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Abstract In wheat, meta-QTLs (MQTLs), ortho-MQTLs,

and candidate genes (CGs) were identified for nitrogen use

efficiency and root system architecture. For this purpose,

1788 QTLs were available from 24 studies published

during 2006–2020. Of these, 1098 QTLs were projected

onto the consensus map resulting in 118 MQTLs. The

average confidence interval (CI) of MQTLs was reduced up

to 8.56 folds in comparison to the average CI of QTLs. Of

the 118 MQTLs, 112 were anchored to the physical map of

the wheat reference genome. The physical interval of

MQTLs ranged from 0.02 to 666.18 Mb with a mean of

94.36 Mb. Eighty-eight of these 112 MQTLs were verified

by marker-trait associations (MTAs) identified in published

genome-wide association studies (GWAS); the MQTLs

that were verified using GWAS also included 9 most robust

MQTLs, which are particularly useful for breeders; we call

them ‘Breeder’s QTLs’. Some selected wheat MQTLs

were further utilized for the identification of ortho-MQTLs

for wheat and maize; 9 such ortho-MQTLs were available.

As many as 1991 candidate genes (CGs) were also

detected, which included 930 CGs with an expression level

of[ 2 transcripts per million in relevant organs/tissues.

Among the CGs, 97 CGs with functions previously

reported as important for the traits under study were

selected. Based on homology analysis and expression pat-

terns, 49 orthologues of 35 rice genes were also identified

in MQTL regions. The results of the present study may

prove useful for the improvement of selection strategy for

yield potential, stability, and performance under N-limiting

conditions.
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Introduction

Nitrogen (N) is a major limiting factor for plant growth and

development (Raun and Johnson 1999) so that during the

four decades of the green revolution, a seven-fold rise in

the use of nitrogen fertilizer was needed to achieve the

doubling of agricultural food production worldwide (Hirel

et al. 2007). A side-effect of this excess use of N has also

been witnessed in the form of a negative impact on the

ecosystem (Li et al. 2015). In order to limit the excess use

of N without any adverse effect on yield, the use of cul-

tivars with improved efficiency for N uptake and utilization

has been recommended, particularly under low N input

management (Good and Beatty 2011). In wheat, the

availability of genetic variation in the germplasm suggests

that the development of cultivars with high nitrogen use

efficiency (NUE) is possible and can be achieved through

breeding (Balyan et al. 2016). However, due to the com-

plex genetic architecture of this trait and strong genotype-

environment interactions (G 9 E) involved, efforts for
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breeding wheat cultivars for high NUE met with only

limited success.

NUE is commonly defined as grain yield per unit of N

supplied (Moll et al. 1982); it largely depends on two major

components: Nitrogen Uptake Efficiency (NUpE) and

Nitrogen Utilization Efficiency (NUtE). NUpE is the

quantity of N taken up by the plant per unit of N provided,

whereas, NUtE is the grain yield per unit of N taken up by

the plant. As a result, NUE is only the sum of NUpE and

NUtE (Moll et al. 1982; Good et al. 2004). Other traits that

are most relevant for measuring NUE in wheat include the

following, besides others: (i) chlorophyll content, (ii) plant

height, (iii) biomass, (iv) fresh and dry weight of plants,

(v) N accumulation partitioning indices, (vi) leaf area

index, (vii) grain N, (viii) grain protein content, (ix)

enzymatic activities in different plant parts/tissues,

(x) agronomic traits such as grain number, grain weight,

grain filling duration, days to heading/flowering/maturity,

tiller number, and spike related traits (Greef 1994; Cirilo

et al. 2009; Sun et al. 2013; Balyan et al. 2016; Brasier

et al. 2020). Root system architecture (RSA) is also critical

while breeding for high NUpE (Lopez-Bucio et al. 2003;

Garnett et al. 2009). A desirable root RSA for improved

NUpE, particularly under low-N soils, includes increase in

root dry weight, root length, root density, root number, root

diameter, and length of lateral roots/root hairs (Meister

et al. 2014; Li et al. 2016; Forde 2014), Meister et al. 2014;

Li et al. 2015).

In wheat, due to lack of complete knowledge about the

genetic basis of NUE, and associated G 9 E interactions,

selection of cultivars with RSA-based NUE has been

suggested (Garnett et al. 2009). QTL studies involving all

RSA traits (mentioned above) are also available in wheat.

Numerous wheat QTLs for NUE traits at physiological and

agronomic levels have been reported (Fan et al. 2019;

Zhang et al. 2019; Brasier et al. 2020). Similarly, QTLs

that regulate RSA have also been identified (Salarpour

et al. 2020; Yang et al. 2020). Despite these significant

advances in information about the genetics of NUE and

RSA, only a very small fraction of these QTLs and the

associated markers could be utilized in actual breeding.

The reasons for this failure have been widely discussed

(Misztal, 2006; Collard and Mackill, 2008; Cobb et al.

2019).

In order to overcome the above limitations in using

QTLs for the development of wheat cultivars with higher

NUE, a meta-QTL (MQTL) analysis seems to be an

appropriate approach, which allows identification of the

most robust and stable MQTLs (Goffinet and Gerber, 2000;

Veyrieras et al. 2007). These MQTLs have shown to be

more effective than QTLs for their use in marker-assisted

selection (MAS) because the MQTLs generally have

reduced confidence intervals (CIs) and improved

phenotypic variation explained (PVE%). MQTLs have also

been shown to be useful for the identification of promising

candidate genes (CGs) associated with the trait in question.

Improved software and algorithms have become available

and are being increasingly utilized for meta-QTL analysis

(Sosnowski et al. 2012; de Oliveira et al. 2014). The

approach has already been used to identify MQTLs for a

variety of traits in all major crops, including wheat (Online

Resource 1), rice (Kumar and Nadarajah 2020; Khahani

et al. 2020, 2021), barley (Zhang et al. 2017) and maize

(Zhao et al. 2018).

Meta-QTL analysis in wheat has already been conducted

for a number of traits, which are listed in Online Resource

1. A solitary study on MQTL for traits relevant to NUE was

also conducted, almost ten years ago (Quraishi et al. 2011),

where 11 MQTLs based on only three studies were

reported. Similarly, reports on MQTLs for RSA using

QTLs reported till 2017 are also available (Darzi-Ramandi

et al. 2017; Soriano and Alvaro, 2019). A large number of

studies involving interval mapping for NUE have also been

conducted in different crops including wheat during the last

10 years (Online Resource 2). Since hundreds of QTLs for

NUE in wheat have been reported during the last decade

(after the only report of MQTL for NUE published in

2011), a fresh meta-QTL analysis is warranted. The

MQTLs for the same trait have also been used for identi-

fication of the so-called ortho-MetaQTLs, which seem to

be conserved over cereals and therefore will be more

reliable and can be used in more than one cereals. This

identification of ortho-MQTLs has been facilitated by a

high level of synteny and collinearity between wheat and

other cereals.

Keeping in view the above, the present study was

planned, which involved meta-analysis for NUE and RSA

in wheat and ortho-MQTL analysis involving wheat and

maize. For NUE, QTLs reported during 2006–2020, and

for RSA, QTLs reported during 2018–2020 were utilized

for the present study. Since MQTLs for NUE are also

known in maize (Ahn et al. 1993; Bennetzen and Chen,

2008), ortho-MQTLs for wheat and maize were also

worked out with the hope that the results of the present

study may be used not only for wheat and maize but also

for other cereals (due to conserved nature of ortho-

MQTLs). MQTLs for NUE/RSA were not available in

other cereals like rice, barley, etc. for identification of

ortho-MQTLs involving all the cereals in the present study.

Results of the meta-analysis were also compared with the

available results from GWAS, and integrated with tran-

scriptomics, and rice–wheat orthology to identify the

promising genomic regions and important CGs, which

affect NUE/RSA in wheat. The findings of the present

study should prove useful for the improvement of wheat
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cultivars for yield potential, stability, and performance

under N-limiting conditions.

Materials and methods

Bibliographic search and data collection

A comprehensive bibliographic search was carried out on

wheat QTLs related to NUE published during 2006–2020;

QTL information associated with RSA traits under differ-

ent levels of N contents, published during 2018–2020 was

also collected. Details on 15 studies for QTLs associated

with NUE and 9 studies for QTLs associated with RSA are

summarized in Online Resource 2. Each study was utilized

for collecting the following information: (i) data on asso-

ciated traits, (ii) type and size of the mapping population,

(iii) position of QTLs (peak position and genetic CI), (iv)

LOD (logarithm of the odds) score for each QTL, (v) R2 or

PVE (phenotypic variation explained) for each QTL, (vi)

closely linked or flanking markers. Studies with incomplete

information were not included.

Construction of consensus map and QTL projection

Following three high-quality linkage maps containing dif-

ferent types of markers, extensively used in QTL mapping

studies, were utilized to prepare a consensus map:

(i) Wheat_Composite_2004’ available at GrainGenes

database (http://wheat.pw.usda.gov), (ii) ‘Wheat, Consen-

sus SSR, 2004’ (Somers et al. 2004), (iii) the integrated

map constructed by Marone et al. (2013). Markers flanking

individual QTLs, identified in all 24 QTL mapping studies,

were also included on this consensus map. The R package

‘‘LP merge’’ (Endelman and Plomion 2014) was used to

construct a consensus map for meta-QTL analysis. Con-

struction of consensus map using LPmerge involves two

steps. First, it computes the number of consensus bins,

markers, and ordinal conflicts (if available). If there are

inconsistencies in the order of markers in the linkage maps,

it resolves them by removing ordinal constraints using

statistical manipulations. Second, it generates 1 to 4 con-

sensus maps (K = 1 to 4, where K is the maximum interval

size); from which one or more maps can be chosen using

the associated statistics developed for this purpose; this is

accomplished by estimating the root mean square error

(RMSE, based on mean and standard deviation) between

each initial map and the consensus map. The final map for

further analysis was the consensus map with a length close

to the mean length of the component linkage maps asso-

ciated with the lowest standard deviation.

