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Abstract

Carbapenem-resistant Enterobacterales (CRE) are a growing threat to human health worldwide. 

CRE often carry multiple resistance genes that limit treatment options and require longer durations 

of therapy, are more costly to treat, and necessitate therapies with increased toxicities when 

compared to carbapenem-susceptible strains. Here, we provide an overview of the mechanisms 

of resistance in CRE, the epidemiology of CRE infections worldwide, and available treatment 

options for CRE. We review recentlyapproved agents for the treatment of CRE, including 

ceftazidime-avibactam, meropenem-vaborbactam, imipenem-relebactam, cefiderocol, and novel 

aminoglycosides and tetracyclines. We also discuss recent advances in phage therapy and 

antibiotics that are currently in development targeted to CRE. The potential for the development of 

resistance to these therapies remains high, and enhanced antimicrobial stewardship is imperative 

both to reduce the spread of CRE worldwide and to ensure continued access to efficacious 

treatment options.

Keywords

Carbapenem-resistant; Enterobacterales; CRE; Carbapenemase; Antimicrobial resistance

Introduction

The rise of antimicrobial resistant (AMR) organisms worldwide is considered one of the 

biggest threats to global health by the World Health Organization (WHO)1. Carbapenem 

resistant Enterobacterales (CRE) are defined by the United States Centers for Disease 

Control and Prevention (CDC) as Enterobacterales (formerly Enterobacteriaceae) with 

in vitro resistance to at least one carbapenem.2 Carbapenems are a potent class of 

broad-spectrum antibiotics that inhibit penicillin binding proteins, thereby preventing cell 

wall synthesis3 and were once considered the “last resort” antibiotics in many hospitals. 

Resistance to carbapenems significantly limits the antibiotic armamentarium available to 

treat challenging infections. CRE have spread substantially in recent years 4–6 and are now 

endemic in certain regions of North America, Europe and the Mediterranean, and South 

Asia7.
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CRE are typically healthcare-associated infections, although community spread is becoming 

more common,8–11 with intestinal colonization and environmental sources as reservoirs 

of infection12. CRE are of particular concern due to the increased mortality13,14, length 

of hospital stay, and increased cost when compared to drug-susceptible infections15. An 

economic prediction model from the United States estimated a societal cost of between 

$59,692 and $86,940 for each CRE infection16. Additionally, CRE infections are often 

found in the most vulnerable patients--the elderly, those with underlying comorbidities, and 

those with indwelling catheters or permanent hardware in place4,17–19.

In October 2020, The Infectious Diseases Society of America (IDSA) released guidance 

for the treatment of multidrug resistant Gram-negative bacterial infections, including CRE, 

and offers clinicians preferred and alternative treatment strategies for a variety of clinical 

scenarios20. The IDSA guidance is divided into infections inside and outside the urinary 

tract and assumes the organism and susceptibility profile are known. This guidance provides 

a current overview of treatment options for these challenging infections, albeit with a focus 

on variants that predominate in North America.

This review will focus on treatment strategies for infections with carbapenem-resistant 

Enterobacterales, including “traditional” antibiotics that have retained activity against CRE, 

newly approved antibiotics developed specifically for CRE, phage therapy, and antibiotics 

that are in development to target multi-drug resistant infections.

Mechanisms of carbapenem resistance in CRE

Resistance to carbapenems can be mediated via alterations to the penicillin binding 

protein of the bacterial cell wall, an increase in efflux pumps, or a decreases in 

membrane permeability21,22 as well as through the production of carbapenemase enzymes. 

Carbapenemases are a diverse family of β-lactamases that have the ability to hydrolyze 

and inactivate a variety of antibiotics including penicillins, cephalosporins, monobactams, 

and carbapenems23. These enzymes function by binding to the drug, breaking the amide 

bond of a four-membered azetidinone ring, and preventing it from binding to the penicillin 

binding protein of the bacterial cell wall24. Carbapenemases are found in approximately 

85% of CRE worldwide, with considerable variation between regions, ranging from 

76% in Latin America to 90% in the Middle East and Africa found in a recent global 

survey25. Other studies have shown lower rates, with the recent CRACKLE-2 study finding 

carbapenemases in 59% of CRE from the United States26. Using the Ambler classification 

system, carbapenemases are found within class A, B, and D β-lactamases, with substantial 

geographic heterogeneity in classes between global regions and with various modes of 

transmission7,27 (Table 1).

