. 2018). This method of food

fortification also has some shortcomings. Food fortification

with micronutrients may change its quality, flavour, shelf

life, colour, appearance and consequently lead to poor

consumers acceptance (Habeych et al. 2016; Blanco-Rojo

and Vaquero 2019). However, this approach is more eco-

nomical than the use of pharmaceutical supplements but

still the population suffering from micronutrient malnutri-

tion cannot afford it (Bouis 2003).

Improving micronutrient concentrations through bio-

fortification is a cost effective, reliable and sustainable

method that could supply micronutrients to the poor in long

terms. It is an upcoming approach with tremendous

potential to increase the nutritional value of food crops in

the fields, rather than adding nutrients artificially into them

while processing. Plenty of nutrient rich food crops have

been developed successfully through biofortification (Garg

et al. 2018; Meena et al. 2018). However, the eradication of

micronutrient malnutrition in developing countries where

staple crops lack micronutrients is still a big challenge

(Pérez-Massot et al. 2013).

Potato an ideal crop for biofortification

Potato is a versatile crop and its biofortification can reduce

the micronutrient malnutrition significantly (Fig. 2). It is a

staple crop of many countries because it is easy to grow,

requires less land than other major crops and provides more

nutrients per unit area, time and money (Mullins et al.

2006). It is cultivated under different climates such as

temperate, tropical and subtropical regions and its pro-

duction and consumption has increased tremendously in

the developing countries (Zaheer and Akhtar 2016). It is

consumed as fresh vegetable and also has massive indus-

trial demand (Furrer et al. 2018). It is naturally a nutrient

rich crop (Table 2). Due to its nutritional value potato,

became the staple food of many countries. It provides more

nutrients in lesser price than most of the other vegeta-

bles and fruits (Drewnowski and Rehm 2013). It is a good

source of carbohydrate, protein, minerals, vitamins and

dietary fibres. As per the nutritional profile, potatoes pro-

vide a good quantity of vitamin C, vitamin B6, K, Fe and

folate (Robertson et al. 2018). If cooked without peeling

off potatoes can provide more nutrients and dietary fibres

(Singh et al. 2020a, b; Sampaio et al. 2020). However, the

nutritional value may vary slightly from variety to variety.

For example, coloured potatoes are a rich source of

antioxidants such as polyphenols, b-carotene, carotenoids,

anthocyanins and flavonoids (Soare et al. 2020). Some of

these compounds remain in significant amounts even after

cooking such as anthocyanin (Ercoli et al. 2021).

Recently Jongstra et al. (2020) reported that iron

bioavailability in potatoes is very high as compared to the

cereals. Andre et al. (2015) used an in vitro gastrointestinal

digestion and a CaCO2 lines based model of human

intestine and showed that around 70% of iron released from

the potatoes remains available at the intestinal level. Fur-

ther, only a small amount of Zn from different agricultural

foods is bioavailable to humans at gastrointestinal level.

The food crops contain various organic compounds some

of them favours Zn absorption and some can reduce its

bioavailability such as phytic acid (PA). The molar ratio of

Fig. 2 Major reasons for proposing potato an ideal candidate for biofortification
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PA:Zn is widely used to measure the Zn bioavailability in

foods. The Zn bioavailability in potato tubers is high

because of the presence of high concentrations of organic

compounds, which promote absorption of Zn in potatoes

and low concentrations of compounds, which restrain Zn

absorption. Therefore, a significant amount of the recom-

mended dietary allowance (RDA) for iron and zinc can be

obtained from potatoes. Vergara et al. (2019) successfully

increased the Zn bioavailability in potato tubers by priming

the tubers in zinc solution.

Moreover, an extensive amount of natural variations for

micronutrient content exists in vast potato germplasm

(Burgos et al. 2007; Ritter et al. 2008; Haynes et al. 2012;

Paget et al. 2014; Subramanian et al. 2017; Singh et al.

2020a, b). These variations can be utilized to develop

biofortified potatoes (Fig. 3). The potato germplasm col-

lections are maintained at different locations throughout

the world (Table 3). The potato germplasm has a great

variation in terms of tuber size, shape, flesh color, skin

color, distribution of pigments, skin type, nutrient con-

centrations and tolerance to biotic and abiotic stresses

(Jiménez et al. 2009; Berdugo-Cely et al. 2017; Furrer et al.