The QTLs having the following information were

selected for projection on the consensus map: (i) PVE, (ii)

LOD scores, (iii) peak positions, and (iv) CIs. For QTLs,

lacking original CI, 95% CI was calculated based on

population-specific equations derived by Darvasi and Sol-

ler, (1997) and Guo et al. (2006). The QTL positions were

then projected on the consensus chromosome map utilizing

a scaling rule between the marker interval of the QTLs and

the corresponding CI on the consensus map (Arcade et al.

2004; Veyrieras et al. 2007). BioMercator v.4.2 (https://

urgi.versailles.inra.fr/Tools/BioMercator-V4) was used for

this purpose. The new CI of each QTL on the consensus

map was computed using Gaussian distribution (Veyrieras

et al. 2007).

Meta-QTL analysis and verification using GWAS

After QTL projection, meta-analysis was performed for

each chromosome, separately, using BioMercator v.4.2.

Since the number of QTLs per chromosome was[ 10, an

algorithm, involving two-step analysis, developed by

Veyrieras et al. (2007) was used for the analysis. In the first

step, five different models (based on the presence of 1, 2, 3,

4, or N real QTLs) were used, and the best model was

defined using Akaike (AIC) statistics. The second step

involved setting up suitable parameters for further analysis;

these parameters included the actual number of MQTLs or

real QTLs to be mapped on the concerned chromosome.

The details of statistical approaches and algorithms that are

available in the Biomercator software are described in

several earlier studies (e.g. de Oliveira et al. 2014). The

LOD and PVE values of MQTLs were calculated as

averages of LOD and PVE values of the QTLs involved.

The nucleotide sequences of the markers flanking the

MQTLs were retrieved either from the published literature

or the databases such as GrainGenes (https://wheat.pw.

usda.gov/GG3/) and CerealDB (https://www.cerealsdb.uk.

net/cerealgenomics/CerealsDB/indexNEW.php). The

retrieved sequences were used for BLAST against the

wheat reference genome (RefSeq v1.0) available in

EnsemblPlants to identify the physical coordinates of the

MQTLs. Physical positions of some SNPs were directly

obtained from the JBrowse wheat genome browser (https://

wheat-urgi.versailles.inra.fr/Tools/Jbrowse).

Information on marker-trait associations (MTAs) for

NUE and RSA identified in recent GWA studies was col-

lected and used for a comparison with MQTLs identified

during the present study. Similarly, the physical positions

of markers (significantly associated with the trait) were

obtained either from databases or through BLAST sear-

ches. GWAS-MTAs that occurred within 5 Mb physical

regions around the MQTLs were considered to be co-lo-

cated with the MQTLs (Yang et al. 2021).
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Identification and characterization of ortho-MQTLs

using wheat and maize MQTLs

Ortho-MQTLs were identified using synteny and

collinearity between wheat and maize MQTLs. For this

purpose, only robust wheat MQTLs each involving at least

15 initial QTLs were utilized along with available infor-

mation on maize MQTLs (Guo et al. 2018). In each case, a

set of CGs underlying the wheat MQTLs was used for the

identification of syntenic regions in maize MQTLs using

the EnsemblPlants database.

Mining of candidate genes and expression analysis

Physical coordinates of MQTLs were utilized for the

identification of CGs using the BioMart tool of Ensem-

blPlants. Only MQTLs with B 2 Mb CI were initially

considered for identification of available CGs; for other

MQTLs, where the physical interval was[ 2 Mb, the

physical position of the MQTL peak was calculated

according to Jan et al. (2021) and then a 2 Mb region

around the MQTL peak was used for identification of CGs.

In-silico expression of CGs identified as above was

conducted using the Expression Visualization and Inte-

gration Platform (expVIP) (http://www.wheat-expression.

com/); the available relevant transcriptomics datasets were

utilized for this purpose (e.g., Ramı́rez-González et al.

2018). CGs with expression levels[ 2 transcripts per

million (TPM) in relevant plant parts/tissues (e.g., roots,

shoots, leaves, and grains) were considered for further

analysis following the criteria suggested by Wagner et al.

(2013). For better visualization of the patterns of gene

expression, heat maps were generated using an online

platform ‘Morpheus’ (https://software.broadinstitute.org/

morpheus/). CGs with known functions were accepted as

high-confidence CGs for individual MQTLs.

Wheat orthologues for NUE-related rice genes

Basic information on NUE-related rice genes was collected

from two recently published research papers (Han et al.

2016; Zhang et al. 2020a, 2020b); protein sequences of

these rice genes were extracted from the NCBI database

(https://www.ncbi.nlm.nih.gov/). Wheat orthologues of

these rice genes were identified from the wheat reference

genome using extracted proteins sequences for BLASTP

searches. The genes found within MQTL regions were

accepted as wheat orthologues for NUE traits. These wheat

orthologues were subjected to expression analysis utilizing

the relevant transcriptomics datasets available at the

expVIP. Levels of gene expression were assessed using

TPM values, which were then used for developing heat

maps.

Results and discussion

Salient features of the QTLs

A total of 1,788 QTLs were available from 24 earlier

studies, carried out during 2006–2020 (Online Resource 2,

3). These studies involved 20 DH/RIL populations ranging

in size from 91 to 227 lines. Some of the essential features

of this data include the following: (i) The 1,788 initial

QTLs were distributed on all the 21 wheat chromosomes

(Fig. 1a). The sub-genome B carried the maximum number

of QTLs (721 QTLs) and the D sub-genome carried the

minimum (457 QTLs) which is in agreement with previous

meta-QTL studies conducted for NUE and RSA in wheat

(Quraishi et al. 2011; Darzi-Ramandi et al. 2017; Soriano

and Alvaro, 2019). (ii) The number of QTLs per compo-

nent trait ranged from 77 for enzymatic activities to 602 for

agronomic traits (ATs) (Fig. 1b). All the traits associated

with NUE and RSA were grouped into 6 main categories

(Online Resource 4). (iii) CIs for QTLs ranged from zero to

96 cM, with an average of 10.01 cM (Fig. 1c). (iv) The

PVE of individual QTLs ranged from 1.55 to 55.81%, with

an average of 10.65% (Fig. 1d). The QTL data collected in

this study has been made publicly available through a

recently developed WheatQTL database (http://wheatqtldb.

net/) (Singh et al. 2021).

Wheat consensus map

The consensus genetic map included a total of 1,40,166

markers (Online Resource 5, 6) spread over a length of

6853.27 cM, thus giving a density of 20.45 markers/cM for

the whole genome. For individual chromosomes, the size

of the genetic map ranged from 127.70 (6B) to 661.02 cM

(2D) (Fig. 2), the number of markers ranged from 1177 on

4D to 15,716 on 3B and the density of markers ranged from

4.07 markers/cM for 1B to 83.14 markers/cM for 6B

(Fig. 2, Online Resource 6). The sub-genome A covered a

distance of 2538.18 cM with 61,949 markers (24.41

markers/cM), the sub-genome B covered a distance of

2289.26 cM with 58,846 markers (25.70 markers/cM) and

the sub-genome D covered a distance of 2025.82 cM with

19,371 markers (9.56 markers/cM). These features are not

very different from those on chromosome maps used in

earlier meta-QTL studies (Venske et al. 2019; Jan et al.

2021). The map developed in the present study is much

better, relative to those prepared and used in three earlier

studies for meta-QTL studies for the traits under study

(Quraishi et al. 2011; Darzi-Ramandi et al. 2017; Soriano

and Alvaro, 2019).
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MQTLs for NUE and RSA

Only 1703 QTLs of the available 1788 QTLs could be used

for projection onto the consensus map; the remaining 85

QTLs did not have complete information required for the

projection; 118 MQTLs involving 1098 QTLs were iden-

tified using meta-QTL analysis (Online Resource 7)

(Fig. 3). The remaining 605 QTLs could not be assigned to

any MQTL, since they either lacked common markers

between consensus and initial maps, or the QTLs had rel-

atively low R2 values and/or large CI. The distribution of

MQTLs on 21 individual chromosomes was not propor-

tionate to the number of QTLs carried by them. For

instance, chromosomes 4B, 5A, 6A, and 7B carried fewer

MQTLs and were not proportionate to the density of QTLs

on these chromosomes.

Fig. 1 Frequencies of QTLs used for identification of MQTLs in

wheat, based on four different criteria: a number of QTLs for 21

chromosomes arranged according to 7 homoeologous groups (1–7),

each group with three sub-genomes (A, B, D), b frequencies of QTLs

for each of the six traits, c frequencies of QTLs with different size of

CI (in cM), and d frequencies of QTLs with different levels of

phenotypic variation explained (PVE%)

Fig. 2 Details of the consensus

map, showing frequencies of

mapped markers on each of the

21 chromosomes; on top of each

bar representing individual

chromosomes are given length

of each chromosome (in cM)

and marker density (markers/

cM)
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The number of QTLs involved in an individual MQTL

varied from 2 to 52 (Fig. 4a); however, the following five

MQTLs were each based on[ 25 QTLs: MQTL4A.2 (26),

MQTL5D.6 (26), MQTL5A.1 (29), MQTL4B.4 (38), and

MQTL4B.1 (52). This is in sharp contrast to several earlier

studies, where none of the individual MQTLs carried[ 18

QTLs (Quraishi et al. 2011; Darzi-Ramandi et al. 2017;

Soriano and Alvaro, 2019). Twenty (20) of the 118 MQTLs

identified in the present study had genomic locations that

overlapped with MQTLs found in at least one of the three

previous studies (Darzi-Ramandi et al. 2017; Soriano and

Alvaro, 2019; Quraishi et al. 2011) (Online Resource 8); 14

of these 20 MQTLs were also verified using GWAS results.

