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Evolutionary graph theory investigates how spatial constraints
affect processes that model evolutionary selection, e.g. the
Moran process. Its principal goals are to find the fixation
probability and the conditional distributions of fixation time,
and show how they are affected by different graphs that
impose spatial constraints. Fixation probabilities have
generated significant attention, but much less is known about
the conditional time distributions, even for simple graphs.
Those conditional time distributions are difficult to calculate,
so we consider a close proxy to it: the number of times the
mutant population size changes before absorption. We
employ martingales to obtain the conditional characteristic
functions (CCFs) of that proxy for the Moran process on the
complete bipartite graph. We consider the Moran process on
the complete bipartite graph as an absorbing random walk in
two dimensions. We then extend Wald’s martingale approach to
sequential analysis from one dimension to two. Our expressions
for the CCFs are novel, compact, exact, and their parameter
dependence is explicit. We show that our CCFs closely
approximate those of absorption time. Martingales provide an
elegant framework to solve principal problems of evolutionary
graph theory. It should be possible to extend our analysis to
more complex graphs than we show here.
1. Introduction
The spread of some novelty in a population can be modelled
by stochastic processes [1,2]. For example, stochastic processes
have modelled the spread of cancer cells in healthy tissue
[3,4], disease in a population [5] and social trends [6]. Birth–
death processes are a subset of stochastic processes that model
the spread of genetic mutations in a resident population
[7–9]. One particularly popular birth–death process is the
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St−1 = [2, 1]

Xt = [0, 1]

ST = a = [A, B]

ST = b = [0, 0]
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Figure 1. Schematic of the Moran process on a bipartite graph and our notation. The complete bipartite graph constrains the
offspring of individuals in group A to replace individuals in group B, and vice versa. This constraint is illustrated by the black
lines. All individuals are either mutants (red) or residents (blue). St−1 is the number of mutants in each partition on time
step t− 1, and Xt is the change in the process on time step t. On this example time step, the offspring of a mutant from A
replaces a resident in B (enlarged individuals and thick arrow). We repeat the Moran birth–death process until all individuals
are mutants (i) or residents (ii). a and b represent the two possible final states of ST.
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Moran process, which has generated significant research interest since its introduction over 60 years
ago [10–15].

The Moran birth–death process models the evolutionary selection of a novel mutation [10]. Briefly, it
considers a population of fixed size [8]. Every individual in the population is either a mutant or a
resident. On every time step, we choose one individual to reproduce and another to die. The offspring
of the former replaces the latter, so the total population size remains constant. The difference between
mutants and residents is that mutants have a different probability of being selected to reproduce with
respect to the latter. This discrepancy is meant to model ‘fitness’. We repeat this birth–death selection
procedure until the entire population comprises either mutants or residents. Our goals are to find the
‘fixation probability’ of the initial mutant population, and the (conditional) distribution of the number
of time steps required to do so [16–18].

Evolutionary graph theory studies the impact of spatial constraints on these fixation probabilities and
times [11]. It considers the Moran process constrained by a graph, where the graph nodes represent
individuals, and the graph edges dictate which individuals can be replaced by other individuals’
offspring. The complete bipartite graph is a simple example of this concept [13,19–21]. It divides the
population of individuals into two groups (figure 1). All individuals in one group are connected only
to those in the other group. These connections constrain the Moran process such that the offspring
from one group can only replace individuals in the other group. For example, imagine two separate
colonies of sponges on the seabed. Say that the sponge larvae are programmed to swim away from
their parent before searching the seabed for a suitable location to colonize [22]. If only two suitable
locations exist in the immediate area, then offspring from one colony settle only in the other. We can
model this simple ecosystem as a Moran process on a complete bipartite graph. We want to
investigate how its spatial constraint impacts fixation probabilities and times compared with the
original, fully connected Moran process [23].

The fixation probability of the complete bipartite graph is well known [19–21]. Much less is known
about its conditional fixation time distributions [24–27]. Most prior work on fixation times was obtained
via simulation, Markov chain analysis, restricting focus to fixation time means, or restricting population
size [18,24–27]. Very few general analytical results exist for fixation times on evolutionary graphs [27],
even for graphs as simple as the complete bipartite graph. In a previous paper, we showed that we
can apply Wald’s martingale [28] to the original, fully connected Moran process if we eliminate time
steps where the mutant population size does not change [16]. We can therefore obtain tractable
expressions for the full conditional characteristic functions (CCFs) of the number of times that the
mutant population size changes before going extinct or fixing, i.e. its number of ‘active steps’ [29].
Perhaps this approach could be extended to find analogous CCFs of the Moran process on more
general graphs.

In this paper, we will extend Wald’s martingale to report the CCFs for the Moran process on the
complete bipartite graph. We consider the bipartite graph as a two-dimensional random walk, with
each dimension representing the mutant population size in one partition. We will show how to obtain
fixation probabilities and the CCFs of active steps from a two-dimensional product martingale. Our
expressions for the CCFs are novel, elegant, exact, and their parameter dependence is explicit. We will
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investigate the parameter dependence of our CCFs by evaluating them in different regions of parameter

space. We will show that our CCFs of the number of active steps can accurately approximate the CCFs of
fixation time. We will establish conditions for that approximation to be particularly accurate. Our analysis
demonstrates that martingales are a powerful tool to solve fundamental problems in evolutionary graph
theory, often within a few lines of mathematics [16,21,30–32].
publishing.org/journal/rsos
R.Soc.Open
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2. Results
2.1. Problem statement and notation
For a more detailed introduction to the Moran birth–death process, see [8,11].

