Skip to main content
. 2021 Sep 24;8:730330. doi: 10.3389/frobt.2021.730330

TABLE 1.

Sampling of inverse statics/kinematics learning-based control for continuum robots. Intended to be exemplary, not comprehensive.

Literature Classification criteria
Model Robot structure Actuation (length) Act. & TaskDoFs Mapping to be learned Samples Task Accuracy/mm (mean/STD/max)
Giorelli et al. 1-hidden-layer FNN
 a. Giorelli et al. (2013a)  a. 21 neurons Silicone conical robot Tendon (310 mm/280 mm) a. 2 & 2 u(k)=fs1(p*(k)) 500 (8:2) Simulation: path generation. Discrete points 2.27/1.70/9.30
 b. Giorelli et al. (2013b)  b. 34 neurons b. 3 & 3 500 (8:2) 4.2/2.8/12.3
 c. Giorelli et al. (2015a)  c. 6 neurons c. 2 & 2 405 (8:2) 22.88/11.80/59.79
 d. Giorelli et al. (2015b)  d. 28 neurons d. 3 & 3 395 (8:2) 7.35/--/22.22
Melingui et al. (2014a) Forward: FNN. Inverse: 1-hidden-layer NN in DSL CBHA Pneumatic (NA) a 3 × 2 & 3 Forward: p(k)=fs(u(k)) 4,096 (7:1.5:1.5) Comparison: robot and model postures (under the same actuation) Inverse: 1.1 e−4 (MLP) ∼ 4.1 e−4 (RBF)/--/--
Inverse: u(k)=fs1(p*(k))
Thuruthel et al. 1-hidden-layer NN.
 a. Thuruthel et al. (2016a)  a. 20 neurons a. BHA a. Pneumatic (0.9 m) a. 3 × 3 & 3 q(k)=f^s1(q(k1),p*(k)) a. 10,000 (7:3) Simulation: continuous path following in terms of position (P)/orientation (O) p: <1/1.504/--
 b. Thuruthel et al. (2016b)  b. 40 neurons b. Silicone conical b. Tendon (31 cm) b. 12 & 6 Δq(k)=f^k1(q(k1),Δθ*(k)) b. 14,000 (8:2) p: 8.5/2.8/-- O/°: 3.21/1.71/--
Chen and Lau (2016), Xu et al. (2017) ELM, GMR, or KNNR Silicone serpentine Tendon (NA) a 2 & 2 u(k)=fs1(p*(k)) 20,000 Simulation & real robot: path following 2.1275∼ 2.5556/−/−
Lee et al. (2017a) LWPR online update Silicone cylindrical Pneumatic (93 mm) 3 & 2 Δu(k)=fk1(n(k1),u(k1),Δn*(k)) >1,000 for initialization [FEA Lee et al. (2017b)] Angular path following (2D) + external forces Free space/°: 0.90/0.65/2.80
Disturbed/°: 2.49/1.74/11.03
Ho et al. (2018) LWPR online update Silicone cylindrical Pneumatic (155 mm) 3 × 2 & 3 Δu(k)=fk1(u(k1),Δp*(k)) Path following (3D) + tip load (72% robot mass) With load: 0.98/0.26/--
Fang et al. (2019) LGPR online update Silicone cylindrical Pneumatic (67 mm) 3 & 2 Δu(k)=fk1(u(k1),Δz*(k)) 300 Path following (2D visual servo) + tip load Free space/pixel: 5.4/--/11.5
Bern et al. (2020) a. 2-hidden-layer FNN (20 × 2) Silicone cylindrical Tendon (20 cm) a. 3 & 2 u(k)=fs1(p*(k)) a. 308 (9:1) a. Real robot Real robot: 6.2∼9.2/−/−
b: 3-hidden-layer FNN (25 × 3) b. 3 × 2 & 2 b. 15414 (8:1:1) b. Simulation 2D path following
a

Only the actuation dimensions that are related to the end-effector control are considered; “×2” or “×3” means the number of segments in the manipulator.

(F)NN, (feed-forward) neural network; GMR, Gaussian mixture regression; FEA, finite element analysis; DSL, distal supervised learning; KNNR, K-nearest neighbors regression; STD, standard deviation; (C)BHA, (compact) bionic handling assistant; LWPR, locally weighted projection regression; MLP, multilayer perceptron; ELM, extreme learning machine; LGPR, locally Gaussian process regression; RBF, radial basis function.