All these verified MQTLs may be used with high confi-

dence for MAS and for further basic studies including

positional cloning and functional studies of underlying

CGs.

The CI of MQTLs, on an average, was reduced 8.56 fold

relative to the CIs in QTLs used (the range of CI in QTLs

was 0 to 96 cM with a mean of 10.27 cM), although the

average reduction in the size of CI for individual MQTLs

widely differed in individual chromosomes and could reach

24.87 fold reduction on chromosome 5D and 40.52 fold

reduction on chromosome 4B followed by 19.34 fold in 4D

and 15.78 fold in 5A (Fig. 4b). These reductions in the size

of CIs are in sharp contrast to those reported in several

earlier studies on NUE/RSA, where CI was reduced by

merely 2.98 times (14.8/4.96) in one study (Soriano and

Alvaro, 2019) and 3.25 (20.8/6.4) in another study (Darzi-

Ramandi et al. (2017).

The MQTLs were anchored to the physical map of the

wheat reference genome; for only 6 MQTLs, physical

coordinates could not be worked out, since these MQTLs

were flanked by markers like AFLP, which did not have

any sequence data required for BLAST searches (Online

Resource 7). The physical lengths of 112 mapped MQTLs

differed with a range of 0.02 Mb for MQTL3A.3 to

666.18 Mb for MQTL1B.7, with a mean of 94.36 Mb (29

of these MQTLs each covered a physical distance

of\ 2 Mb).

Several MQTLs exhibited a clustered distribution with

some overlapping MQTLs within a cluster. This clustering

of MQTLs was particularly apparent in chromosome 1A (3

MQTLs within 527.18 to 591.64 Mb region), 1B, (8

MQTLs within 17.32–683.81 Mb), and 2A (3 MQTLs

clustered within 25.6–43.3 Mb). Other clusters with some

overlapping regions were observed on the following wheat

chromosomes: 2B (4.48–41.47 Mb), 4A

(601.04–695.53 Mb), 6B (30.25–694.99 Mb), and 7A

(2.72–210.63 Mb), etc. (Online Resource 7). Such clus-

tering of MQTLs was also reported in some earlier studies

(Jan et al. 2021; Saini et al. 2021; Yang et al. 2021) and is a

desirable feature for the transfer of more than one MQTL

during MAS. These clusters may prove useful for marker-

assisted breeding (MAB).

Individual MQTLs also differed for the number of traits

each controlled; the number of traits controlled by an

individual MQTL ranged from a solitary trait controlled by

MQTL3B.2 to as many as 26 traits controlled by

MQTL4B.1. As many as 70 MQTLs out of 118 each car-

ried QTLs for several traits including both NUE and RSA.

According to one study, RSA shows a significant positive

bFig. 3 Distribution of 118 MQTLs on 21 wheat chromosomes. The

boxes on the right of each chromosome represent the positions of

MQTLs (with name of MQTL in each case) for three different

features, (red boxes: GWAS-verified MQTLs, green boxes: breeder’s

QTLs, black boxes: un-verified MQTLs). On the left of each bar

representing a chromosome, are given distances in cM, and on the

right are given pairs of flanking markers for each MQTL

Fig. 4 Basic information of MQTLs identified, a frequencies of MQTLs harbouring different number of QTLs, b comparison of CIs of QTLs

and those of meta-QTLs, showing fold level of reduction in the size of CI
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correlation with NUpE but no correlation with NUE,

implying that only N acquisition, not N utilisation, is most

probably related to the function of roots (Li et al. 2015;

Garnett et al. 2009). The MQTLs were used for a further

selection of some promising MQTLs using the following

criteria: (a) CI\ 2 cM, (b) average PVE[ 10%, (c) aver-

age LOD[ 5, and (d) involvement of at least 10 initial

QTLs with the MQTL. This exercise resulted in the

selection of 9 promising MQTLs, which we like to call

breeder’s QTLs; these breeders’ QTLs with their essential

features are listed in Table 1. All these breeder’s QTLs

(except MQTL2A.2) involved QTLs for both NUE and

RSA, hence, these can be used by breeders for the

improvement of both NUE and RSA.

Comparison of MQTLs with results of GWAS

The physical positions of MQTLs were also used for

comparison with MTAs for NUE/RSA reported in earlier

GWAS conducted on durum (tetraploid) and bread wheat

(hexaploid). Information on MTAs for NUE and RSA

identified in 17 GWA studies published during 2017–2021

is available in Online Resource 9. For this purpose, only

112 physically mapped MQTLs could be considered; 88 of

these MQTLs each matched one or more known MTAs

from among 412 MTAs (Online Resource 10; Table 1) that

were available for comparison. Among them, 45 MQTLs

were verified using GWAS for durum wheat, and 81 were

verified using GWAS for hexaploid wheat (38 MQTLs

were verified with both durum and bread wheat).

The number of matching MTAs for each MQTL also

differed, so that as many as 21 MQTLs each matched with

at least 10 MTAs identified in 17 GWA studies; of these

MQTL5B.2 matched with 60 MTAs, followed by

MQTL6B.4, 1B.7, and 1B.4 with 55, 49, and 40 MTAs,

respectively. Some of the MQTLs (e.g., MQTL1B.2, 1B.3,

and 4B.4) each involving 18 or more initial QTLs matched

with more than 20 MTAs (Online Resource 10). These

MQTLs overlapping MTAs may be used for mining CGs

affecting the NUE and RSA traits. The frequency distri-

bution of some GWAS-validated MQTLs is depicted in

Fig. 5.

A comparison MQTLs with GWAS-based MTAs, as

above, has been undertaken only sparingly in wheat, where

two such studies are available (Aduragbemi and Soriano,

2021; Yang et al. 2021). In these two studies, only 38.66%

and 61.37% of MQTLs, respectively, could be verified with

the GWAS results. These values of MQTLs verified by

GWAS in earlier studies seem to be in agreement with our

results. One can perhaps speculate about the reasons for the

lack of verification of the remaining MQTLs with MTAs

from GWAS. The simplest explanation is that none of the

studies (meta-QTL analysis and GWAS) covered the entire

genetic variation and that the material used for two sets of

studies differed widely.

Ortho-MQTLs in maize

In order to identify ortho-MQTLs for wheat and maize, the

syntenic regions of each of the 19 selected wheat MQTLs

were compared with previously published maize MQTLs

for a variety of traits (Guo et al. 2018). Another solitary

study of MQTLs for NUE in maize (Liu et al. 2012) could

not be utilized due to the non-availability of complete data

required for such analysis. Nine ortho-MQTLs were iden-

tified for RSA, which were located on the following six

maize chromosomes: 3, 4, 5, 8, 9, and 10; the number of

MQTLs for individual ortho-MQTL ranged 1 to 3. The

detailed information on ortho-MQTLs is available in

Online Resources 11, and 12.

Ortho-MQTLs in wheat were also studied in two earlier

studies (Quraishi et al. 2011; Saini et al. 2021). In one of

these studies, an ortho-MQTL associated with NUE was

identified for four different related crops including wheat,

maize, sorghum, and rice; the study also included the

identification of a structurally and functionally conserved

gene called glutamate synthase (GoGAT) at orthologous

locations in these closely related species. Two conserved

flanking markers were also developed for the GoGAT gene

(Quraishi et al. 2011). Such orthologous genes for NUE/

RSA can also be identified using the results of the present

study for further detailed study. A conserved orthologous

set (COS) of markers may also be developed for their use

in MAS for cereal breeding programs (Quraishi et al.

2009).

Candidate genes and their expression analysis

In the genomic regions defined by 112 of the 118 MQTLs,

a total of 1991 CGs (Online Resource 13) were found.

Several genes/gene families with related functions were

detected frequently in different MQTL regions (Fig. 6).

These genes included the following: 98 genes encoding

proteins containing kinase domain, 79 genes for proteins

containing F-box-like domains, 40 genes for cytochrome

P450 proteins, 32 genes for glycoside hydrolases, 22 genes

for UDP-glucosyltransferases, 16 genes for NAC TFs, 14

genes for expansins, 13 genes for early nodulin-93 proteins,

11 genes for GRAS TFs and 10 genes for ABC transporter-

like proteins. (Fig. 6). Association of these genes/gene

families with NUE and/or RSA has been reported in sev-

eral earlier studies (Zhang et al. 2020a, 2020b; Meijón

et al. 2014; Jun et al. 2015; Minic 2008; Dong et al. 2020;

He et al. 2015; Marowa et al. 2016; Bi et al. 2009; Do et al.

2018). In the present study, some genes that are known to

be associated with NUE and RSA appeared in clusters.
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Table 1 A summary of 88 MQTLs for NUE/RSA, (verified using GWAS) with details of flanking markers, QTLs and the traits involved

MQTLs (Phy.

interval, in Mb)

Flanking markers (CI in cM) No. of QTLs

involved (avg.