Figure 1 is a schematic of the Moran birth–death process on a complete bipartite graph [19,20,33]. All
individuals in a population are divided into two partitions of sizes A and B, e.g. A = 4 and B = 2 in figure 1.
Individuals are either mutants (red nodes) or residents (blue nodes). The only difference between the
species is that mutants are chosen to reproduce with a different probability relative to the residents. This
difference is meant to model ‘fitness’ and is parametrized by r [8]. All individuals in one partition are
connected only to those in the other partition (black lines, figure 1). These connections constrain the
Moran process such that offspring from one partition can only replace individuals in the other partition.

We consider the Moran process on the complete bipartite graph as a two-dimensional random walk,
where the mutant population size fluctuates in two partitions. Let St−1 = [Sa,t−1, Sb,t−1] represent the size
of the mutant populations in each partition on time step t− 1 (e.g. St−1 = [2, 1] in figure 1). Let Xt = [Xa,t,
Xb,t] represent the change in the mutant population size on time step t. For example, if a mutant from A is
chosen to reproduce and a resident from B to die, then Xt = [0, 1] (enlarged individuals and thick
connection, figure 1). We write St ¼

Pt
i¼1 Xi þ S0, where S0 = [Sa,0, Sb,0] is the initial mutant population

size. On every time step we make a new observation of Xt and add it to the sum until all individuals
are mutants (figure 1b(i)) or residents (b(ii) graph).

Our goal is to find the probability that an initial mutant population S0 eventually achieves fixation
(i.e. the fixation probability), and how many time steps T are required to do so. Since all connections
are undirected, T is almost surely finite [34]. Let a = [A, B] and b = [0, 0] represent the two possible
final states of the bipartite graph (figure 1b). The fixation probability is then PrðST ¼ aÞ ; a and the
extinction probability is PrðST ¼ bÞ ¼ 1� a. We also want to find the conditional distributions
PrðT ¼ tjST ¼ aÞ1t¼0 and PrðT ¼ tjST ¼ bÞ1t¼0 of T.

It is very difficult to calculate PrðT ¼ tjST ¼ aÞ1t¼0 and PrðT ¼ tjST ¼ bÞ1t¼0, even for simpler birth–
death processes like the fully connected, one-dimensional Moran process [16–18]. Instead, we consider
the number of times that the mutant population size has changed upon absorption CT. Let Yt

represent whether the mutant population size changes on time step t

Yt ¼ 1 if Xt = ½0, 0�; Yt ¼ 0 if Xt ¼ ½0, 0�:
Initializing C0 = 0, we write CT ¼ PT

i¼1 Yi. Note that CT depends on T, so we interpret them as proxies to
each other [16].

We will identify a product martingale that yields α and the full CCFs of CT.
2.2. Fixation probability and times from a two-dimensional martingale
First, we show how to obtain the fixation probability and CCFs of CT from a two-dimensional product
martingale, assuming that we can find one. Say we find a product martingale of the form

E[hCt fSa,tgSb,t
��St�1] ¼ hCt�1 fSa,t�1gSb,t�1 , ð2:1Þ

where h is a free complex variable and f = f (h) and g = g(h) are functions of h that are independent of St−1.
We say that h, f (h) and g(h) satisfying equation (2.1) define a ‘product martingale’ because its
exponentiation turns sums into products

E[hCt fSa,t gSb,t
��St�1] ¼ E[hCt�1þYt fSa,t�1þXa,t gSb,t�1þXb,t

��St�1]

¼ hCt�1 fSa,t�1gSb,t�1E[hYt fXa,t gXb,t
��St�1]:

If we can show that E[hYt fXa,t gXb,t
��St�1] ¼ 1, then equation (2.1) is true and we have a product martingale.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210657
4
We can immediately calculate the fixation probability and CCFs of CT from equation (2.1) [28]. Taking

the expectation of both sides of equation (2.1)

E[hCt fSa,t gSb,t ] ¼ E[hCt�1 fSa,t�1gSb,t�1 ]:

By induction

E[hCt fSa,t gSb,t ] ¼ E[hC0 fSa,0gSb,0 ] ¼ fSa,0gSb,0 ,

assuming that S0 is known (non-random) and C0 = 0. Doob’s optional stopping theorem states that a
randomly stopped martingale is also a martingale [35,36]. Inserting a random variable T for t

E[hCT fSa,T gSb,T ] ¼ fSa,0gSb,0 :

Splitting the expectation, conditional on fixation or extinction

E[hCT fSa,T gSb,T
��ST ¼ a]aþ E[hCT fSa,T gSb,T

��ST ¼ b]ð1� aÞ ¼ fSa,0gSb,0 :