2017; de Haan et al. 2019; Singh et al. 2020a, b). There-

fore, diverse potato gene pool must have some unidentified

genes that might be utilized in the potato biofortification

programs. Identification of genes controlling tuber mineral

concentration in diverse potato populations will permit the

scientists to expand the range of variations in present

potato cultivars (Bradshaw et al. 2006; Subramanian et al.

2017). Moreover, potato genome sequence is available

publically, which can catalyse the process of biofortifica-

tion with the help of advance biotechnological tools. Potato

biofortification can be done via three different methods

viz., agronomical, transgenic and breeding (Garg et al.

2018; Shukla and Mishra 2018).

Agronomical biofortification

Agronomical biofortification involves the seed tuber

priming and application of mineral fertilizers to enhance

the micronutrient concentrations in the edible portion of

food crops (Cakmak and Kutman 2018). Vergara et al.

(2019) reported successful zinc biofortification by priming

the potato tubers in 10 mg/ml Zn for 12 h. The micronu-

trient containing mineral fertilizers can be applied to plants

via foliar application or through soil application (Pobla-

ciones and Rengel 2016; de Valença et al. 2017). Both soil

and foliar application of trace elements have been

employed to biofortify the major food crops including

potato (Cakmak and Kutman 2018; Lyons 2018). However,

foliar application of micronutrient fertilizers is a more

efficient approach to improve the mineral content in the

edible parts of a crop than the soil application (Zhao et al.

2014; Lawson et al. 2015; Kromann et al. 2017). Previous

studies showed that micronutrient spraying on potato plants

enhance the micronutrient concentrations in tubers and also

increase the tuber yield and dry matter content (Al-Jobori

and Al-Hadithy 2014; Kromann et al. 2017; Zhang et al.

2019).

The agronomic biofortification has tremendous potential

to increase the nutrient content in potato (Table 4) but on

the downside, it has some limitations too. The efficiency of

agronomic biofortification depends upon various factors

such as soil composition, soil pH, mineral mobility, min-

eral accumulation, environmental conditions and plant

growth stage when the fertilizers are applied (Dimkpa and

Bindraban 2016; Garg et al. 2018). It is not an efficient

method to increase the bioavailability of nutrients, which

are synthesized via plant metabolism. Further in case of Fe,

this method is not much effective because Fe is immobi-

lized in soil in ferric form but plants absorb Fe in ferrous

form (Pérez-Massot et al. 2013). Moreover, it is a tempo-

rary and an expensive way of biofortification, one has to

perform the same agronomic practices repeatedly.

Table 2 Nutritional profile of raw potatoes with skin (Source: United

States Department of Agriculture (USDA), Agricultural Research

Service (ARS), 2018)

Name Value per 100 g 38 g skin

Proximates

Water 83.29 g 31.65 g

Energy 58 kcal 22 kcal

Protein 2.57 g 0.98 g

Total lipid (fat) 0.10 g 0.04 g

Carbohydrate, by difference 12.44 g 4.73 g

Fiber, total dietary 2.5 g 0.9 g

Minerals

Calcium, Ca 30 mg 11 mg

Iron, Fe 3.24 mg 1.23 mg

Magnesium, Mg 23 mg 9 mg

Phosphorus, P 38 mg 14 mg

Potassium, K 413 mg 157 mg

Sodium, Na 10 mg 4 mg

Zinc, Zn 0.35 mg 0.13 mg

Vitamins

Vitamin C, total ascorbic acid 11.4 mg 4.3 mg

Thiamin 0.021 mg 0.008 mg

Riboflavin 0.038 mg 0.014 mg

Niacin 1.033 mg 0.393 mg

Vitamin B-6 0.239 mg 0.091 mg

Folate 17 lg 6 lg
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Transgenic approach

The biofortification of micronutrients using transgenic

approach provides sustainability because transgenics pro-

duce self-fortifying seeds (Blancquaert et al. 2015). The

development of nutrient rich crops using transgenic

approach is an efficient and cost-effective method. This

approach allows using a broad range of genes associated

with different micronutrients from even entirely unrelated

species (Xu et al. 2017; Muñiz Garcı́a et al. 2018) and can

be used to reduce the content of anti-nutrients (Pérez-

Massot et al. 2013). Thus, it permits the biofortification of

a nutrient, which does not exist in the whole germplasm of

a crop. Moreover, tissue specific biofortification can be

done using transgenic approach (De Lepeleire et al. 2018).