LOD)

Traitsb (avg. PVE)

MQTL1A.1

(574.67–575.01)

AX-110966426/AX-
108822131 (13.65–14.31)

6 (3.36) FSS, SPS, DTM, GY, NUpE, GPC (5.77)

MQTL1A.2

(577.47–577.61)

AX-110518076/AX-
110430653 (18.85–19.50)

5 (4.78) RDM, GN, LA, root N/shoot N content, DTH (8.16)

MQTL1A.3

(13.67–13.76)

AX-109408162/AX-
108790365 (24.61–24.74)

5 (4.86) LFW, N/grain, SL, GW, RL (6.24)

MQTL1A.4

(527.18–591.64)

AX-111580764/AX-
95629819 (35.45–36.41)

6 (4.34) SPS, GY, SPS, GNC, PH (6.58)

MQTL1A.5

(32.92–590.25)

BS00011855_51/AX-
109867753 (42.41–43.08)

10 (6.88) Peduncle %N, RNC, BSSPS, GN, NUpE, NUE, PH, GW, N/grain (9.12)

MQTL1A.6a

(37.5–185.52)

BS00029346_51/Xwmc826
(54.27–55.92)

13 (5.10) TFW, RFW/SFW, RDM, RL, LEC, SFW, GW, RFW, TDM, SDW (13)

MQTL1B.1

(430.57–565.67)

AX-109514853/AX-
108815832 (10.16–11.14)

6 (5.53) NUE, NUtE, GY, PH, DTM, PH (12)

MQTL1B.2a

(454.17–622.85)

AX-111122733/AX-
94407244 (28.54–29.51)

18 (5.24) RNC, NUtE, RL, SDW, SNC, TDM, PH, NUtE, RDM/SDW, RN, RDM

(14)

MQTL1B.3

(17.32–551.28)

D_1100879/AX-110474859
(45.81–46.20)

20 (5.19) Peduncle N, TDM, NUtE, FSS, RL, NUpE, RDM, SDW, SSS, RNC,

LFW, GPC, SPP, GW (10)

MQTL1B.4

(17.39–645)

D_1161821/AX-108743608
(49.22–50.32)

6 (5.27) FSS, RL, TN, DTH, SSS (8.55)

MQTL1B.5

(643.1–643.56)

AX-89682837/AX-
108936977 (51.99–52.56)

6 (4.37) SPP, RNC, RDM, FSS, SL, RD (7.41)

MQTL1B.6

(466.36–646.19)

AX-86176468/AX-89434674
(54.22–55.03)

3 (3.49) FSS, SPS, DTH (3.32)

MQTL1B.7a

(17.62–683.81)

D_1166057/D_1130437
(59.99–60.35)

14 (5.88) RL, GPC, Peduncle N, SL, GW, RN (11.18)

MQTL1B.8

(666.06–667.42)

AX-111548801/AX-
111507640 (73.95–74.04)

8 (4.22) RFW, RFW/SFW, GY, GW, RDM/SDW (10)

MQTL1D.2

(7.04–9.34)

AX-95082337/AX-
109484943 (43.43–51.54)

9 (5.07) RV, NUE, TNC, ADM, RDM/SDW, SNC, RL, FSS (13)

MQTL1D.3

(10.66–423.3)

Xwmc336/AX-110711194
(59.72–67.87)

4 (6.22) ADM, DTH, GW (13)

MQTL2A.2a

(25.6–43.3)

D_1061332/AX-110492940
(42.58–43.25)

11 (17.17) SP, GPC, LFW, SP, GW, SC (16.62)

MQTL2A.3

(25.94–29.89)

AX-110435756/AX-
109362948 (46.57–47.92)

2 (4.42) RD, GN (10.81)

MQTL2A.4

(30.25–30.56)

AX-109298548/AX-
111761345 (52.45–52.49)

8 (5.05) RDW/SDW, RDM, SL, NUpE, SPP, GW, GN, SL (11.06)

MQTL2A.5

(4.97–5.48)

AX-111719280/Xgwm636
(80.33–80.61)

7 (3.86) RN, SP, RL, NUtE, leaf GS activity, SL (7.47)

MQTL2B.2

(6.07–6.52)

D_1265806/D_3534443
(14.58–15.89)

8 (3.13) SDW, ADM, PH, TDM, SFW, NUE, RFW, RDM (8.75)

MQTL2B.3

(4.48–13.75)

S_1675663/S_1105975
(33.27–34.43)

3 (3.56) GW, Lodging (7.14)

MQTL2B.4

(17.44–37.38)

D_4989699/AX-109364692
(43.54–44.79)

17 (4) RDM/SDW, NUtE, RNC, TDM, GW, SNC, SPP, leaf GS activity, SL,

LEC, Peduncle %N, SP (10.9)

MQTL2B.5

(17.17–41.47)

Xwmc597/tPt-4627
(47.81–49.87)

5 (3.85) RN, SPS, SC, GY, TNC (7.15)

MQTL2B.6

(22.61–24.11)

D_2278188/D_1004475
(59.88–60.53)

8 (4.77) SDW, SFW, DTH, RN, FSS, SC, TDM, StNC (8.88)
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Table 1 continued

MQTLs (Phy.

interval, in Mb)

Flanking markers (CI in cM) No. of QTLs

involved (avg.

LOD)

Traitsb (avg. PVE)

MQTL2B.7

(24.9–31.38)

D_1241419/D_1137511
(78.14–78.93)

7 (4.8) Peduncle N, RL, RN, GW, N/grain, SL (7)

MQTL2D.1

(475.46–527.38)

D_1159406/D_995055
(52.46–53.42)

7 (9.82) SRA, PH, ADM, NUE, DTH (18.12)

MQTL2D.5

(201.38–374.63)

D_1159229/D_3936747
(91.83–92.52)

8 (5) StNC, GY, GPC, GW, SSS, SC, DTH, RL, FSS (10.77)

MQTL2D.6

(121.39–203.82)

D_1282387/D_2244257
(98.47–101.75)

13 (3.57) FSS, SSS, NUpE, RDM, SC, SL, PH, SPS, RV, SL (13.23)

MQTL3A.1

(17.37–17.37)

Xwmc11/D_1288694
(23.4–24.98)

10 (5.27) RD, LFW, RV, SPS, SSS, DTH, GW, RL (6.23)

MQTL3A.2

(25.94–29.05)

AX-111265814/D_2263154
(47.48–49.43)

7 (5.27) RL, NUE, FSS, SPS, LFW, RN (9.23)

MQTL3A.3

(731.07–731.08)

AX-109399066/AX-
99469873 (70.28–71.91)

16 (4.54) leaf GS activity, RDM, SL, RL, SSS, SPS, FSS, RD, GW, FSS, HI, SC,

TN (8.87)

MQTL3A.4

(690.78–721.22)

wPt-9422/Xwmc169
(118.48–120.56)

9 (3.73) SFW, TNC, SNC, RNC, GW, RL (11.48)

MQTL3A.5

(483.74–595.95)

AX-110000809/S_1005033
(197.56–198.26)

3 (13.5) RDM, RFW/SFW, RDM/SDW (25.53)

MQTL3B.1

(22.91–46.26)

S-1160118/D_1104851
(22.11–22.68)

4 (3.65) RN, Lodging, NUtE (9.38)

MQTL3B.2

(747.8–786.97)

Excalibur_c5309_286/
D_3025080 (31.64–32.24)

2 (3.74) NUE (8.11)

MQTL3B.3

(434.05–751.21)

D-1403622/D-2290447
(39.45–40.96)

10 (4.29) PH, LEC, SPS, GN/ear, RFW, FSS, DTH, RDM, NUtE (5.45)

MQTL3B.4

(700.78–726.62)

D-3385391/D-1085695
(53.94–54.6)

8 (4) RDM/SDW, RFW/SFW, PH, DTH, ADM, GY, RL (10.14)

MQTL3B.5

(670.19–681.52)

D_3021719/D_1106812
(61.39–62.2)

5 (5) GN, SDW, RDM, NUE, Grain N/ear (7.42)

MQTL3B.6

(43.68–479.89)

D-1289877/Xwmc78
(73.21–74.09)

5 (3.76) TDM, RFW/SFW, total N, GPC, FSS, RD (8.49)

MQTL3B.7

(252.34–321.78)

D-1133674/D-1107825
(77.53–78.48)

4 (5) SRA, RN, DTH, NUpE (7.38)

MQTL3B.8

(725.18–730.74)

AX-109275917/AX-
110380092
(104.85–105.18)

6 (4.38) RDM/SDW, SRA, SDW, RDM, RFW/SFW (9.88)

MQTL3D.2

(427.95–497.95)

wPt-666738/AX-109884133
(30.43–31.83)

2 (4.68) DTM, RD (11.81)

MQTL3D.3

(295.55–516.87)

AX-110687174/MK9974
(40.72–40.91)

6 (5.59) GY, Peduncle N, SPP, RV, RN, RS (9.95)

MQTL3D.5

(560.64–603.71)

Xcfd64/AX-108969398
(69.11–70.41)

8 (3.56) GN, NGA, GY, GPC (6.55)

MQTL4A.1

(691.14–694.9)

Xwmc262/Xbarc343
(18.68–19.61)

12 (4.49) SNC, TNC, NUE, HI, DTH, RNC, NUtE (16.78)

MQTL4A.2a

(651.78–695.53)

D_1054130/S_1242937
(33.64–33.88)

26 (12) RFW, NUpE, RDM, DTH, RFW/SFW, NUtE, RD, RNC, HI, SPS,

TFW, SL, ADM, SPP, SFW, FSS, NUE (23.78)

MQTL4A.3

(616.89–647.84)

AX-111670204/D_1051322
(45.94–46.59)

22 (6.53) LEC, NUtE, NUE, SL, N/grain, Peduncle %N, SSS, SRA, GN, RFW/

SFW, NUpE, PH, Grain N/ear, RFW, GW, SP, RL, LFW, GS activity/

leaf, Grain %N (9.53)

MQTL4A.4

(622.17–657.2)

D_1053244/AX-111710911
(56.58–57.49)

6 (3.85) HI, RDM, RDM/SDW, GN, TDM, TFW (9.78)
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Table 1 continued

MQTLs (Phy.

interval, in Mb)

Flanking markers (CI in cM) No. of QTLs

involved (avg.

