TABLE 1.
Sampling of inverse statics/kinematics learning-based control for continuum robots. Intended to be exemplary, not comprehensive.
Literature | Classification criteria | |||||||
---|---|---|---|---|---|---|---|---|
Model | Robot structure | Actuation (length) | Act. & TaskDoFs | Mapping to be learned | Samples | Task | Accuracy/mm (mean/STD/max) | |
Giorelli et al. | 1-hidden-layer FNN | |||||||
a. Giorelli et al. (2013a) | a. 21 neurons | Silicone conical robot | Tendon (310 mm/280 mm) | a. 2 & 2 | 500 (8:2) | Simulation: path generation. Discrete points | 2.27/1.70/9.30 | |
b. Giorelli et al. (2013b) | b. 34 neurons | b. 3 & 3 | 500 (8:2) | 4.2/2.8/12.3 | ||||
c. Giorelli et al. (2015a) | c. 6 neurons | c. 2 & 2 | 405 (8:2) | 22.88/11.80/59.79 | ||||
d. Giorelli et al. (2015b) | d. 28 neurons | d. 3 & 3 | 395 (8:2) | 7.35/--/22.22 | ||||
Melingui et al. (2014a) | Forward: FNN. Inverse: 1-hidden-layer NN in DSL | CBHA | Pneumatic (NA) | a 3 × 2 & 3 | Forward: | 4,096 (7:1.5:1.5) | Comparison: robot and model postures (under the same actuation) | Inverse: 1.1 e−4 (MLP) ∼ 4.1 e−4 (RBF)/--/-- |
Inverse: | ||||||||
Thuruthel et al. | 1-hidden-layer NN. | |||||||
a. Thuruthel et al. (2016a) | a. 20 neurons | a. BHA | a. Pneumatic (0.9 m) | a. 3 × 3 & 3 | a. 10,000 (7:3) | Simulation: continuous path following in terms of position (P)/orientation (O) | p: <1/1.504/-- | |
b. Thuruthel et al. (2016b) | b. 40 neurons | b. Silicone conical | b. Tendon (31 cm) | b. 12 & 6 | b. 14,000 (8:2) | p: 8.5/2.8/-- O/°: 3.21/1.71/-- | ||
Chen and Lau (2016), Xu et al. (2017) | ELM, GMR, or KNNR | Silicone serpentine | Tendon (NA) | a 2 & 2 | 20,000 | Simulation & real robot: path following | 2.1275∼ 2.5556/−/− | |
Lee et al. (2017a) | LWPR online update | Silicone cylindrical | Pneumatic (93 mm) | 3 & 2 | >1,000 for initialization [FEA Lee et al. (2017b)] | Angular path following (2D) + external forces | Free space/°: 0.90/0.65/2.80 | |
Disturbed/°: 2.49/1.74/11.03 | ||||||||
Ho et al. (2018) | LWPR online update | Silicone cylindrical | Pneumatic (155 mm) | 3 × 2 & 3 | — | Path following (3D) + tip load (72% robot mass) | With load: 0.98/0.26/-- | |
Fang et al. (2019) | LGPR online update | Silicone cylindrical | Pneumatic (67 mm) | 3 & 2 | 300 | Path following (2D visual servo) + tip load | Free space/pixel: 5.4/--/11.5 | |
Bern et al. (2020) | a. 2-hidden-layer FNN (20 × 2) | Silicone cylindrical | Tendon (20 cm) | a. 3 & 2 | a. 308 (9:1) | a. Real robot | Real robot: 6.2∼9.2/−/− | |
b: 3-hidden-layer FNN (25 × 3) | b. 3 × 2 & 2 | b. 15414 (8:1:1) | b. Simulation 2D path following | — |
Only the actuation dimensions that are related to the end-effector control are considered; “×2” or “×3” means the number of segments in the manipulator.
(F)NN, (feed-forward) neural network; GMR, Gaussian mixture regression; FEA, finite element analysis; DSL, distal supervised learning; KNNR, K-nearest neighbors regression; STD, standard deviation; (C)BHA, (compact) bionic handling assistant; LWPR, locally weighted projection regression; MLP, multilayer perceptron; ELM, extreme learning machine; LGPR, locally Gaussian process regression; RBF, radial basis function.