Therefore, the concentrations of micronutrients in the

edible part of targeted crop can be enhanced. To maximize

the uptake, mobilization and storage of micronutrients in

Fig. 3 A systematic flow chart proposing an effective way for the development of micronutrient rich potato varieties

Table 3 Different institutes having collection and maintenance of potato germplasm

Name Location Reference

International Potato Centre CIP, Lima, Peru https://cipotato.org/genebankcip/

Dutch-German Potato Collection CGN, Wageningen, The

Netherlands

https://www.wur.nl/en/Research-Results/Statutory-research-tasks/

Centre-for-Genetic-Resources-the-Netherlands-1/Expertise-areas/

Plant-Genetic-Resources/CGN-crop-collections/CGN-potato-

collection.htm

The Gross Luesewitz Potato Collections GLKS, IPK, Groß

Lusewitz, Germany

https://www.ipk-gatersleben.de/en/genebank/satellite-collections-

north/gross-luesewitz-potato-collections/

The Potato Collection of the Vavilov

Institute

VIR, St Petersburg, Russia Dzyubenko (2018)

US Potato Genebank NRSP-6, Sturgeon Bay,

USA

https://www.ars-grin.gov/nr6/

Commonwealth Potato Collection The James Hutton Institute

(JHI), Dundee, Scotland

https://ics.hutton.ac.uk/germinate-cpc/#home

The Indian Council of Agricultural

Research-Central Potato Research

Institute

ICAR-CPRI, Shimla, India https://www.cpri.in/
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plants many transgenic studies have been performed in

major food crops (Saalbach et al. 2014; Takenaka et al.

2019; Wu et al. 2019). Recently, various attempts have

been made by scientists to enhance the potato tuber quality

with respect to micronutrients via transgenic approach

(Mitchell et al. 2017; Xu et al. 2017; Bagri et al. 2018;

Muñiz Garcı́a et al. 2018). The overexpression of PDXII

gene from Arabidopsis thaliana in potato under the control

of CaMV35S promoter increased the accumulation of

vitamin B6 and enhanced abiotic stress tolerance (Bagri

et al. 2018). Likewise, incorporation of Arabidopsis ABF4

in potato improved the tuber yield, quality and abiotic

stress tolerance (Muñiz Garcı́a et al. 2018). Furthermore,

AtMYB12 gene from Arabidopsis has increased the con-

tent of caffeoylquinic acids and flavonols in potato tubers

(Li et al. 2016). Many genes associated with micronutrient

acquisition, transportation, accumulation and tolerance

have been reported previously (Blancquaert et al. 2017;

Kumar et al. 2018; Moreira et al. 2018; Papierniak et al.

2018; Migocka et al. 2019). Legay et al. (2012) reported

the elevated expression of several genes including the well-

known iron regulators FRO1, FRO2, IRTI, FRD3,

Table 4 List of different agronomic practices for biofortification of potato

Method Type of biofortification Country References

Foliar application Se Italy Poggi et al. (2000), Cuderman et al. (2008)

Foliar application Se Slovenia Zhang et al. (2019)

Foliar application Mg, S, Zn, B India Ramesh et al. (2019)

Foliar application cobalamin, folic acid and ascorbic acid Egypt Youssif et al. (2017)

Foliar application Zn, B, Fe, Mn India Moinuddin et al. (2017)

Foliar application Fe, Zn, Mn, Ti Poland Wadas and Kalinowski (2019)

Foliar application urea, humic acid (HA), Zn, B Pakistan Shah et al. (2016)

Foliar application Nanaofertilizer, Seaweed and Hypertonic Iraq Al-Juthery et al. (2018)

Foliar application Fe, Mn, Cu, Zn Iraq Al-Jobori and Al-Hadithy (2014)

Foliar application Zn United Kingdom White et al. (2017)

Both Foliar and Soil application Zn, Fe United States Kromann et al. (2017)

Both Foliar and Soil application Zn, Fe Bolivia Gabriel et al. (2015)

Tuber priming Zn Brazil Vergara et al. (2019)

Table 5 Transgenic studies conducted for potato biofortification

Micro-nutrient Gene(s) References

Beta-carotene StLCYb Song et al. (2016)

Beta-carotene lycopene epsilon cyclase (LCY-e) Diretto et al. (2006)

Amino acid composition AmA1 Chakraborty et al.