Inserting the fixation and extinction boundaries

fAgBE[hCT
��ST ¼ a]aþ E[hCT

��ST ¼ b]ð1� aÞ ¼ fSa,0gSb,0 : ð2:2Þ

We obtain the fixation probability and times from equation (2.2) by inserting special values for the
free variable h into it [16]. For the fixation probability, insert h = 1 (recall that f and g are functions of h)

f ð1ÞAgð1ÞBaþ ð1� aÞ ¼ f ð1ÞSa,0gð1ÞSb,0 :

Rearranging for α

a ¼ f ð1ÞSa,0gð1ÞSb,0 � 1

f ð1ÞAgð1ÞB � 1
:

For the CCFs, insert h ¼ et into equation (2.2), where τ is a purely imaginary free variable

f ðetÞAgðetÞBE[etCT
��ST ¼ a]aþ E[etCT

��ST ¼ b]ð1� aÞ ¼ f ðetÞSa,0gðetÞSb,0 :

We recognize the conditional expectations as the CCFs of CT, cCT jST¼aðtÞ and cCT jST¼bðtÞ

f ðetÞAgðetÞBcCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼ f ðetÞSa,0gðetÞSb,0 :

Assume that there are two pairs of complex functions ( f1(h), g1(h)) and ( f2(h), g2(h)) that satisfy equation
(2.1) [28]. Separately inserting those pairs into equation (2.2), we obtain a system of two equations

f1ðetÞAg1ðetÞBcCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼ f1ðetÞSa,0g1ðetÞSb,0
and f2ðetÞAg2ðetÞBcCT jaðtÞaþ cCT jbðtÞð1� aÞ ¼ f2ðetÞSa,0g2ðetÞSb,0 :

)
ð2:3Þ

We have two equations, so we can solve for both cCT jaðtÞ and cCT jbðtÞ.
The key condition that we need to apply this analysis is

E[hYt fXa,t gXb,t
��St�1] ¼ 1, ð2:4Þ

for two pairs of state-independent f (h) and g(h). We now show that this condition can be met for the Moran
process on a complete bipartite graph.
2.3. A two-dimensional martingale for the complete bipartite graph
For compact notation, let Ft−1 represent the total fitness of the bipartite graph on time step t− 1: Ft−1 = rSa,
t−1 +A− Sa,t−1 + rSb,t−1 + B− Sb,t−1. We use shorthand for the graph’s transition probabilities

pXa" ¼ PrðXt ¼ ½1, 0�, Yt ¼ 1jSt�1Þ, pXa# ¼ PrðXt ¼ ½�1, 0�, Yt ¼ 1jSt�1Þ;
pXb" ¼ PrðXt ¼ ½0, 1�, Yt ¼ 1jSt�1Þ, pXb# ¼ PrðXt ¼ ½0, � 1�, Yt ¼ 1jSt�1Þ;
pX0 ¼ PrðXt ¼ ½0, 0�, Yt ¼ 0jSt�1Þ:
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These transition probabilities are

pXa" ¼
rSb,t�1

Ft�1

A� Sa,t�1

A
, pXa# ¼

B� Sb,t�1

Ft�1

Sa,t�1

A
;

pXb" ¼
rSa,t�1

Ft�1

B� Sb,t�1

B
, pXb# ¼

A� Sa,t�1

Ft�1

Sb,t�1

B
;

pX0 ¼ 1� pXa" � pXb" � pXa# � pXb#:

We want to find state-independent f (h) and g(h) such that equation (2.4) is true. Writing the
expectation

E[hYt fXa,t gXb,t
��St�1] ¼ pXa"hf þ pXa#hf

�1 þ pXb"hgþ pXb#hg
�1 þ pX0 ¼ 1:

Inserting pX0 and rearranging

pXa"hf þ pXa#hf
�1 þ pXb"hgþ pXb#hg

�1 ¼ pXa" þ pXa# þ pXb" þ pXb#: ð2:5Þ

Equation (2.5) is true if the following two equations are true

pXa"hf þ pXb#hg
�1 ¼ pXa" þ pXb# and pXa#hf

�1 þ pXb"hg ¼ pXa# þ pXb":

We split equation (2.5) this way because when we insert our expressions for transition probabilities, all
state dependence cancels

r
A
hf þ 1

B
hg�1 ¼ r

A
þ 1
B

and
r
B
hgþ 1

A
hf�1 ¼ r

B
þ 1
A
:

With two equations, we can solve for f and g as functions of h. Rearranging the right equation for g

g ¼ 1
h
þ B
Arh

� B
Ar

f�1:

Substituting g in the left equation and rearranging, we see that f is the solution to a quadratic equation

r
A
þ B
A2

� �
f2 þ h

B
� Bh
A2 �

r
A
þ 1
B

� �
1
h
þ B
Arh

� �� �
f þ r

A
þ 1
B

� �
¼ 0:

There are two pairs of complex functions ( f1(h), g1(h)) and ( f2(h), g2(h)) that satisfy equation (2.4) for the
Moran process on the complete bipartite graph. In particular, f1 and f2 are given by the quadratic formula
(one corresponds to the plus sign and the other to the minus sign in the quadratic formula). Then g1 and
g2 are linearly related to the inverse of those two solutions.

