Skip to main content
. 2021 Oct 6;12:738401. doi: 10.3389/fmicb.2021.738401

TABLE 4.

Effects of opioid on gut microbiome and other systems.

Species Opioid administration Sample size Effects on microbiome Effects on microbial metabolites, immune and barrier system Citations
Human Active substance users
(Heroin
Methamphetamine Ephedrine)
Patients with substance use disorders n = 45
Control group n = 48
↑Species diversity index and the abundance of Thauera, Paracoccus, and Prevotella
No changes specific to heroin, methamphetamine or ephedrine
NA Xu et al., 2017
Opioids use Neither C. difficile infection nor colonization n = 25
C. difficile infection n = 3
C. difficile colonization n = 1
↑Alpha diversity NA Vincent et al., 2016
Opioids use disorders Cohort I(in-patient): On opioids n = 62, Not on opioids n = 82. Cohort II(out-patient): On opioids n = 72, Not on opioids n = 72 Autochthonous taxa (Ruminococcaceae and Clostridiales XIV) and Bacteroidaceae ↑Metabolism of aromatic amino acids
↑Degradation of branched-chain amino acids
Acharya et al., 2017
With opioid use disorder n = 45
Without opioid use disorder n = 54
Bifidobacterium NA Barengolts et al., 2018
Mouse Morphine Implanted pellet 25 mg morphine n = 5
30 mg naltrexone n = 5
Morphine + naltrexone n = 5
Placebo n = 5
↓Alpha-diversity
Enterococcus faecalis, Flavobacterium, Fusobacterium, Sutterella and Clostridium
↓Bile acids
↑Phosphatidylethanolamines and saturated fatty acids
Wang F. et al., 2018
25 mg subcutaneous morphine sulfate pellet n = 7-8
Twice-daily intraperitoneal (i.p.) injections of escalating doses of morphine sulfate (10, 20, 30, 40 mg/kg, n = 7–8
Intermittent morphine
Ruminococcus spp.
Lactobacillus spp.
Sustained morphine
↑Genera Clostridium
↑Family Rikenellaceae
NA Lee K. et al., 2018
Placebo +placebo microbiome n = 5
Placebo +morphine microbiome n = 5
Morphine + placebo microbiome n = 5
Morphine + morphine microbiome n = 5
Bacteroidetes, Lactobacillus and Clostridium
Firmicutes (Enterococcaceae, Staphylococcaceae, Bacillaceae, Streptococcaceae, and Erysipelotrichaceae)
↓Primary and secondary bile acids in the gut not in the liver
↑Level of coprostanol and cholesterol
Poly-microbial sepsis mice model induced by cecal ligation and puncture (CLP) treated by 25 mg slow-release morphine pellet
Placebo n = 5
Morphine n = 5
Placebo+CLP n = 5
Morphine+CLP n = 5
Firmicutes phylum (specifically the G+ bacterial species, Staphylococcus sciuri, Staphylococcus cohnii, Staphylococcus aureus, Enterococcus durans, Enterococcus casseliflavus, Enterococcus faecium, and Enterococcus faecalis)
↑Translocation of Gram-positive gut bacteria
↑CLP mice mortality, bacterial dissemination, IL-17A, IL-6. Meng et al., 2015
WT and m-opioid receptors (MOR) knockout (MORKO) mice administrated with 75 mg morphine pellets for 24 h n = 9–10 Chronic morphine compromises barrier function of gut epithelium
Bacterial translocation to mesenteric lymph node (MLN) and liver
Disrupts tight junction organization between small intestinal epithelial cells;
Disrupts tight junction organization between small intestinal epithelial cells.
Meng et al., 2013
15 mg/kg morphine injection b.i.d. for 8 days Saline group n = 6
Morphine group n = 7
Actinobacteria
Firmicutes
↓Bifidobacteriaceae
Lactobacillaceae
Disrupted gut epithelial barrier and promoted systemic Bacterial translocation;
↑TLR2 and TLR4 expression;
↑Sustained chronic systemic inflammation.
Zhang L. et al., 2019
Rat 10 mg/kg morphine i.p. Morphine group n = 28
Saline group n = 7
No significant differences in alpha diversity
Morphine group
Alloprevotella, Desulfovibrio, and Rikenella
Allobaculum and Parasutterella Saline group
Corynebacterium, Clostridium_XlVa, Corynebacterium, and Parasutterella
Desulfovibrio
NA Zhang et al., 2020
Indian-origin rhesus macaques Intramuscular injection Morphine group n = 4
Simian immunodeficiency virus (SIV) group n = 4
Morphine+SIV group n = 6
No significant differences in microbial diversity
Methanobacteriaceae
Streptococcaceae streptococcus and Pasteurellaceae Aggregatibacter
↓Primary bile acids
↑Secondary bile acids and sphingolipid metabolites
Sindberg et al., 2019