Ambler class A carbapenemases use a serine residue to hydrolyze beta-lactams28 and 

include the blaKPC, blaNMC/blaIMI, and blaSME
29 genes, with blaKPC being the most 

common carbapenemase of the class30. It was first discovered in 1996 in a Klebsiella 
pneumoniae isolate from North Carolina, USA31, is plasmid-mediated, and is now 

endemic in much of the western hemisphere with the highest rates found in Eastern 

North America25,32,33 and outbreaks reported in South America, including Columbia and 

Ecuador34,35. Spread from the United States has led to outbreaks outside the hemisphere as 
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well. An outbreak in Israel was traced to a strain from New York36 and KPC enzymes have 

also been found in a variety of European countries including large outbreaks in Greece37,38, 

Portugal39, and Poland40 among other countries, where they can significantly impact 

regional resistance patterns24,25. While found primarily in Klebsiella pneumoniae, KPC 

enzymes have also been found in a variety of other Enterobacterales including Citrobacter 
freundii, Enterobacter cloacae, Escherichia coli and Serratia marcescens among others, as 

well as in Pseudomonas species29.

Class B metallo-β-lactamases (MBLs) are zinc-dependent41 and include the blaVIM, blaIMP, 

and blaNDM genes41–43, all found on mobile genetic elements and capable of horizontal 

spread.44 MBLs are able to hydrolyze a wide range of beta-lactams but cannot hydrolyze 

monobactams such as aztreonam.45 The enzyme IMP was the first enzyme discovered in 

this class, isolated from an imipenem-resistant Pseudomonas aeruginosa isolate in Japan in 

199146 and it now accounts for as much as 15% of the CRE found in Japan, Australia and 

parts of Southeast Asia25,47,48. VIM, for Verona Integron-encoded Metallo-beta-lactamase, 

was first isolated in Italy in 199749 and is responsible for approximately 15% of the CRE 

isolated from Europe25, with the highest rates found in Greece, Italy, Spain, and Hungary50. 

More recently, the New Delhi Metallo-β-lactamases (NDM), were discovered in 2007 from 

a Klebsiella pneumoniae isolate of a Swedish patient who had previously been hospitalized 

in India with a urinary tract infection.51 The highest burden of NDM remains in South Asia 

as well as the Middle East, where it accounts for up to a third of detected carbapenemases25. 

NDM is of particular concern given its rapid spread and limited treatment options.45

The Class D carbapenemases include members of the OXA-encoding genes and are 

largely found in Acinetobacter, however the plasmid-encoded blaOXA-48-like genes are 

found in Enterobacterales52–5455 and have been implicated in multiple nosocomial CRE 

outbreaks56–59. OXA-48-like enzymes encompass OXA-48 and related variants, including 

OXA-181, OXA-162, and OXA-232 among others, with distinct geographic distributions 

and co-occurring resistance genes52,54. OXA-48-like enzymes are most commonly found 

in the Middle East and Europe, where over 27% of carbapenem-resistant isolates in each 

region were recently found to harbor OXA-4825, with endemic levels reported in Turkey, 

Malta, much of North Africa and the Middle East54. OXA-48 remains uncommon in North 

America, with only 52 cases reported in the United States between 2010–201560 and only 

found in 1% of carbapenemase-producing CRE in the CRACKLE-2 study26.

Previously approved antibiotics with CRE activity

Therapeutics for CRE are summarized in Table 2. There are several “traditional” antibiotics 

that have retained activity against some strains of CRE and are being deployed in new ways 

or in combination with other drugs for the treatment of severe CRE infections.

Aztreonam

The monobactam antibiotic Aztreonam is effective against bacteria producing Class B 

and D carbapenemases in isolation, however these bacteria often carry concomitant ESBL 

genes that hydrolyze aztreonam rendering it ineffective and thus it is often of limited 

clinical utility as monotherapy61,62. The combination of aztreonam with the novel β-lactam-
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β-lactamase inhibitor ceftazidime-avibactam is a promising treatment option for MBLs and 

is discussed in detail below. Notably, aztreonam does not have activity against bacteria 

producing Class A carbapenemases, including bacteria producing the highly prevalent KPC 

carbapenemases61.