Figure 2 plots f1, f2 (a,c), g1 and g2 (b,d ) as functions of τ, where h ¼ et. We plot these functions for r =
0.5 (a,b) and r = 1.5 (c,d ). The real (red traces) and imaginary (black traces) parts of each function are
plotted separately. Note that the real and imaginary parts of all functions are even and odd about τ =
0 respectively. Characteristic functions also have this property. Each panel in figure 2 shows that there
are two functions f1 (solid traces, a,c) and f2 (dashed traces, a,c), and g1 (solid traces, b,d ) and g2
(dashed traces, b,d) that satisfy equation (2.4).

When τ = 0, one of those two functions passes through the point (1, 0i) (pink and grey dots, figure 2).
This observation reflects the fact that, when h = 1 (or τ = 0), the solution f = 1 and g = 1 to equation (2.4) is
trivial. The other function passes through a non-trivial point ( f0, 0i) or (g0, 0i) when τ = 0 (red and black
dots, figure 2). These points are what we use to evaluate the fixation probability.

Setting h = 1 (or τ = 0) and solving for f and g above, we find those non-trivial points:

f0 ¼ Aþ Br
rðArþ BÞ and g0 ¼ Arþ B

rðAþ BrÞ :

The fixation probability of the bipartite graph is then

a ¼ fSa,00 gSb,00 � 1
fA0 g

B
0 � 1

,

which is consistent with previous results [20,21,33].
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Figure 2. Two pairs of state-independent functions ( f1, g1) and ( f2, g2) satisfy equation (2.4) for the Moran process on the complete
bipartite graph. Those functions are plotted for example values of r = 0.5 (a,b) and r = 1.5 (c,d ). Panel (a,c) plots f1 (solid traces)
and f2 (dashed traces) while (b,d ) plots g1 (solid traces) and g2 (dashed traces). Real (red) and imaginary (black) parts of all
functions are plotted separately. Note that the real parts are even and the imaginary parts are odd. When τ = 0, one function
passes through (1, 0i) ( pink, grey dots) and the other passes through ( f0, 0i) or (g0, 0i) (red, black dots). The red dots are
the values we use to calculate the fixation probability.
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We obtain the CCFs of CT by rearranging equation (2.3)

cCT jaðtÞ ¼
fSa,01 gSb,01 � fSa,02 gSb,02

a(fA1 g
B
1 � fA2 g

B
2 )

and cCT jbðtÞ ¼
fSa,02 gSb,02 fA1 g

B
1 � fSa,01 gSb,01 fA2 g

B
2

ð1� aÞ(fA1 gB1 � fA2 g
B
2 )

,

and inserting h ¼ et in our expressions for f1, f2, g1 and g2.
In the special case A = B (i.e. the graph is isothermal), those functions have a simple form

f1 ¼ g1 ¼
ðrþ 1Þe�t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 1Þ2e�2t � 4r

q
2r

and f2 ¼ g2 ¼
ðrþ 1Þe�t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ 1Þ2e�2t � 4r

q
2r

:

Since f1 = g1 and f2 = g2, our two-dimensional product martingale reduces to one dimension. Furthermore,
f1 and f2 are equivalent to functions derived from a one-dimensional product martingale applied to the
fully connected Moran process (c.f. eqn. 2.7 in [16]). When the bipartite graph is isothermal, its CCFs of
CT are equivalent to those of the fully connected Moran process [16].
2.4. Parameter dependence of the CCFs
The parameter dependence of cCT jbðtÞ and cCT jaðtÞ is explicit, so we can investigate their parameter
dependence by simply evaluating them in different regions of parameter space.
2.4.1. Strong selection expedites extinction and fixation

Figure 3 plots cCT jbðtÞ (a,c) and cCT jaðtÞ (b,d ) for a complete bipartite graph with two values of r (a,b and c,
d ). Our parameter values were A = 10, B = 4, Sa,0 = 1 and Sb,0 = 1. We plot the real (pink) and imaginary
(grey) parts of the CCFs separately. Note that the real and imaginary parts of the CCFs are even and odd,
and they pass through 1 and 0 at τ = 0, respectively.

Figure 3 compares cCT jbðtÞ and cCT jaðtÞ (solid traces) with simulation results from 100 000 trials of the
Moran process (dashed traces). On each trial, we counted how many times the mutant population size
changed, and whether it fixed or went extinct. We then applied the Fourier transform to that
simulation data, and again plot its real and imaginary parts separately (dashed red and black traces,
figure 3). We also compared our expression for α with the percentage of simulations where the
mutants fixed (lower-right numbers, c,d ). Our simulation code is available online at https://github.
com/travismonk/bipartite. Simulation results match our theory extremely closely because our analysis
is exact, and we ran sufficiently many simulations to converge to that solution.

https://github.com/travismonk/bipartite
https://github.com/travismonk/bipartite
https://github.com/travismonk/bipartite
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Figure 3. Exact CCFs of CT for the Moran process on the complete bipartite graph.cCT jbðtÞ (a,c) and cCT jaðtÞ (b,d ) for two values of r
(a,b and c,d ). Real (solid pink) and imaginary (solid grey) parts of the CCFs are plotted separately. Fourier transforms of 100 000
simulations (dashed traces) match our theoretical CCFs, as do the percentage of successful invasions with our expression for α
(lower-right corners of right panels). The black and red numbers in each panel report the conditional first and second moments of
CT, respectively. The black line and red parabola visualize those two moments. In all plots, A = 10, B = 4, Sa,0 = 1 and Sb,0 = 1.
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Figure 3 also reports the conditional first two moments of cCT jbðtÞ and cCT jaðtÞ. The black and red
numbers in the left panels report E[CT