LOD)

Traitsb (avg. PVE)

MQTL4A.5a

(633.36–678.04)

AX-110037196/D-3026871
(66.48–66.51)

17 (5.16) RL, RN, NUE, RDM, SNC, RNC, RL, TDM, PH, SDW (10.91)

MQTL4A.6

(601.04–691.14)

Xwmc513/
RAC875_rep_c108054_95
(69.51–69.96)

8 (4.41) RL, DTH, SL, TFW, SFW, NUE (8.9)

MQTL4B.1a

(576.5–657.27)

D_2265275/S_2318924
(72.51–72.82)

52 (6.73) GW, GN, FSS, DTH, SPP, total N, NGA, StNC, PH, GY, GPC, Grain

N/ear, ADM, SPS, RV, Peduncle %N, GFD, NUE, SL, TDM, NUE,

SDW, RL, RDM, GW, NUpE (10.49)

MQTL4B.2a

(179.02–530.53)

S_5412102/D_1027953
(81.27–81.42)

15 (5.69) NUE, GW, SL, ADM, SNC, RDW/SDW, TDM, SDW, SPP, RN, RL

(11.5)

MQTL4B.3

(104.94–530.53)

D_1027953/D_1109164
(84.62–85.07)

5 (9) NUE, GN, TNC, root N/shoot N content (18.23)

MQTL4B.4

(104.94–627.44)

Xbarc60/D_1109164
(87.18–87.18)

38 (4.69) NUE, GN, SL, PH, GW, NGA, GPC, ADM, GNC, SWPP, BSSPS, SPP,

SPS, root N/shoot N content, SNC, HI, RDW/SDW, TDM, SDW (10)

MQTL4D.2

(484.66–494.84)

Xwmc399/AX-109334705
(75.76–76.18)

3 (4) NUE, RNC, SPP (8.26)

MQTL5A.1

(678.2–680.23)

AX-108732112/AX-
109541910 (78.32–79.46)

29 (6.42) SC, GW, SP, SSS, GY, SPP, SL, StNC, SFW, leaf GS activity, RDM,

LEC, SPS, Peduncle %N, LFW, DTH, grain N/ear, (9.52)

MQTL5A.2

(689.19–689.62)

AX-109859146/AX-
108910506 (85.99–85.99)

16 (3.14) StNU, SC, GY, straw yield, NUE, PH, GNC, NUtE, TNC, SNC, ADM,

GW (7.43)

MQTL5B.1

(8.93–13.16)

AX-111536293/AX-
111170049 (24.89–25.97)

3 (3.82) GW, RN (7.18)

MQTL5B.2

(10.27–241.26)

AX-110433617/D-1405540
(32.91–33.25)

8 (4.77) SPP, SL, RN, SRA, RD, RV, RDM/SDW (9.24)

MQTL5B.3

(23.33–34.54)

AX-110675968/Xwmc149
(51.81–52.45)

14 (5.12) RFW/SFW, N/grain, SL, NUpE, SC, TNC, SSS, GW, FSS, SP,

Peduncle N (9.16)

MQTL5B.5

(55.39–69.13)

AX-110612519/AX-
109473183 (63.33–64.53)

11 (4.56) GW, SP, RD, GW, DTH, SRA, PH, RD, SC (7.52)

MQTL5D.6a

(266.06–374.26)

Xwmc608/D_3948828
(62.37–62.4)

26 (11) Peduncle N, GFD, SP, Grain %N, LEC, RDM, SL, FSS, TFW, RN, SPS,

DTH/M, SSS, Lodging, PH, NUpE, StNC, SDW, TDM, SFW, RFW

(12)

MQTL6A.1

(15.94–19.6)

AX-109274358/AX-
109856662 (45.82–48.81)

22 (5) GW, ADM, NUpE, GY, TNC, SC, NUtE, SNC, HI, FSS, SRA, StNC,

ADM, LEC, RDM/TDM (9.43)

MQTL6B.1

(150.29–591.18)

Xgwm361/AX-108725475
(3.89–6.01)

7 (7.31) PH, RS, GW, TDM, RDM, SL, SP (11.16)

MQTL6B.2

(492.61–653)

AX-109440201/AX-
110594295 (6.78–8.86)

12 (10) RN, StNC, PH, GW, SPP, grain N/ear, NUpE, N/grain, Peduncle N,

RDM, DTH (13.86)

MQTL6B.3

(470.81–694.99)

S-1054930/Xbarc18
(21.28–23.41)

5 (4.92) StNC, GW, SL, RL, RD (11)

MQTL6B.4

(30.25–596.18)

Xwmc417/Xgwm963
(29.79–32.01)

6 (5.07) leaf GS activity, RS, RV, RL, SPS, GY (11.45)

MQTL6B.5

(375.5–666.28)

D-1270032/AX-108981289
(40.72–41.91)

9 (3.9) RL, FSS, SPS, GW, SRA, SSS (8.12)

MQTL6B.6

(125.54–149.17)

Xwmc104/S-1276135
(46.81–46.98)

3 (5.08) RNC, SL, SRA (6.30)

MQTL6D.1

(0.06–1.57)

Xpsp3200/AX-111503712
(0–0.49)

2 (5.61) NUtE, FSS (11.69)

MQTL6D.2

(7.28–7.71)

AX-108726481/AX-
109882824 (10.37–11.88)

7 (5.15) N/grain, RS, GW, RL, SRA, RD, SNC (7.47)

MQTL6D.3

(16.39–26.4)

D-1208709/D-1243222
(33.68–38.13)

3 (6.43) GW, GN/ear, grain N/ear (12.29)

MQTL6D.4

(469.39–472.15)

Xfba85a/Xbarc24
(50.4–53.03)

4 (6.25) GW, RL, SRA (8.32)
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These clusters may prove useful for marker-assisted

breeding (MAB). These genes belonged to the following

classes: (i) protein kinase-like domain superfamily (Yang

et al. 2020), (ii) F-box-like domain superfamily (Meijón

et al. 2014), (iii) expansins (Marowa et al. 2016), (iv)

glutathione S-transferase (Dalton et al. 2009), (vi) zinc

finger C2H2-type (Han et al. 2020), and (vii) cytochrome

P450 (Xu et al. 2015), etc. (Online Resource 13).

The in-silico expression analysis of the CGs permitted

identification of 930 CGs (belonging to 89 MQTLs), with

at least 2 TPM, and 307 CGs with more than 5 TPM

expressions in different plant tissues; these CGs could be

classified in the following two classes based on their

expression patterns: (i) Class I genes, mostly expressed in

roots and shoots/leaves tissues at the vegetative stages,

suggesting their roles in the regulation of NUpE (Zhang

et al. 2020a, 2020b; Han et al. 2016); (ii) Class II genes,

mainly expressed in the spike (including rachis, stamen,

pistil, stigma, and ovary, etc.) and grains (including

endosperm, embryo, seed coat, and aleurone layer, etc.).

The genes of class II are generally involved in regulating

NUE and in turn affecting grain yield and related traits

(Mosleth et al. 2015; Karunarathne et al. 2020) (e.g.,

Online Resource 14). Some CGs encoding uncharacterized

or unpredicted proteins also exhibited significant expres-

sion in different plant tissues. These genes should be

Table 1 continued

MQTLs (Phy.

interval, in Mb)

Flanking markers (CI in cM) No. of QTLs

involved (avg.

LOD)

Traitsb (avg. PVE)

MQTL6D.5

(129.49–472.15)

Xwmc113/Xbarc146
(58.13–59.5)

2 (3.45) RL, SL (9.74)

MQTL6D.6

(79.95–129.49)

Xbarc146/Xgwm325
(63.68–64.25)

8 (6.32) grain N/plant, GW, leaf GS activity, SC, RL, SL (11.95)

MQTL6D.7

(97.82–117.36)

Xwmc822/Xgpw304
(76.17–76.38)

4 (3) NUtE, GY, ADM (9.25)

MQTL7A.1

(9.75–10.09)

S_1000950/D_1208529
(12.44–13.56)

3 (4.23) HI, SL, NUE (7.81)

MQTL7A.3

(23.23–26.57)

AX-109938650/AX-
108779571 (30.4–31.15)

5 (9.89) NUE, SPS, FSS, LFW (5.55)

MQTL7A.4

(17.33–26.31)

D_1217265/D_4405207
(40.72–42.25)

13 (4.35) SRA, FSS, RN, GY, NUtE, RNC, PH, LEC, TDM (8.89)

MQTL7A.5

(26.31–36.65)

D_1100222/AX-111761655
(45.49–46.32)

7 (3.76) SNC, TNC, SRA, FSS, SDW, RFW/SFW, GY (8.20)

MQTL7A.6

(43.45–210.63)

wPt-7113/wPt-9496
(57.12–58.82)

8 (5.57) RFW/SFW, GN, DTH, GW, grain %N, PH, SNC (8.7)

MQTL7A.7

(15.08–47.44)

S_1124198/AX-111761577
(63.74–64.27)

10 (5.06) leaf GS activity, SP, SDW, TDM, RD, TNC, RDM, RD, FSS (9.4)

MQTL7B.2

(414.81–736.87)

D-1100569/AX-109277778
(69.77–71.14)

12 (4.56) GW, NUtE, TNC, RNC, TDM, SDW, StNC, RDM, DTM, PH (11.7)

MQTL7B.3

(718.19–733.8)

D-1061740/Xfbb226.1
(88.29–88.31)

16 (4.49) GW, NUtE, GN, NUE, RL, RDM/SDW, TDM, SSS, RFW/SFW, RDM,

DTH (9.58)

MQTL7D.1

(5.99–8.23)

wPt-743790/Xwmc506
(21.67–22.08)

7 (4.39) RL, SPS, NUtE, GNC, DTM, RN (11.27)

