TABLE 4.
Species | Opioid administration | Sample size | Effects on microbiome | Effects on microbial metabolites, immune and barrier system | Citations |
Human | Active substance users (Heroin Methamphetamine Ephedrine) |
Patients with substance use disorders n = 45 Control group n = 48 |
↑Species diversity index and the abundance of Thauera, Paracoccus, and Prevotella No changes specific to heroin, methamphetamine or ephedrine |
NA | Xu et al., 2017 |
Opioids use | Neither C. difficile infection nor colonization n = 25 C. difficile infection n = 3 C. difficile colonization n = 1 |
↑Alpha diversity | NA | Vincent et al., 2016 | |
Opioids use disorders | Cohort I(in-patient): On opioids n = 62, Not on opioids n = 82. Cohort II(out-patient): On opioids n = 72, Not on opioids n = 72 | ↓Autochthonous taxa (Ruminococcaceae and Clostridiales XIV) and Bacteroidaceae | ↑Metabolism of aromatic amino acids ↑Degradation of branched-chain amino acids |
Acharya et al., 2017 | |
With opioid use disorder n = 45 Without opioid use disorder n = 54 |
↑Bifidobacterium | NA | Barengolts et al., 2018 | ||
Mouse | Morphine Implanted pellet | 25 mg morphine n = 5 30 mg naltrexone n = 5 Morphine + naltrexone n = 5 Placebo n = 5 |
↓Alpha-diversity ↑Enterococcus faecalis, Flavobacterium, Fusobacterium, Sutterella and Clostridium |
↓Bile acids ↑Phosphatidylethanolamines and saturated fatty acids |
Wang F. et al., 2018 |
25 mg subcutaneous morphine sulfate pellet n = 7-8 Twice-daily intraperitoneal (i.p.) injections of escalating doses of morphine sulfate (10, 20, 30, 40 mg/kg, n = 7–8 |
Intermittent morphine ↑Ruminococcus spp. ↓Lactobacillus spp. Sustained morphine ↑Genera Clostridium ↑Family Rikenellaceae |
NA | Lee K. et al., 2018 | ||
Placebo +placebo microbiome n = 5 Placebo +morphine microbiome n = 5 Morphine + placebo microbiome n = 5 Morphine + morphine microbiome n = 5 |
↓Bacteroidetes, Lactobacillus and Clostridium ↑Firmicutes (Enterococcaceae, Staphylococcaceae, Bacillaceae, Streptococcaceae, and Erysipelotrichaceae) |
↓Primary and secondary bile acids in the gut not in the liver ↑Level of coprostanol and cholesterol |
|||
Poly-microbial sepsis mice model induced by cecal ligation and puncture (CLP) treated by 25 mg slow-release morphine pellet Placebo n = 5 Morphine n = 5 Placebo+CLP n = 5 Morphine+CLP n = 5 |
↑Firmicutes phylum (specifically the G+ bacterial species, Staphylococcus sciuri, Staphylococcus cohnii, Staphylococcus aureus, Enterococcus durans, Enterococcus casseliflavus, Enterococcus faecium, and Enterococcus faecalis) ↑Translocation of Gram-positive gut bacteria |
↑CLP mice mortality, bacterial dissemination, IL-17A, IL-6. | Meng et al., 2015 | ||
WT and m-opioid receptors (MOR) knockout (MORKO) mice administrated with 75 mg morphine pellets for 24 h n = 9–10 | Chronic morphine compromises barrier function of gut epithelium Bacterial translocation to mesenteric lymph node (MLN) and liver |
Disrupts tight junction organization between small intestinal epithelial cells; Disrupts tight junction organization between small intestinal epithelial cells. |
Meng et al., 2013 | ||
15 mg/kg morphine injection b.i.d. for 8 days | Saline group n = 6 Morphine group n = 7 |
↓Actinobacteria ↓Firmicutes ↓Bifidobacteriaceae ↓Lactobacillaceae |
Disrupted gut epithelial barrier and promoted systemic Bacterial translocation; ↑TLR2 and TLR4 expression; ↑Sustained chronic systemic inflammation. |
Zhang L. et al., 2019 | |
Rat | 10 mg/kg morphine i.p. | Morphine group n = 28 Saline group n = 7 |
No significant differences in alpha diversity Morphine group ↓Alloprevotella, Desulfovibrio, and Rikenella ↑Allobaculum and Parasutterella Saline group ↓Corynebacterium, Clostridium_XlVa, Corynebacterium, and Parasutterella ↑Desulfovibrio |
NA | Zhang et al., 2020 |
Indian-origin rhesus macaques | Intramuscular injection | Morphine group n = 4 Simian immunodeficiency virus (SIV) group n = 4 Morphine+SIV group n = 6 |
No significant differences in microbial diversity ↑Methanobacteriaceae ↓Streptococcaceae streptococcus and Pasteurellaceae Aggregatibacter |
↓Primary bile acids ↑Secondary bile acids and sphingolipid metabolites |
Sindberg et al., 2019 |