��ST ¼ b] and E[C2
T

��ST ¼ b], respectively. They report
E[CT

��ST ¼ a] and E[C2
T

��ST ¼ a] in the right panels. Those moments are visualized by the black line
and red parabola in each panel of figure 3. Analytical expressions for the conditional kth moment are
found by evaluating derivatives of the CCFs

E[Ck
T

��ST ¼ a] ¼ i�k dk

dtk
cCT jaðtÞ

����
t¼0

and E[Ck
T

��ST ¼ b] ¼ i�k dk

dtk
cCT jbðtÞ

����
t¼0

:

Those analytical expressions are not compact, so we omit them here. But it is easy to estimate at least the
first few moments by visually inspecting the CCFs (e.g. black lines and red parabolas, figure 3). We can
investigate how those moments depend on parameters by visually comparing CCFs that we calculate in
different regions of parameter space.

For example, figure 3 shows that the first and second moments of CT decrease as selection increases
(cf. a,b and c,d ). When r is large, the drift of the mutant population size is more positive. When the drift is
strongly positive, St is unlikely to increase far from S0 and then go extinct. Such paths to extinction
require larger CT on average because they traverse more states of the graph. So it is less likely that a
path with large CT will go extinct, because many of those paths are very unlikely to be observed.
Therefore, when r is large, extinctions usually happen quickly. By the same logic, when r is large, it is
unlikely for St to decrease substantially before reaching a. Those paths to extinction also require larger
CT on average, so fixation usually happens quickly once the initial mutants gain a foothold on the
graph. These arguments are no longer true when r = 1. When selection is neutral, it is more possible
for St to drift higher from S0 and then go extinct, or drift lower and then fix. Since these longer paths
to fixation or extinction are more probable, the conditional first and second moments of CT increase
(cf. black and red numbers, figure 3).

2.4.2. Increasing the population size delays fixation more than extinction

Figure 4 illustrates how cCT jbðtÞ (a) and cCT jaðtÞ (b) depend on the total population size of the complete
bipartite graph (i.e. A + B). Again, we plot the real (red/pink traces) and imaginary (black/grey traces)
parts of the CCFs separately. We fixed r = 1.01, Sa,0 = 1 and Sb,0 = 1, and calculated CCFs of CT for
three pairs of values for A and B. In all plots, we constrained the population sizes A and B to have
the same ratio A/B = 3 (figure 4).

Figure 4 shows that cCT jaðtÞ is more sensitive to population size than cCT jbðtÞ. cCT jaðtÞ concentrates in
a smaller neighbourhood about the origin as population size grows. That concentration dramatically
affects its second moment (red numbers, b), as illustrated by the dashed red or pink parabolas. For
these parameter values, that second moment increases by over an order of magnitude when the
population size doubles. cCT jbðtÞ is also dependent on a, but not as dramatically as cCT jaðtÞ. The mean
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(b) are plotted for three bipartite graphs with different partition sizes as stated in the legend. All bipartite graphs have three times
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separately. The top, middle and bottom numbers report particular conditional moments of CT for the bipartite graph with partition
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of the lines in a illustrate this increase for CT|b, and the black numbers report those slopes. Both second moments of CT increase as
well, as illustrated by the red parabolas and red numbers in b. Inspecting the CCFs away from the origin, we see that the higher-
order moments of CT|a are more sensitive to changes in population size than CT|b. In these plots, r = 1.01, Sa,0 = 1 and Sb,0 = 1.
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Figure 5. Increasing the initial mutant population size delays extinction and slightly expedites fixation. The figure layout is
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and a. Consequently, cCT jbðtÞ condenses about the origin, and cCT jaðtÞ expands from the origin. Equivalently, the moments
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cCT jbðtÞ is more sensitive to changes in S0 than cCT jaðtÞ. In these plots, r = 2, A = 3 and B = 10.
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of CT to extinction (black numbers, a) doubles as population size doubles, as visualized by the slopes of
the dashed lines. Higher-order moments of CT|b do not appear to be sensitive to changes in a.

These results are qualitatively similar to previous results we found for the fully connected Moran
process [16]. As a moves farther from S0, E[CT

��a] increases because St must traverse a larger number
of states, which implies a larger number of population size changes. But E[CT

��b] increases as well
because longer paths to extinction become possible. For example, if a = (9, 3), then the Moran process
cannot visit the state (9, 3) and then go extinct because it is already fixed. If we increase a, then that
long path to extinction becomes possible. E[C2

T

��b] and E[C2
T

��a] increase as a increases for the same
reason. As the distance between b and a increases, we can observe longer paths to absorption.
Summing the square of those longer path lengths can result in a significantly higher second moment
of CT. This observation is especially true when the probabilities of observing those longer paths are
non-negligible, i.e. when selection is weak.
2.4.3. Increasing the starting state delays extinction more than fixation

Figure 5 is analogous to figure 4, except we altered the starting state S0 instead of a. We fixed r = 2, A = 3,
B = 10, and varied S0 as indicated in the legend. Figure 5 shows that cCT jbðtÞ is more sensitive to changes
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This result is consistent with previous work on fixation time [26]. In these plots, r = 1.01, Sa,0 = 0 and Sb,0 = 1.
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in S0 than cCT jaðtÞ when S0 is closer to b than a. For example, increasing Sa,0 and Sb,0 by one more than
doubles E[CT

��b] (black numbers, dashed black/grey lines, left panel). By contrast, E[CT
��a] and E[C2

T

��a]
decrease slightly as S0 increases.