(2010)

Anthocyanins, phenolic

acids

chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase

(DFR)

Lukaszewicz et al.

(2004)

Vitamin B9 HPPK/DHPS, FPGS De Lepeleire et al.

(2018)

Vitamin B6 PDX-II gene Bagri et al. (2018)

Vitamin C GalUR gene Hemavathi et al. (2009)

Vitamin C StVTC2A Bulley et al. (2012)

Vitamin C StDHAR Qin et al. (2011)

Vitamin A EuCrtB, EuCrtI, EuCrtY Diretto et al. (2007)

Vitamin A BoOr Lopez et al. (2008)

Vitamin A PaCrtB Ducreux et al. (2005)

Calcium Scax1 Park (2005)

Calcium Cax2b chimeric Kim et al. (2006)
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NRAMP, VIT1, FIT/FER in in-vitro potato plantlets grown

in iron deficient media. As the functions of these genes are

known in other non-graminaceous plants, thus their over-

expressor transgenic potato lines could be developed to

enhance the tuber Fe content in Fe deficient soils. Beside

these, manually curated nutrient use efficiency (NtUE)-

related genes and quantitative trait loci (QTLs) are avail-

able at (Kumar et al. 2018). By using transgenic tech-

niques, nutrient rich crops can be developed. However,

despite of numerous successful transgenic studies

(Table 5), only few nutrient rich transgenic varieties have

been released (Garg et al. 2018). This is because of legal

and ethical issues associated with transgenics.

Breeding

The micronutrient concentrations in various staple crops

has been increased by conventional breeding experiments

without affecting the other agronomic traits. Various

attempts have been made to increase micronutrient content

in potato through plant breeding approaches (Table 6).

However, in potato the traditional breeding programs were

primarily focused to increase the crop yield and disease

resistance (Kikuchi et al. 2015). Moreover, most of the

modern potato cultivars were developed from a limited

germplasm brought from Andeans of South America by

repeated breeding. Hence, most of the modern potato cul-

tivars have less genetic variability (Fig. 4) (Barrell et al.

2013; Hameed et al. 2018). However, Berdugo-Cely et al.

(2017), reported that the potato germplasm present at ‘the

colombian central collection’ have great phenotypic and

genotypic diversity. By using 4666 SNPs, they find out 23

significant and robust marker-trait associations with dif-

ferent phenotypic traits. Haynes et al. 2012 investigated

genetic variations associated with micronutrient concen-

trations in 18 potato clones and reported significant varia-

tions for Fe, Zn, Cu and Mn concentrations in potato.

Further, Haan et al. (2019), reported high nutritional

diversity for dry matter, energy, protein, iron and zinc

content in Andean diverse landraces and modern potato

varieties. As the huge pool of ‘potato germplasm’ itself

have genetic variations for micronutrient content (de Haan

et al. 2019; Haynes et al. 2012), so it can be biofortified

using conventional breeding.

Breeding approaches to increase micronutrient content

in potato tubers depends upon environmental conditions

and soil composition (Trawczyński 2016; Martins et al.

2018). The genotype x environment interactions (GEI)

have significant effect on tuber’s nutritional quality (Mo-

hammed 2017; Haynes et al. 2019). Burgos et al. (2007),

reported notable variations in the tuber Fe and Zn con-

centrations due to GEI when grown at two different loca-

tions. Therefore, multi-environmental trials are required to

choose potential parents for potato breeding programs and

to reduce the effect of GEI (Kelly et al. 2007).

Genetic approaches to speed up potato
biofortification

Different strategies can be used in potato biofortification

programme to speed up the process such as association

mapping, QTL mapping to identify potential candidate

genes and reverse genetic approaches to validate their

functionality (Fig. 3).