MQTL7D.3

(18.4–89.83)

AX-109353584/D_2291069
(47.77–48.72)

9 (6.62) LFW, NUE, HI, PH, SP, DTH, GW, leaf GS activity (9.19)

MQTL7D.7

(116.69–256.75)

D_1110200/D_1401510
(96.51–96.57)

4 (11.45) SSS, GW, FSS, RFW/SFW (20)

aBreeder’s QTLs, bTraits: FSS fertile spikelet per spike, SPP spikes per plant, SSS sterile spikelets per spike, SPS spikelets per spike, SL spike

length, BSSPS bottom sterile spikelet per spike, SC spike compactness, TDM total dry matter, RDM root dry matter, ADM aerial dry matter,

SDM shoot dry matter, RDM/SDM ratio of root and shoot dry matter, RUE radiation use efficiency, GNC grain N concentration, SNC shoot N

content per plant, RNC root N content, TNC total N content, SP soluble protein, GPC grain protein content, LFW leaf fresh weight, TFW total

fresh weight, SFW shoot fresh weight, NUpE nitrogen uptake efficiency, NUtE nitrogen utilization efficiency, GY grain yield, GW grain weight,

GFD grain filling duration, DTH/F/M days to heading/flowering, and maturity, TN tiller number, PH plant height, GN grain number, RFW root

fresh weight, RFW/SFW shoot fresh weight, LEC leaf extract colour, LA leaf area, SWPP straw weight per plant, RL root length, RN root

number, RV root volume, RSA root surface area, SRA seminal root angle, and RD root diameter
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investigated further to see if they play a role in the regu-

lation of NUE in wheat. The expression pattern of some

CGs expressed in roots, and shoots/leaves are shown in

Fig. 7.

As many as 97 high confidence CGs were detected using

the following criteria (i) significant expression in relevant

tissues, and (ii) functions previously reported to be

important for traits related to either NUE or RSA (Table 2).

The molecular and biological functions of these CGs can

be studied by cloning/characterization and transgenic

approaches. A meta-analysis conducted for three major

crops (wheat, rice, and maize) using the data collected from

130 independent genetic transformation studies indicated a

promising potential of genetic transformation strategies for

improving different NUE parameters (Li et al. 2020).

Orthologues of rice genes in wheat MQTL regions

Efforts were also made to find if the wheat MQTLs iden-

tified during the present study carry genes that are ortho-

logues of known NUE/RSA genes from other cereals, since

synteny and collinearity between wheat genome and gen-

omes of other cereals are widely known now (Gaut, 2002;

Kumar et al. 2009). This became possible due to the

Fig. 5 Frequencies of known

GWAS-based MTAs which

matched each of 21 MQTLs; for

either of the two different traits

(NUE, RSA); MQTLs with at

least 10 MTAs are included in

this figure. MTA results from

GWAS using 17 different

natural populations were used

for this purpose

Fig. 6 Frequencies of candidate

genes encoding each of 15

different proteins associated

with NUE/RSA
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availability of results from the following studies: (i) In

several crops including rice, the molecular basis of NUE or

its associated phenotype has been examined using several

forward and reverse genetics approaches (Hu et al. 2016;

Sun et al. 2021; Xiang et al. 2021; Yu et al. 2021; Zhang

et al. 2020a, 2020b). (ii) In rice, some of the important

classes of genes involved or implicated in NUE include

kinases, transporters, and transcription factors (TFs) (Vidal

et al. 2020; Zhang et al. 2020a, 2020b). (iii) Recently,

Kumari and Raghuram (2020) and Kumari et al. (2021)

compiled a comprehensive list of phosphatases involved in

the N-response and/or NUE in crops, and the genes

encoding for transporters, TFs, microRNAs, kinases, and

phosphatases. They also confirmed differential expression

of some promising NUE-candidate genes in a tissue/stage-

specific manner through in silico expression analysis

(Kumari et al. 2021). The functional studies of many more

genes particularly in rice have made it possible to identify

orthologues of these genes in complex genomes of related

species, including wheat (Han et al. 2016; Zhang et al.

2020a, 2020b). Several crucial genes affecting the NUE of

rice have already been reported to have similar functions in

wheat, such as TaNFYA-B1, AlaAT, TaASN2-1A, TaGS1.1-

4A, TaASN2-1B, TaGDH1-5A, TaNRT2.1, and TaNRT2.4-

6A (Qu et al. 2015; Tiong et al. 2021; Karunarathne et al.

2020), which suggests that analysis of homology between

related species can be used to select relevant Cgs.

For the present study, 60 rice genes were available

(Online Resource 15); 35 of these genes could be utilized

for the identification of 49 wheat orthologues in MQTL

regions identified during the present study. Of these 35

genes, 18 genes showed more than one wheat orthologue,

whereas 17 genes showed only one orthologue in wheat

MQTL regions (Table 3). In some cases, orthologues of

more than one gene were detected within the same MQTL

region. For instance, the three MQTLs, namely

MQTL1A.5, 1B.3, and 6D.5 carried orthologues of 8, 5,

and 4 different rice genes, respectively. The wheat

Fig. 7 Heat map exhibiting levels of differential expressions of

important proteins encoded by candidate genes underlying the

following 7 MQTLs: MQTL1A.6, MQTL1B.2, MQTL1B.7,

MQTL2A.2, MQTL4A.2, MQTL4A.5, and MQTL5D.6; names of

proteins encoded by genes are given on the top X axis of the heat map

and the names of 31 classes of organs, where expression of each

protein was studied are shown on the left on Y-axis. The scale drawn

on the upper right of the heat map represents the range of expression

shown by different intensities of blue and red colours
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Table 2 High confidence candidate genes (CGs) identified during the present study, with details of MQTLs used, gene IDs extracted from whole

genome sequence and the descriptions of related functions (the criteria for identification of these CGs are described in the text)

MQTLs (total number of CGs) Gene ID for CG Function description

MQTL1A.1 (4) TraesCS1A02G416600 Transcription elongation factor 1

MQTL1A.4 (27) TraesCS1A02G392000 Photosystem I PsaH

TraesCS1A02G392200 Transcription factor TGA like domain

MQTL1A.5 (7) TraesCS1A02G174500 Tetraspanin

TraesCS1A02G174700 Remorin

MQTL1A.6 (4) TraesCS1A02G110900 Phosphoglycerate/bisphosphoglycerate mutase

TraesCS1A02G111100 Aspartyl/Asparaginyl-tRNA synthetase

MQTL1B.1 (11) TraesCS1B02G286300 Cytochrome P450

TraesCS1B02G286600 G10 protein

MQTL1B.2 (10) TraesCS1B02G313700 WD40/YVTN repeat-like-containing domain superfamily

TraesCS1B02G314000 LURP-one-related

MQTL1B.4 (22) TraesCS1B02G184100 RlpA-like domain superfamily

TraesCS1B02G184500 Peptidase S10, serine carboxypeptidase

MQTL1B.5 (7) TraesCS1B02G420300 Transcription factor TGA like domain

TraesCS1B02G420100 Photosystem I PsaH

MQTL1B.6 (20) TraesCS1B02G330400 Plant peroxidase

MQTL1B.7 (10) TraesCS1B02G195800 Prephenate dehydratase

TraesCS1B02G194900 Glutathione S-transferase

MQTL1B.7 (16) TraesCS1B02G447300 Leucine-rich repeat domain superfamily

MQTL2A.2 (14) TraesCS2A02G075500 Fatty acid desaturase

MQTL2A.3 (27) TraesCS2A02G061600 Glycoside hydrolase family 10 domain

TraesCS2A02G064600 Zinc finger, PHD-type

MQTL2A.4 (8) TraesCS2A02G069100 Leucine-rich repeat

MQTL2A.5 (5) TraesCS2A02G013000 Cytochrome P450

MQTL2B.2 (17) TraesCS2B02G011700 Gibberellin regulated protein

TraesCS2B02G012600 START-like domain superfamily

MQTL2B.3 (29) TraesCS2B02G017700 Cytochrome P450

TraesCS2B02G019500 Zinc finger, RING-type

MQTL2B.4 (40) TraesCS2B02G055700 SWEET sugar transporter

TraesCS2B02G058200 Amine oxidase

MQTL2B.5 (24) TraesCS2B02G060900 ABC transporter-like

TraesCS2B02G062900 Transcription factor, TCP

TraesCS2B02G047000 NAD(P)-binding domain superfamily

MQTL2B.6 (37) TraesCS2B02G049200 Thiolase

MQTL2D.1 (6) TraesCS2D02G392800 Oxoglutarate/iron-dependent dioxygenase

TraesCS2D02G393200 Transcription factor GRAS

MQTL2D.6 (12) TraesCS2D02G207800 Zinc finger, CCCH-type

TraesCS2D02G208000 Homeobox-like domain superfamily

MQTL3A.1 (17) TraesCS3A02G030700 Glycosyltransferase 61

TraesCS3A02G032200 Zinc finger, RING-type

MQTL3A.3 (24) TraesCS3A02G511000 F-box-like domain superfamily

MQTL3B.3 (10) TraesCS3B02G376800 Expansin

TraesCS3B02G376600 Ribosomal protein S5

MQTL4A.2 (24) TraesCS4A02G398300 Spermidine/spermine synthases

MQTL4A.3 (23) TraesCS4A02G359500 SBP domain

TraesCS4A02G358800 Cytidine and deoxycytidylate deaminase domain

MQTL4A.5 (11) TraesCS4A02G378300 Oxoglutarate/iron-dependent dioxygenase

MQTL5B.5 (9) TraesCS5B02G055900 Glutathione S-transferase
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Table 2 continued