These results are sensible. As we increase the distance between S0 and b, we expect CT|b to increase
because there are more states for St to traverse before extinction. Since increasing the distance between S0
and b necessarily decreases the distance between S0 and a, we expect CT|a to decrease for the converse
reason. However, increasing S0 also makes longer paths to fixation possible. For example, if S0 = (Sa,0,
Sb,0) = (1, 0), then Sa,t cannot decrease by 1 and then fix because the mutants already went extinct. But
if S0 = (2, 0), then this path to fixation is possible, and it requires a slightly larger number of mutant
population size changes on average. These two effects of increasing S0 on CT|a partially offset each
other, so cCT jaðtÞ is relatively insensitive to changes in S0.

2.4.4. Asymmetric partition sizes delays extinction and fixation

Figure 6 is analogous to figures 4 and 5, except we fixed the total population size in all plots. We fixed
r = 1.01, Sa,0 = 0 and Sb,0 = 1, and calculated the CCFs for three pairs of values for A and B. In all plots,
we constrained A and B to sum to 12, but placed different numbers of those 12 individuals in the
partitions (figure 6 legend). By doing so we can investigate how cCT jbðtÞ and cCT jaðtÞ depend on the
asymmetry of partition sizes. We can also investigate how this asymmetry impacts the CCFs with
respect to an isothermal graph.

Figure 6 shows that asymmetric partition sizes significantly impact both CCFs. It shows that the
isothermal graph has the lowest first and second moments of both CT|b and CT|a (lightest pink and
grey traces). As the population sizes of the partitions become increasingly asymmetric, the graph
requires more population size changes to achieve extinction or fixation. To explain this observation,
consider a star graph [11–13,21,25], i.e. a bipartite graph where one partition has only one individual
and the other has many individuals (red and black traces, figure 6). On a given time step, an
individual from the populous partition is more likely to be selected to reproduce because that
partition has more individuals. Then the lonely individual in the other partition will be replaced on
most time steps. Therefore, most mutant population size changes are that lonely individual flipping
between mutant and resident. So the star graph requires many population size changes for the mutant
population size in the populous partition to grow or shrink. This result is consistent with previous
computational simulations showing that the fixation time T increases as the asymmetry of partition
sizes increases [26].

2.5. Approximating the CCFs of the number of time steps
Figure 7 compares the CCFs of CT with those of T. Figure 7a,c compares cCT jbðtÞ (solid traces) with ψT|b(τ)
(dashed traces), and figure 7b,d compares cCT jaðtÞ with ψT|a(τ). The bottom and top x-axes in figure 7
correspond to the independent variable of the CCFs of CT and T, respectively. Again, the real (pink
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and red) and imaginary (grey and black) parts of the CCFs are plotted separately. We obtained ψT|a(τ)
and ψT|b(τ) by simulating the Moran process on the complete bipartite graph 200 000 times. Our
simulation code is available online at https://github.com/travismonk/bipartite. We stored T|a or T|b
after each simulation, depending on whether the Moran process achieved fixation or extinction, and
computed their Fourier transforms. In all plots, r = 1.01, Sa,0 = 1 and Sb,0 = 0. The partition sizes were
either A = 4 and B = 6 (a,b) or A = 9 and B = 1 (c,d ).

Figure 7 shows that cCT jbðtÞ and cCT jaðtÞ approximate ψT|b(τ) and ψT|a(τ) to within a scaling constant
for these parameter values. Equivalently, we can approximate CT|b∝ T|b and CT|a∝ T|a when r≈ 1
and the partition sizes are small. That proportionality approximation is particularly accurate when the
process fixes, starting from a small initial mutant population size (b,d ). These results are analogous to
those obtained for the fully connected Moran process [16]. The sojourn times of the fully connected
Moran process do not significantly vary across state space when its population size is small, selection
is weak, and the process fixes [16]. Therefore the scaling approximation CT|a∝ T|a is particularly
accurate in this region of parameter space for the Moran process. However, if the Moran process
achieves extinction, its sojourn times can vary significantly over state space, and the approximation
CT|b∝ T|b may be inaccurate. Figure 7 shows that these observations hold for the complete bipartite
graph when the graph is almost isothermal (a,b). When the partition sizes are highly asymmetric (c,d ),
both scaling approximations CT|a∝ T|a and CT|b∝ T|b are very accurate. This result suggests that
the sojourn times of the complete bipartite graph do not vary significantly over state space if its
partition sizes are highly asymmetric, e.g. the star graph.