Polymyxins

The polymyxin antibiotics colistin and polymyxin B have long been used for resistant 

Gram-negative bacteria, including CRE63, however there is emerging resistance developing 

to these drugs. This is notable, as several studies have shown an association between 

polymyxin resistance and an increase in mortality64,65, although these studies occurred prior 

to the development of newer CRE-active agents which are now available. Resistance to 

polymyxins can occur via chromosomal point mutations leading to changes in the bacterial 

lipopolysaccharide membrane or an increase in efflux pumps, or it can be plasmid-mediated, 

via several mcr genes that change lipid A present in the lipopolysaccharide membrane and 

prevent the target drug from binding. 66. There is also evidence that heteroresistance arising 

from minor resistant subpopulations in a culture may make colistin resistance difficult to 

detect in vitro and lead to subsequent treatment failure67,68. Additionally, polymyxins have 

significant nephrotoxicity, with several studies having shown their inferiority compared to 

newer drugs against isolates carrying Class A carbapenemases69–71, and as such they are 

not currently recommended for the treatment of CRE by the IDSA20. Despite this, they are 

often the only available antibiotic for CRE infections in certain regions despite increasing 

resistance levels72,73, and thus are considered to be a “highest priority” critically important 

antimicrobial by the WHO74,75.

Fosfomycin

Fosfomycin, an antibiotic first discovered in 1969, inhibits cell wall synthesis in a variety of 

Gram-positive and Gram-negative bacteria76, including Enterobacterales, and has retained 

activity against some CRE isolates77. Resistance to fosfomycin is mediated primarily 

through the fosA genes which encode fosfomycin hydrolases and are found in many 

Enterobacterales with the exception of E. coli78,79. Traditionally, fosfomycin has primarily 

been used as an oral formulation for lower urinary tract infections76,8080, however there is 

growing interest in intravenous use for MDR organisms, including CRE81–83. Fosfomycin 

does not have sufficient renal parenchymal penetration, and thus should not be used for 

upper urinary tract infections84,85.

Tigecycline

The tetracycline antibiotic tigecycline has a broad spectrum of activity against gram positive 

and gram negative infections and global surveillance data from the TEST study shows 

that the majority of Enterobacterales isolates collected worldwide between 2014–2016 

remain susceptible (≤1.3% resistance in all regions)86. Tigecycline has been used for CRE 

infections with success, however several recent studies have shown monotherapy to be 

of limited benefit87 and combination therapy is likely more efficacious88,89. Resistance 

to tigecycline in Enterobacterales can arise from upregulation of the AcrAB efflux 

pump90,91 or via the plasmid-mediated tet(X4) gene, which encodes a flavin-dependent 

monooxygenase that modifies tigecycline92,93. Using “traditional” CRE-active antibiotics in 
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combination with antibiotics with other mechanisms of action or with “repurposed” drugs 

from other classes has also shown some promise for the treatment of CRE infections94. For 

example, there are in vitro studies showing synergistic effects of combining colistin with 

other antibiotics including clarithromycin or rifamycin95 or the HIV drug azidothymidine 

(AZT)96 for the treatment of CRE that are colistin resistant. Other combinations that 

have shown in vitro activity against CRE include AZT and tigecycline97, pentamidine in 

combination with rifampicin, tobramycin, tigecycline or amikacin98 and polymyxin B with 

citalopram, sertraline, or spironolactone99. Animal studies and clinical trials are needed to 

determine in vivo efficacy of these combination treatments in true clinical infections and 

thus the utility of these combination regimens remain theoretical at this time.

β-lactam-β-lactamase inhibitor combinations

Ceftazidime-avibactam—In the last several years, β-lactam-β-lactamase inhibitor 

combinations have been developed and approved specifically to target multidrug resistant 

organisms, including CRE. The first of these, avibactam, was developed in 2011 and is 

a synthetic diazabicyclooctane (DBO) non-β-lactam that covalently and reversibly binds 

to serine β-lactamases and has activity against class A (KPC)100,101 and class D (OXA-48­

like)102,103100,101 carbapenemases, but not MBLs (NDM, VIM, IMP). When compared to 

polymyxin antibiotics, multiple observational studies have shown ceftazidime/avibactam to 

be superior for the treatment of CRE infections possessing Class A carbapenemases with 

fewer side effects and toxicities71,104–106. Ceftazidime-avibactam was approved by the US 

Food and Drug Administration (FDA) and the European Medicines Agency (EMA) in 

2015 for complicated urinary tract infections (cUTI) and for complicated intra-abdominal 

infections (cIAI) in combination with metronidazole107. Approval was granted following 

the RECLAIM108 trials, which showed non-inferiority for ceftazidime/avibactam when 

compared to meropenem for cIAI and the RECAPTURE trial, which showed non-inferiority 

compared to doripenem for cUTI109. Approval has since been expanded to include hospital­

acquired and ventilator-associated pneumonia following the REPROVE trial, a phase-III 

trial conducted across 23 countries which showed non-inferiority of ceftazidime-avibactam 

compared to meropenem for nosocomial pneumonia110. It is important to note all three of 

these studies leading to approval for ceftazidime-avibactam used clinical inclusion criteria 

and did not select specifically for CRE. Microbiological analysis showed that 13.5% of 

patients in the RECLAIM trials, 19.6% of patients in the RECAPTURE trial, and 28% in the 

REPROVE trial had a ceftazidime-resistant organism at baseline. Only the RECLAIM trials 

reported the rate of MBL infection, at approximately 3%108.