Table 6 List of studies

conducted for potato

biofortification by plant

breeding

Micro-nutrient(s) Country Reference(s)

Zn, Fe Peru (Burgos et al. 2007)

Fe United states (Brown et al. 2010)

Cu, Fe, Mn, Zn United states (Haynes et al. 2012)

Fe, Zn, Mg, Mn, Ca Colombia (Peña et al. 2015)

Antioxidants Peru (Lachman and Hamouz 2005; Andre et al. 2007)

Fig. 4 Pyramid chart depicts the decreased genetic diversity in

modern potato varieties due to potato domestication, repeated

breeding and transgenic studies performed for better agronomic traits
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Table 7 List of various studies conducted successfully to identify marker-trait associations for mineral nutrient concentrations in different crops

by exploiting the germplasm diversity using association mapping (AM) and genome-wide association mapping (GWAS)

Crop Nutrient for AM Population size No of significant

associations

Country References

Common bean

(Phaseolus
vulgaris L.)

N, P, K, Ca, Mg, Fe, Zn, and Mn 174 accessions 31 quantitative trait

nucleotides

Croatia Gunjača

et al.

(2021)

Common bean

(Phaseolus
vulgaris L.)

Fe, Zn, C, K, Ca, P, and Mg 109 genotypes NA India Jan et al.

(2021)

Vigna radiata L Ca, Fe, K, Mn, P, S, and Zn 95 genotypes 43 MTAs United

States

Wu et al.

(2020)

Phaseolus
Vulgaris L

Fe, Zn Vitamin A 206 genotypes 10 SNP marker trait

associations

Mexico Binagwa

et al.

(2020)

Rice (Oryza
sativa L.)

Fe and Zn concentrations 152 7 QTLs (2 for Fe and 5

for Zn)

Philippines Descalsota-

Empleo

et al.

(2019)

Wheat (Aegilops
tauschii)

Micronutrients (Fe, Zn, Cu, and Mn) 167 accessions 19 SNP marker trait

associations

India Arora et al.

(2019)

Rice (Oryza
sativa)

Ionomic Variation (N, P, K, Ca, Mg, Fe,

Mn, Mo, B, Cu, Zn, Co, Na, Cd, As, Pb,

Cr)

529 accessions 72 loci associated China Yang et al.

(2018)

Maize (Zea mays
L.)

Fe and Zn concentration 923 inbred lines 46 SNP marker trait

associations (26 for Fe

and 20 for Zn)

Mexico Hindu et al.

(2018)

Wheat (Triticum
aestivum L.)

Zn concentration 369 wheat genotypes 40 SNP marker-trait

associations

Germany Alomari

et al.

(2018)

Lentil (Lens
culinaris
subsp.

culinaris)

Fe and Zn concentration 96 germplasm lines 7 SSR marker trait

associations

India Singh et al.

(2017)

Spinach

(Spinacia
oleracea L.)

Mineral element concentrations (B, Ca,

Co, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P,

S, Zn)

292 accessions 45 SNP marker trait

associations

United

States

Qin et al.

(2017)

Common bean

(Phaseolus
vulgaris L.)

Micronutrients (Fe, Zn and protein) 96 genotypes 13 SSR marker trait

associations

India Mahajan

et al.

(2017)

Rice (Oryza
sativa L.)

Fe and Zn concentration 222 accessions 60 QTLs (29 for Fe and

30 for Zn)

China Zhang et al.

(2017)

Barley

(Hordeum
vulgare L.)

Mn concentration 248 barley varieties 54 SNP marker trait

associations

Denmark Leplat et al.

(2016)

Potato (Solanum
tuberosum L.)

Fe and Zn concentrations 170 11 marker trait

associations (4 for Fe

and 7 for Zn)

Peru CGIAR

(2016)

Chickpea (Cicer
arietinum L.)

Fe and Zn concentrations 92 accessions (39 desi

and 53 kabuli)

16 genomic loci (gene-

based SNPs)

India Upadhyaya

et al.

(2016)

Rice (Oryza
sativa)

Mineral Element Contents (Fe, Zn, Se,

Cd, Pb)

416 accessions

(planted) but only

378 were finally used

20 QTLs China Huang et al.

(2015)

Rice (Oryza
sativa L.)

Mineral Element Contents Zn, Fe, Cu,

Mn, P, Ca, K, Mg

219 accessions planted

but only 175 were

used

60 SSR marker trait

associations

China Nawaz et al.