Figure 8 is identical to figure 7, except we set r = 3. In the fully connected Moran process, the
proportionality approximation CT|a∝ T|a loses accuracy as selection departs from r≈ 1 [16]. Figure 8
suggests that this result also holds for the complete bipartite graph (b,d ). Given an appropriate scaling
constant, we can accurately estimate the first few moments of T|a from CT|a, but higher-order
moments are less accurately approximated than they were in figure 7. Figure 8 also suggests that our
proportionality approximation is more accurate when the partition sizes are asymmetric (cf. a,b and c,d),

https://github.com/travismonk/bipartite
https://github.com/travismonk/bipartite
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on r, the bipartite graph’s partition sizes, and whether the mutant population fixes or goes extinct. In all plots, Sa,0 = 1 and Sb,0 = 0.
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as we observed in figure 7. Again, this observation suggests that the sojourn times of the complete bipartite
graph do not appreciably change over state space when the partition sizes are asymmetric.

Figure 9 compares the conditional means E[CT
��b] and E[CT

��a] (blue squares) with E[T
��b] and E[T

��a]
(red circles). We set r = 1, 2, 3, 4 and 5, and ran 100 000 simulations of the Moran process on a bipartite
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graph for each value of r. We calculated the means of those 100 000 simulations conditional on extinction

(a,c) or fixation (b,d ). We repeated these simulations for two bipartite graphs. The first bipartite graph had
partition sizes A = 4 and B = 6 (figure 9a,b), and the second had partition sizes A = 9 and B = 1 (figure 9c,
d ). Each panel has two y-axes. The left, blue y-axis corresponds to the conditional means of CT, and the
right, red y-axis corresponds to the conditional means of T.

Figure 9 suggests that the relationship between the conditional means of CT and T is not
straightforward. When the mutant population size of the Moran process changes from St−1 to St, it
remains in the state St for a geometrically distributed number of time steps before changing again. If
that geometric distribution was constant over all transient states of the process, then the conditional
means of CT and T would be proportional to each other. The proportionality constant would be that
geometric distribution’s mean, and the red and blue markers in figure 9 would overlap perfectly.
However, the means of those geometric distributions depend on St. For example, if the mutant
population is very close to extinction or fixation, then the probability of the mutant population size
changing on a time step is small. On most time steps we will observe a resident replacing a resident
or a mutant replacing a mutant. But if the mutant and resident population sizes are equal, then we
are more likely to observe a change in the mutant population size on a time step. The state
dependence of those geometric means is why the conditional absorption time distributions of the
Moran process are so difficult to calculate [16]. Our martingale methodology shows that when we
eliminate those state-dependent geometric distributions by focusing on ‘active steps,’ we obtain clean
and exact expressions for that quantity’s CCFs.
0657
3. Discussion
Martingales can be interpreted as conservation laws for stochastic processes [16]. A martingale states that
the expectation of some quantity does not change throughout a stochastic process. So if we know that
expectation at the beginning of a stochastic process, then by induction we know it upon absorption.
For example, we found two pairs of state-independent functions ( f1(h), g1(h)) and ( f2(h), g2(h)) such that
equation (2.4) is true for the complete bipartite graph. Since we found a conservation law, we do not
need to construct a Markov transition matrix [12,24], or evaluate recursion relations over all state
space [13,37], or assume simplifying limits [14,37] to analyse the complete bipartite graph. Those
alternative approaches are valuable because they are flexible tools to investigate a wider class of
evolutionary graphs than we consider here. But if we can find a conservation law for a particular
graph, then we can immediately exploit it to obtain elegant expressions for statistics of interest upon
absorption.

The key step in applying martingale analysis is to somehow eliminate state dependence from an
expectation that depends on some random variables of interest. This elimination step is easier for
some random variables than others. For example, we have not yet found a martingale that depends
on the number of time steps before absorption T for the complete bipartite graph. But we can find a
martingale that depends on the number of ‘active steps’ of the graph, CT [29,38]. So by switching our
random variable of interest, we facilitate clean analysis. Martingales may not be applicable to all
problems of interest in evolutionary graph theory. But they are very helpful in identifying problems
that are conducive to tractable analysis.

The evolutionary graph theory literature has primarily studied the conditional distributions or
moments of T instead of CT [14,24,25,29,37]. We suggest switching their order of importance for four
reasons. First, eliminating time steps where the graph does not change has no impact on the Moran
process. By definition, the transition probabilities of the Moran process are unaffected by time steps
where the mutant population remains unaltered [8,11]. Second, eliminating those time steps in
simulations expedites computation time and reduces power consumption [38], especially as the
mutant population size approaches extinction or fixation [17]. We can eliminate those time steps in
simulations by calculating transition probabilities conditional on the mutant population changing, i.e.
PrðXtjXt=0Þ. Third, if we insist on obtaining conditional distributions of T, then we can sometimes
closely approximate them from our conditional distributions of CT anyway [16]. Fourth, eliminating
those time steps facilitates clean, elegant and exact expressions for the CCFs of active steps.