In isolates from hospitalized patients collected worldwide during the INFORM global 

surveillance survey for AMR resistance, in vitro susceptibility to ceftazidime-avibactam has 

remained high for CRE; among 816 non-MBL CRE isolates collected between 2012–2014, 

only 19 (2.3%) were resistant and 97.7% were susceptible to ceftazidime-avibactam111. 

Subsequent testing of isolates collected between 2015–2017 showed a similarly high rate of 

99.8% susceptibility for ceftazidime-avibactam112.

Although overall high rates of susceptibility to ceftazidime-avibactam remain, a number 

of mutations have been seen clinically that confer resistance, primarily in carriers of 
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KPC-2 and KPC-3 enzymes. The sequence type 258 Klebsiella pneumoniae with KPC-3 

has been shown to be resistant to ceftazidime-avibactam due to transposition of KPC-3 

onto a second plasmid with subsequent alterations in the porin channels OmpK35 and 

OmpK36 and upregulation of efflux pumps113–115. Concerningly, mutations in blaKPC-3 

conferring resistance to avibactam have been reported in patients while on ceftazidime­

avibactam therapy via single amino acid substitutions at D179Y/T243M, D179Y, and 

V240G leading to alterations in the Ω-loop in KPC-3, however these mutations restore 

meropenem susceptibility in some isolates116. More recently, a KPC-3 variant named 

KPC-50 was recovered from a Klebsiella pneumoniae isolate in a Swedish patient and 

found to contain a three-amino-acid insertion that conferred increased affinity to ceftazidime 

and decreased activity of avibactam leading to resistance117. KPC-2 variants arising from 

single amino acid substitutions at the Ω-loop have also been found to confer resistance 

to ceftazidime-avibactam, likely through increased affinity of the enzyme for ceftazidime, 

thereby preventing the binding of avibactam118. While most of the above resistance 

mechanisms have been documented in Klebsiella pneumoniae isolates, point mutations 

leading to insertion of TIPY in penicillin binding protein 3 of an E. coli isolate containing 

KPC-3 have been documented, which prevents the binding of ceftazidime and cannot be 

overcome by avibactam119,120.

Although ceftazidime-avibactam alone does not have activity against MBLs, there is 

significant in vitro synergy between ceftazidime-avibactam and aztreonam that confers 

activity against these isolates121. This is of particular importance, given that although 

aztreonam is active against class B carbapenemases, it is often hydrolyzed by other β­

lactamases that co-occur with MBLs122. As a result, only 29.2% of MBLs from a recent 

global survey were found to retain susceptibility to aztreonam monotherapy123. When 

tested against the combination of aztreonam-avibactam, all MBL isolates in that study 

were inhibited by the combination123. A clinical case series evaluating this combination 

treatment in 10 patients with infections caused by NDM-producing MBLs during an 

outbreak found 6 of 10 patients had clinical success at 30 days, suggesting the combination 

of ceftazidime-avibactam plus aztreonam may be a useful clinical option for extensively 

drug resistant Enterobacterales infections that contain both class B carbapenemases as 

well as ESBL enzymes124. Additional reports of combined ceftazidime-avibactam plus 

aztreonam treatment have replicated these early findings125, including in pan-resistant 

isolates126. Given that the combination of aztreonam plus avibactam alone, without the 

addition of ceftazidime, appears efficacious, this two-drug combination is currently being 

tested in a Phase III clinical trial for the treatment of complicated infections caused by 

MBL-containing gram negative bacteria127. An earlier Phase II pharmacokinetic trial (the 

REJUVENATE study) showed the combination of aztreonam-avibactam to have similar 

safety and tolerability to aztreonam monotherapy128. As a result of these findings, the 

IDSA currently recommends ceftazidime-avibactam alone as the preferred treatment for 

OXA-48-producing CRE outside the urinary tract and in combination with aztreonam for 

NDM-producing CRE infections20.