(2015)

Maize (Zea mays
L.)

Fe concentration 302 maize inbred lines

planted but 267

35 SNP marker trait

associations

Germany Benke et al.

(2015)
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Association mapping and QTL analysis

Exploration of desirable genetic variations and their

introgression into the modern potato varieties is a big

challenge due to high heterozygosity and polyploid nature

of potato genome (PGSC 2011). Association mapping

(AM) or genome-wide association studies (GWAS) are

efficient techniques to screen the fruitful genes and geno-

mic regions associated with a complex phenotypic trait

(Ma et al. 2016; Rojas et al. 2019). It provides higher

mapping resolution in comparison to linkage mapping

population (Huang and Han 2014). So far, these techniques

have been employed to screen the genes/markers/QTLs

associated with micronutrient contents in various food

crops (Table 7). In potato, these have been performed

successfully to identify the marker-trait associations for

tuber bruising (Urbany et al. 2011; D’hoop et al. 2014),

starch content (Schönhals et al. 2016), and glycoalkaloid

content (Manrique-Carpintero et al. 2014; Vos et al. 2016).

Genotyping by sequencing (GBS) based GWAS experi-

ment was performed on a panel of 170 potato landraces

with genetic variations for Fe and Zn content. They found

four genetic markers significantly associated with Fe con-

tent and seven with zinc content (CGIAR 2016). However,

the genetic basis of micronutrient content in potato is still

poorly known and demands further investigation of genetic

variations linked to micronutrient content (Haynes et al.

2012).

Reverse genetic approaches

GWAS, QTL mapping and by utilizing different bioinfor-

matics approaches potential candidate genes/markers/QTLs

associated with micronutrient content can be identified.

However, functional validation of these potential candi-

dates is important before their incorporation into any potato

cultivars, which can done by reverse genetic approaches.

For an instance, virus induced gene silencing (VIGS) is a

simple, rapid and efficient method to study the gene

function by suppressing its expression (Bekele et al. 2019).

The role of ferric reductase oxidase (FRO1) gene has been

verified in Nicotiana benthamiana using tobacco rattle

virus (TRV) based VIGS (Gama et al. 2017). This tech-

nique has been successfully applied to validate the func-

tionality of various candidate genes in potato (Cui et al.

2009; Zhong et al. 2018). Generation of transfer (T)-DNA

mutants is also a fast and effective way to study the can-

didate gene’s function (Radhamony et al. 2005; Duangpan

et al. 2013). This technique can also be employed in potato

to develop T-DNA mutant lines for any specific gene (An

et al. 2005; Duangpan et al. 2013). In addition, other

reverse genetic techniques such as RNA interference

(RNAi) (Aggarwal et al. 2018), clustered regularly inter-

spaced short palindromic repeats (CRISPR) (Klimek-

Chodacka et al. 2018; Martı́n-Pizarro et al. 2019), zinc

finger nucleases (ZFNs) (Petolino 2015) and targeting

induced local lesions in genomes (TILLING) (Chen et al.

2014; Sánchez et al. 2018) can also be employed for the

same reason. In the last decade, CRISPR-Cas9 based

genome editing has been extensively used for crop

improvement (Yin et al. 2017; Langner et al. 2018; Singh

et al. 2018). It involves a guide RNA (gRNA) of about 20

Table 7 continued

Crop Nutrient for AM Population size No of significant

associations

Country References

Rice (Oryza
sativa L.)

As, Cu, Mo and Zn concentrations 312 accessions 17 SNP marker-trait

associations

Several

countries

Norton et al.

(2014)

Chickpea (Cicer
arietinum L.)

Fe and Zn concentrations 94 accessions 8 marker trait

associations

Canada Diapari et al.

(2014)

Barley

(Hordeum
vulgare L.)

landraces

Fe and Zn concentration 298 accessions 14 SNP marker trait

associations

United

States

Mamo et al.

(2014)

Sorghum

(Sorghum
bicolor (L.)

Moench)

Grain quality traits including Ca and P 300 accessions 8 SNP marker trait

associations

United

States

Sukumaran

et al.