Our expressions for CCFs are exact because the Moran process must absorb exactly on either the
fixation or extinction boundary. Since those boundaries are integers, and since the Moran process can
only increase or decrease by 1, it cannot exceed them. Generally, random walks can exceed their
absorbing boundaries. For example, consider a stochastic process where we continue adding
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observations of standard Gaussian random variables until the cumulative sum exceeds one of two

(constant) absorbing boundaries [28]. This stochastic process can absorb at an infinite number of
possible values because it can exceed its boundaries. Martingales only provide approximate results for
global statistics such as absorption probabilities and times when barrier excess is not zero [28] or
otherwise calculable [39]. Determining when martingales provide accurate approximations of global
statistics for such stochastic processes, or bounds on them, is an active research topic. But this issue is
irrelevant for the Moran process [21,28,31,32] and related birth–death processes [7,15], because
martingales yield exact results for these problems.

Martingales are a particularly powerful approach to study evolutionary graphs because they are
exempt from the curse of dimensionality. As the dimensionality of a graph increases (i.e. as we divide
a population into more partitions), martingale analysis does not necessarily increase in complexity.
Previous results have demonstrated this remarkable property by calculating fixation probabilities for
certain kinds of evolutionary graphs with arbitrary dimensionality [32]. Our results here suggest that
we can extend our analysis to find the CCFs of CT for higher-dimensional graphs. We can obtain
CCFs of CT for a one-dimensional graph (i.e. the fully connected Moran process [16]), and a two-
dimensional graph (i.e. the complete bipartite graph). Therefore, we should be able to obtain them for
graphs of arbitrary dimensionality as well.

Martingales’ ability to scale with dimensionality is unmatched by other popular approaches to
analysing such graphs, e.g. Markov chains and simulations [12,14,24,37]. As the dimensionality of a
graph increases, the dimensionality of the Markov chain must increase because we need to account for
more possible transitions of the graph on a time step. Calculating global statistics from a high-
dimensional Markov matrix quickly becomes intractable, even if the elements in the matrix have
simple mathematical forms [18]. Simulations quickly become prohibitively time-consuming to execute
as graphs become more complex. When graphs have more partitions, they have more parameters (e.g.
the population size in each partition is a parameter). Exploring how global statistics vary in high-
dimensional parameter space is infeasible because simulation results are only valid for the specific
parameter values we used in the simulation. Martingales can yield compact expressions for those
global statistics that are valid over all parameter space, regardless of their dimensionality.

Some evolutionary graphs are probably not conducive to martingale analysis. We found a martingale
by exploiting a symmetry in the state dependence of the mutant population increasing by one, and the
resident population decreasing by one. For example, the state dependence in the transition probability of
a mutant offspring from partition A replacing a resident in B is Sa,t−1(B− Sb,t−1). The state dependence in
the transition probability of a resident offspring from partition B replacing a mutant in A is (B− Sb,t−1)Sa,t−1.
Since those state dependencies are the same, we can cancel them in equation (2.4). If we consider graphs
with directed edges [29], then this symmetry is destroyed. It will be significantly more difficult, if not
impossible, to cancel state dependencies in transition probabilities over all state space. So it will be very
difficult to find a conservation law for an evolutionary graph with directed edges. Martingale analysis
may be unsuitable graphs with directed connections.

The applicability of martingale analysis is also sensitive to whether birth or death occurs first in a
birth–death process (i.e. a birth–death or death–birth process [1,15,40–42]), and whether the selection
of the dying or reproducing individual is fitness-dependent. In the original Moran process, we select
the reproducing individual before the dying individual, and birth selection is fitness-dependent. We
showed that we can eliminate state dependence in evaluating equation (2.4) for the original Moran
process on a complete bipartite graph. Now say we select an individual to die before choosing
another to reproduce on a time step. If we define death selection to be fitness-dependent in the death–
birth process, then we preserve the symmetry of state-dependence and martingale analysis remains
applicable. But if the dying individual is chosen first, and reproduction selection is fitness-dependent,
then that symmetry is destroyed. Seemingly trivial changes in the definition of the birth–death process
can significantly impact the application of martingale analysis.

Martingales may also be applicable to other extensions of the Moran process constrained by graphs.
Instead of haploid reproduction, we can consider diploid reproduction models, where two individuals
can sexually reproduce only if they are connected by an edge on the graph [7]. We can consider birth–
death processes with more than two competing species, each with different fitnesses [43,44]. We can
consider heterogeneous graphs, where fitness is attributed to nodes on the graph, as well as the
species of the individual occupying it [45]. We can consider evolutionary games on graphs, where
individuals connected by graph edges compete in games for some pay-off [25,42,46–48]. Whether or
not martingale analysis is applicable to any of these Moran process extensions is an open research
question. To show that it is, we need to find a quantity whose expectation is either one (a product
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martingale) or zero (a sum martingale), regardless of the state of the process. Then we can manipulate that
conservation law to extract statistical quantities of interest. Finding such an expectation may be quite
laborious or impossible, depending on the complexity of the stochastic process and the exploitable
symmetries in it. In such cases, we should defer to other methods of analysis such as simulations,
Markov chains, diffusion approximations, etc. But if we can find such an expectation, then martingale
theory yields clean, elegant, exact and explicit expressions for statistics of interest. So those other
methodologies should not be our default approaches to analysing evolutionary models, but rather our
fallback options.
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