MQTLs (total number of CGs) Gene ID for CG Function description

TraesCS5B02G056700 Protein kinase domain

MQTL5B.6 (6) TraesCS5B02G216500 Zinc finger C2H2-type

TraesCS5B02G216600 CBS domain

MQTL5D.6 (11) TraesCS5D02G210900 SANT/Myb domain

TraesCS5D02G211900 Ubiquitin-like domain

MQTL6A.1 (23) TraesCS6A02G036100 Peptidase S10, serine carboxypeptidase

TraesCS6A02G037800 Nin one binding (NOB1) Zn-ribbon-like

MQTL6B.1 (2) TraesCS6B02G230200 Short-chain dehydrogenase/reductase

TraesCS6B02G230300 60S ribosomal protein

MQTL6B.2 (14) TraesCS6B02G323800 Methyltransferase type 11

TraesCS6B02G324400 Small GTP-binding protein domain

TraesCS6B02G323400 B-box-type zinc finger

MQTL6B.3 (15) TraesCS6B02G331300 Glycoside hydrolase

TraesCS6B02G332400 Zinc finger, RING-type

MQTL6B.4 (1) TraesCS6B02G220300 Myc-type, basic helix-loop-helix domain

MQTL6B.5 (10) TraesCS6B02G289600 Glycosyl transferase

TraesCS6B02G289500 Zinc finger, RING-type

MQTL6B.6 (10) TraesCS6B02G139100 GDSL lipase/esterase

TraesCS6B02G139400 F-box domain

MQTL6D.1 (17) TraesCS6D02G001000 Protein kinase domain

TraesCS6D02G001600 S-phase kinase-associated protein 1-like

MQTL6D.2 (43) TraesCS6D02G016700 Glutathione S-transferase

TraesCS6D02G017000 GTP binding domain

MQTL6D.3 (24) TraesCS6D02G045500 S-phase kinase-associated protein 1-like

TraesCS6D02G047000 F-box-like domain superfamily

MQTL6D.4 (42) TraesCS6D02G400800 Zinc finger, RING/FYVE/PHD-type

TraesCS6D02G402600 Protein kinase domain

TraesCS6D02G402800 Zinc finger, CCCH-type

MQTL6D.5 (7) TraesCS6D02G212800 Senescence regulator S40

MQTL6D.6 (14) TraesCS6D02G135800 Glucose-6-phosphate dehydrogenase

TraesCS6D02G136200 WRKY domain

MQTL6D.7 (14) TraesCS6D02G138000 SWEET sugar transporter

TraesCS6D02G138200 Oxoglutarate/iron-dependent dioxygenase

MQTL7A.1 (4) TraesCS7A02G024900 EamA domain

MQTL7A.4 (19) TraesCS7A02G046200 leucine-rich repeat

TraesCS7A02G048100 Cytochrome P450

MQTL7A.5 (30) TraesCS7A02G062600 GDSL lipase/esterase

TraesCS7A02G064200 Cytochrome P450

MQTL7B.2 (5) TraesCS7B02G323600 Zinc finger, GATA-type

MQTL7B.3 (27) TraesCS7B02G469000 cytochrome P450

TraesCS7B02G469200 Expansin

MQTL7D.1 (52) TraesCS7D02G000400 Zinc finger, RING-type

TraesCS7D02G004200 GDSL lipase/esterase

TraesCS7D02G004400 Acyl-CoA oxidase

TraesCS7D02G008700 Glycoside hydrolase

MQTL7D.2 (32) TraesCS7D02G095500 Cytochrome P450

TraesCS7D02G097300 Glycoside hydrolase

MQTL7D.7 (15) TraesCS7D02G226400 Zinc finger, CCCH-type
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orthologues of rice genes could be divided into five major

categories (Table 3); these are briefly described below:

(i) Genes involved in signaling: Three wheat ortho-

logues (viz., TaSAPK6-1A, 1B, and TaSAPK7-1D)

of two rice genes encoding for sucrose non-

fermenting-1 related kinases (SnRKs) were iden-

tified in MQTL1A.5, 1B.3, and 1D.3 regions,

respectively (Table 3). Overexpression of SnRK1

increased carbon absorption and nitrogen uptake

in rice (Han et al. 2016). The SnRKs are known to

play a major role at the interface of metabolic and

stress signaling, implying that they could be

manipulated to boost crop performance under

diverse conditions (Coello et al. 2011).

(ii) Genes involved in N assimilation: Two wheat

orthologues viz., TaNiR1-6B, 6D of a rice nitrite

reductase gene were detected in MQTL6B.2 and

6D.5 regions, respectively (Table 3). Overexpres-

sion of a ferredoxin-dependent nitrite reductase

gene in Arabidopsis elevated NO2 assimilation

(Takahashi et al. 2001). In the second phase of the

nitrate assimilation pathway, it catalyses the six-

electron reduction of nitrite to ammonium. In

addition to rice, this gene has also been cloned in

various other crop plants (Han et al. 2016),

including maize (Lahners et al., 1988) and Ara-

bidopsis (Tanaka et al., 1994). Several genes

involved in primary N uptake and assimilation

have also been identified as potential bioengineer-

ing targets to increase the NUE of important crops

(Li et al. 2020).

(iii) Genes involved in amino acid biosynthesis:

Twenty-two (22) wheat genes were identified,

which are orthologous to 17 rice genes involved in

the biosynthesis of different amino acids (Table 3).

Of these 22 genes, two genes, TaASN2-1A,

and TaASN2-1B have already been functionally

characterized in wheat (reviewed in Karunarathne

et al. 2020). The orthologues of these genes are

key players in driving NUE in important crops and

have been studied in some detail in major crops

including rice and barley (Beatty et al. 2013; Han

et al. 2016; Zhang et al. 2020a, 2020b). Among

these genes, the GOGAT gene is found in higher

plants in two antigenically distinct forms, namely,

NAD(P)H-GOGAT and Fd-GOGAT. The wheat

MQTL3B.3 was found to carry TaGOGAT1-3B

and MQTL3D.3 was found to carry TaGO-

GAT3D.3 gene. These enzymes differ in size of

the proteins encoded, tissue localization, and

physiological roles (Esposito et al. 2005).

NAD(P)H-GOGAT is expected to play a major

role in primary N assimilation since it is regulated

by N-status in the plant in response to available N

(Vanoni and Curti, 1999). The deletion of

the OsNADH-GOGAT2 gene resulted in a signif-

icant reduction in yield and plant biomass in rice

(Yamaya, 2011).

(iv) Genes encoding TFs: Wheat MQTLs were also

found to carry 9 genes (Table 3) that were

orthologous to 6 rice genes encoding TFs. Among

these genes, only one gene, TaNAC9-6B (or GPC-

B1/NAM-B1) has been functionally characterized

in wheat which is known to improve the nutrient

remobilization and grain protein content (Uauy

et al. 2006). The remaining genes are also

important genes involved in N assimilation and

their roles in N remobilization and NUE has been

demonstrated in several crops (Han et al. 2016;

Chiasson et al. 2014).

(v) Genes encoding transporters: A total of 13 wheat

orthologues of 9 rice genes encoding different

transporters were also identified in different wheat

MQTL regions (Table 3). These 13 wheat genes

included two ammonium transporter genes

(TaAMT1.2/1.3-6B, 6D), 3 wheat nitrate trans-

porter genes (viz., TaNRT2.3-3B, 3D; TaNRT2.4-

7B) of the NRT2 family (high-affinity trans-

porters), four wheat genes (TaNPF7.7-1A, 1B,

1D and TaNRT1-4B) of NRT1/NPF family (low

affinity transporters) and three NRT2 partner

proteins (TaNAR2.1-4A; TaNAR2.2-6B, 6D)

(Table 3). In addition, a lysine histidine trans-

porter (i.e., TaLHT1-7A) was detected in

MQTL7A.6 region.

Table 2 continued

MQTLs (total number of CGs) Gene ID for CG Function description

TraesCS7D02G227400 Protein adenylyltransferase
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Table 3 Wheat orthologues of known rice genes for NUE related functions, with names of these rice genes and effects on phenotype related with

NUE

MQTL [wheat homologue] Rice gene (encoded protein) Effect on phenotype related

with NUE

1. Genes involved in signaling

MQTL1A.5 [TraesCS1A02G215900 (TaSAPK6-1A)]; aMQTL1B.3,

1B.4, 1B.7 [TraesCS1B02G229400 (TaSAPK6-1B)]; MQTL1D.3

[TraesCS1D02G218200 (TaSAPK6-1D)]

OsSAPK6 (Sucrose non-

fermenting-1 related kinases)

Higher NUpE

MQTL1A.5 [TraesCS1A02G215900 (TaSAPK7-1A)] OsSAPK7 (Sucrose non-

fermenting-1 related kinases)

2. Genes involved in N assimilation

MQTL6B.2, 6B.3, 6B.5 [TraesCS6B02G364600 (TaNiR1-6B)];
MQTL6D.5 [TraesCS6D02G313100 (TaNiR1-6D)]

OsNiR1 (Ferredoxin-nitrite

reductase)

Increased NO2 - assimilation

3. Genes involved in amino acid biosynthesis

MQTL1A.5, 1A.6 [TraesCS1A02G085600 (TaAlaAT10-1-1A/TaAlaAT-
4-1A)]; MQTL1B.3, 1B.4, 1B.7 [TraesCS1B02G102700 (TaAlaAT10-
1-1B/TaAlaAT-4-1B)]

OsAlaAT10-1, OsAlaAT4 (alanine

aminotransferase)

Increased seed yield under low

N input

MQTL5B.2 [TraesCS5B02G066600 (TaAlaAT10-2-5B)] OsAlaAT10-2 (alanine

aminotransferase)