(2012)

Arabidopsis
Thaliana

Mineral Element Contents (B, Na, Mg, P,

S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As,

Se, Rb, Mo, Cd)

96 accessions Many different

associations for

different traits

Belgium Baxter et al.

(2012)
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nucleotides (spacer sequence) complementary to the target

gene and a Cas9 endonuclease enzyme that has the ability

to generate double stranded breaks (DSB) 3–4 bases after

the protospacer adjacent motif (PAM). These DSB later on

gets repaired either by error prone non-homologous end-

joining pathway (NHEJ) or by homology directed repair

pathway (HDR) (Zhao et al. 2016; Jiang and Doudna

2017).

Conclusion

Overcoming the hidden hunger is very crucial for a large

portion of world population. Although several approaches

are available but biofortification seems to be a highly

sustainable approach. Dietary diversification, pharmaceu-

tical supplementation and food fortification are not

affordable for poor. Thus, these are less sustainable

methods than crop biofortification. Potato crop gives sig-

nificant response to agronomic practices such as tuber

priming, use of soil and foliar fertilizers but farmers should

be aware of dose and time of fertilizer application to get the

best benefit of it. Moreover, understanding of genetic basis

of micronutrient concentrations in potato tubers can facil-

itate potato biofortification. Wide range of genetic diversity

for mineral concentration exists in potato germplasm that

can be utilized via genetic engineering and plant breeding

to develop nutrient rich potato varieties. However, due to

ethical and biosafety issues the development of biofortified

transgenic potatoes is less efficient approach to reduce

hidden hunger in comparison to plant breeding. Although,

traditional breeding experiments are time consuming, but

nowadays with the help of advance biotechnological tools

more precise and accurate breeding programs can be

designed to improve micronutrient concentration in potato.

Future perspective

During the last decade, genetic engineering and genome-

editing techniques, advance biotechnological, bioinfor-

matics tools, and new breeding technologies have been

mushroomed up because of their application potential.

Earlier, these technologies were focused to improve the

quantitative traits in potato (Hameed et al. 2018). However,

to reduce the hidden hunger these techniques individually

or in combination should be applied to improve the tuber

micronutrients concentrations. Various attempts have been

performed successfully to improve the mineral concentra-

tions, vitamin and protein content, beta-carotene, and

antioxidants levels. To catalyse the potato biofortification

programs a better understanding of various pathways

associated with the mineral elements uptake, accumulation

and assimilation is required, which can be achieved by

using advanced tools. Many genes associated with

micronutrient concentrations are validated in model plants

and in major food crops including potato. The potential

genes from other species can be introduced to potato cul-

tivars via genetic engineering. The expression of positive

regulatory genes can be enhanced in potato and the genes

that promote biosynthesis of anti-nutritional compounds

can be knocked down via genome editing techniques or

gene silencing approaches. The techniques namely ZFNs,

transcription activator-like effector nucleases (TALENs)

and CRISPR offer precise genome editing. These tech-

niques provide a potential alternative of transgenic

approaches, as these do not involve the permanent insertion

foreign genes. CRISPR-Cas9 technique can be successfully

applied to potato with the help of geminivirus replicons

(GVRs) (Butler et al. 2016; Nadakuduti et al. 2019). Potato

is responsive to plant tissue culture based propagation

(Bamberg et al. 2016), thus it is comparatively easy to

develop nutrient rich superior non-GMO potato plants for

future with these approaches.

However, vast potato germplasm itself have many

unknown genes that can increase the content of mineral

elements in it. With the advent of next generation

sequencing (NGS) techniques and availability of potato

genome sequence, the genetic variations underlying the

mineral composition can be investigated through GBS

based GWAS technique. This technique provide potential

candidate genes/markers associated with an observable

trait that can be later validated by reverse genetic approa-

ches. After validation, breeders can use them to speed up

the development of biofortified potato varieties through

marker-assisted selection (MAS) breeding and precision

breeding. Previously most of the breeding experiments in

potato were based upon phenotypic characters but now

with the help of GWAS, these can be planned on the basis

of genotypic variations. However, for the development of

stable phenotypes understanding of GEI is also important.

Ultimately, all these advanced biotechnological tools and

high-throughput sequencing methods will lead to the

development of nutrient rich potato varieties and help to

diminish the grave problem of hidden hunger especially in

the developing world.
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