MQTL1A.4, 1A.5 [TraesCS1A02G382800 (TaASN2-1A)]; MQTL1B.4,

1B.6, 1B.7 [TraesCS1B02G408200 (TaASN2-1B)]
OsASN2 (Asparagine synthetase) Increased seed yield and N

content at high N and low N

input

MQTL4B.2, MQTL4B.3, MQTL4B.4 [TraesCS4B02G194400 (TaASN1-
4B)]

OsASN1 (Asparagine synthetase)

MQTL5B.2 [TraesCS5B02G084600 (TaAS-5B)] OsAS (Asparagine synthase)

MQTL3A.5 [TraesCS3A02G305400 (TaASP4-3A)]; MQTL3B.3

[TraesCS3B02G331100 (TaASP4-3B)]
OsASP4 (Aspartate

aminotransferase)

Increased AspAT activity

MQTL1A.5 [TraesCS1A02G160200 (TaASP6-1A)]; MQTL1B.3, 1B.4,

1B.7 [TraesCS1B02G176400 (TaASP6-1B)]; MQTL1D.3

[TraesCS1D02G157400 (TaASP6-1D)]

OsASP6 (Aspartate

aminotransferase)

MQTL6B.3 [TraesCS6B02G393600 (TaASP1-6B)] OsASP1 (Aspartate

aminotransferase)

MQTL4B.2, 4B.3, 4B.4 [TraesCS4B02G240900 (TaGS1-4B)];
MQTL6B.1, 6B.2, 6B.3, 6B.4, 6B.5 [TraesCS6B02G327500 (TaGS1-
6B)]

OsGS1 (Glutamine synthetase) Increased NUE

MQTL4B.2, 4B.3, 4B.4 [TraesCS4B02G240900 (TaGS2-4B)] OsGS2 (Glutamine synthetase)

MQTL2D.5 [TraesCS2D02G251800 (TaGOX4-2D)] OsGOX4 (Glycolate oxidase)

MQTL3B.3 [TraesCS3B02G299800 (TaGOGAT1/3-3B)]; MQTL3D.3

[TraesCS3D02G266400 (TaGOGAT1/3-3D)]
GOGAT1 and GOGAT3
(Glutamate synthase (NADPH/

Ferredoxin)

Improved total N content, grain

filling, and dry weight

MQTL4B.4 [TraesCS4B02G288100 (TaGGT2-4B)] OsGGT2 (Glutamate glyoxylate

aminotransferase)

Biosynthesis and metabolism of

major amino acids

MQTL4B.2, MQTL4B.3, MQTL4B.4 [TraesCS4B02G167100
(TaGGT3-4B)]

OsGGT3 (Glutamate glyoxylate

aminotransferase)

MQTL5D.2 [TraesCS5D02G442000 (TaGDH1-5D)] OsGDH1 (Glutamate

dehydrogenase NAD(P)H)

Increased levels of free amino

acids including glutamate

4. Genes encoding transcription factors

MQTL1A.4, 1A.5 [TraesCS1A02G411700 (TaNF-YB2.1-1A)];
MQTL1B.7 [TraesCS1B02G442000 (TaNF-YB2.1-1B)]

OsNF-YB2.1 (Nuclear factor Y) Increased GY

MQTL3B.3 [TraesCS3B02G385600 (TaNF-YB2.2-3B)]; MQTL3D.2,

3D.3 [TraesCS3D02G347000 (TaNF-YB2.2-3D)]
OsNF-YB2.2 (Nuclear factor Y)

MQTL5B.2 [TraesCS5B02G100300 (TaFBX94-5B)] OsFBX94 (Aberrant panicle

organization)

MQTL5B.2 [TraesCS5B02G013000 (TaHLHm4-5B)]; MQTL5D.1

[TraesCS5D02G020600 (TaHLHm4-5D)]
OsHLHm4 (bHLH transcriptional

factor)

improved N fixation and

NH4 ? transport

MQTL4B.1 [TraesCS4B02G345800 (TaHLHm1-4B)] OsHLHm1 (bHLH transcriptional

factor)
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In plants, N can be taken up either as ammonium or

nitrate directly from the soil through roots. The ammonium

transporter genes facilitate the movement of ammonium

ions to intracellular compartments, where it is then con-

verted into a variety of organic compounds, including

amino acids, via the GS/GOGAT pathway (Oaks, 1994).

Nitrate, on the other hand, is primarily carried into the cell

by nitrate transporters and then converted to nitrite by

nitrate reductase before being reduced to ammonium salts

by nitrite reductase (Han et al. 2016; Zhang et al.

2020a, 2020b). Increasing the efficiency of N-related

transporters is another biotechnological approach for

improving N uptake (Zhang et al. 2020a, 2020b). Since N

uptake by different transporters relies on proper carbon

skeletons to allow for the synthesis of the various trans-

ported molecules, simply increasing the expression of these

N-related transporters without proper carbon skeletons

would not always result in an increase in NUE in plants

(Hawkesford, 2012). This information is useful for the

utilization of transporter genes for improving NUE in

wheat.

Among the above 49 wheat orthologues occurring in

wheat MQTLs, 44 showed significant expressions ([2

TPM) in different tissues. A summary of some wheat genes

that were found to be orthologous to rice genes is presented

in Fig. 8. The genes encoding transporter proteins, TFs,

and signaling molecules involved in signaling were found

to exhibit expression in almost all tissues examined,

although the highest expression was noticed in roots tis-

sues. This suggests that these genes are involved in regu-

lating both NUpE and NUtE, thus affecting uptake and

utilization of N, affecting yield (Han et al. 2016). N

assimilation genes exhibited high expression in leaves/

shoots tissues, thus matching their role in N assimilation

(Masclaux-Daubresse et al. 2010). Genes involved in

amino acid biosynthesis showed expression in all the tis-

sues including roots, leaves/shoots, spike organs, and

grains suggesting their roles in multiple physiological

functions in plants (Masclaux-Daubresse et al. 2010).

Conclusions

The meta-QTL analysis provides stable and robust QTLs

with relatively narrower CIs, thus improving their utility in

MAB. In the present study, we identified 118 MQTLs for

NUE and RSA; most of the MQTLs involved QTLs for

both NUE and RSA, suggesting a relationship between

these two traits. As many as 88 MQTLs including 9 robust

major QTLs (described as breeders’ QTLs) were also

validated using the results from GWAS. Although, being a

complex trait, NUE can not be easily improved using an

Table 3 continued

MQTL [wheat homologue] Rice gene (encoded protein) Effect on phenotype related

with NUE

MQTL6B.4 [TraesCS6B02G075200 (TaNAC9-6B/NAM-B1)] OsNAC9/SNAC1 (NAM,

ATAF1,2, and CUC2)

Enhanced nutrient

remobilization, and grain

protein content

5. Genes encoding transporters

MQTL3B.3, 3B.6 [TraesCS3B02G285900 (TaNRT2.3-3B)]; MQTL3D.3

[TraesCS3D02G254900 (TaNRT2.3-3D)]
OsNRT2.3 (Nitrate transporter 2) Increased nitrate content and

dry weight in shoots

MQTL7B.2 [TraesCS7B02G328700 (TaNRT2.4-7B)] OsNRT2.4 (Nitrate transporter 2)

MQTL6B.1, 6B.4, 6B.5 [TraesCS6B02G238700 (TaNAR2.2-6B)];
MQTL6D.5 [TraesCS6D02G193100 (TaNAR2.2-6D)]

OsNAR2.2 (NRT2 partner protein) Increased nitrate content

MQTL1A.5 [TraesCS1A02G197600 (TaNPF7.7-1A)]; MQTL1B.3,

1B.4, 1B.7 [TraesCS1B02G212200 (TaNPF7.7-1B)]; MQTL1D.3

[TraesCS1D02G201100 (TaNPF7.7-1D)]

OsNPF7.7/OsPTR10 (Nitrate

transporter)

MQTL4B.2, 4B.3, 4B.4 [TraesCS4B02G231500 (TaNRT1-4B)] OsNPF8.9/OsNRT1 (Nitrate

transporter)

MQTL4A.3, 4A.4, 4A.5, 4A.6 [TraesCS4A02G367300 (TaNAR2.1-4A)]; OsNAR2.1 (NRT2 partner protein)

MQTL6B.1, 6B.4, 6B.5 [TraesCS6B02G254800 (TaAMT1.2/1.3-6B)];
MQTL6D.5 [TraesCS6D02G208200 (TaAMT1.2/1.3-6D)]

OsAMT1.2 and OsAMT1.3
(Ammonium transporter)

increased ammonium uptake

MQTL7A.6 [TraesCS7A02G156600 (TaLHT1-7A)] OsLHT1 (Lysine histidine

transporter)

improved plant performance

under low N condition

aMQTLs had overlapping physical regions, therefore some wheat genes were detected repeatedly in different MQTL regions
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individual major MQTL, clustered MQTLs identified dur-

ing the present study should prove useful for MAB. After

due validation, ortho-MQTL identified in the present study

can also be used across cereals.

As many as 1991 CGs underlying the 112 MQTLs were

also identified during the present study;[300 of these CGs

showed[5 TPM expressions in relevant plant parts/tissues.

Ninety-seven (97) high confidence CGs with functions

previously reported as important for studied traits were also

listed for 53 robust and GWAS-verified MQTLs. These

CGs may be further validated using approaches like over-

expression, gene editing, and gene knockout, etc. In addi-

tion, 49 orthologues for 35 known rice NUE genes were

also identified in MQTL regions, suggesting that the

knowledge from rice, the model cereal, can also be utilized

for the identification of useful genes in wheat. Overall, the

breeder’s MQTLs identified in the present study have the

potential for MAB for NUE traits and the CGs are the

potential targets that can be exploited using biotechno-

logical techniques like transgenesis and gene editing for

improving NUE in wheat.
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