Meropenem-vaborbactam—Meropenem-vaborbactam was approved by the FDA in 

2017 for the treatment of complicated urinary tract infections (cUTI)129 and by the EMA 
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in 2018 with an expanded authorization that includes cUTI, cIAI, and hospital acquired or 

ventilator-associated pneumonia (HAP/VAP)130. Meropenem-vaborbactam was designed to 

target multidrug-resistant organisms, and specifically the class A KPC carbapenemases131. 

The drug combines the carbapenem antibiotic meropenem with a novel β-lactamase 

inhibitor containing a cyclic boronic acid pharmacophore that restores the activity of 

meropenem against serine carbapenemases132. While it has broad activity against class 

A carbapenemases (as well as class C β-lactamases conferring cephalosporin resistance), 

it notably does not have activity against the class B metallo β-lactamases (NDM, VIM, 

IMP) nor class D (OXA-48-like) carbapenemases133. A survey of meropenem-vaborbactam 

susceptibility against globally-collected CRE showed the lowest MIC values for isolates 

from the Americas, consistent with the predominance of KPC-producers in this region134. 

Given this, meropenem-vaborbactam may be of more limited utility in regions where MBLs 

and OXA-48-like enzymes predominate, including parts of Asia, the Middle East, and North 

Africa.

Approval for meropenem-vaborbactam was obtained following the TANGO I trial 

which showed non-inferiority of meropenem-vaborbactam for cUTI when compared to 

piperacillin-tazobactam135. TANGO I did not select for patients with CRE organisms and 

in fact, nearly all baseline uropathogens were susceptible to meropenem. This was later 

followed by the TANGO II trial to test meropenem-vaborbactam in complicated CRE 

infections including bloodstream infections (BSI), pyelonephritis, VAP, and cIAI 70. While 

a descriptive study, TANGO II evaluated 47 patients across 8 countries and found an 

increase in clinical and microbiologic cure and reduction in death with fewer adverse 

events compared to best alternative therapy. Vaborbactam enters cells via the membrane 

porin channels OmpK35 and OmpK36133 and resistance to vaborbactam can develop via 

downregulation or alteration of these porin channels136–138136,137

Imipenem-relebactam—The most recent drug combination in this class is imipenem­

relebactam, a non-β-lactam bicyclic DBO β-lactamase inhibitor that is structurally similar 

to avibactam, but with the addition of a piperidine ring139. It is believed to reversibly 

acylate β-lactamases140. Imipenem-relebactam is active against class A carbapenemases but 

not the metallo-β-lactamases and has little to no activity against the class D OXA-48-like 

enzymes141. Information from the SMART surveillance study on Enterobacterales isolates 

collected in Europe showed the addition of relebactam restored imipenem susceptibility in 

67% of isolates carrying KPC enzymes, but that nearly all isolates with MBLs or OXA-48­

like enzymes remained nonsusceptible, primarily occurring in isolates from countries with 

endemic levels of these enzymes142. This highlights the importance of determining the 

underlying mechanism of carbapenem resistance and carbapenemase epidemiology when 

selecting treatment options.

Imipenem-relebactam was approved for use by the US FDA in 2019143 and is available 

with the carbapenem imipenem/cilastatin for clinical use144. The RESTORE-IMI-1 trial 

evaluating the safety and efficacy of imipenem-relebactam in a variety of severe imipenem­

resistant gram negative infections found higher favorable clinical response rate (71.4% 

vs 40%), lower 28-day mortality rates (9.5% vs 30%), and lower treatment-associated 

nephrotoxicity (10.3% vs 56.3%) with imipenem-relebactam compared to imipenem plus 
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colistin69. Notably, most of the isolates in this study were Pseudomonas spp. (77.4%) 

with the remainder Enterobacterales. The RESTORE-IMI-II trial was a non-inferiority 

study of imipenem-relebactam compared to piperacillin-tazobactam for HAP/VAP infection 

and found imipenem-relebactam was non-inferior for both 28-day mortality and favorable 

clinical response145. When looking specifically at the microbiologic modified intent-to-treat 

population, mortality rates for intubated patients with HAP/VAP were 12.2% lower for those 

in the imipenem-relebactam group compared to the piperacillin-tazobactam group. Given 

the potential for resistance with all of the β-lactam-β-lactamase inhibitor combinations, 

enhanced antibiotic stewardship will be crucial to ensuring ongoing efficacy of these 

agents146.

Novel aminoglycosides

Plazomicin—Plazomicin is a novel semisynthetic aminoglycoside that was derived from 

the antibiotic sisomicin, a naturally occurring aminoglycoside discovered in 1970, and 

works by binding to the 30s subunit of bacterial ribosomes, inhibiting protein synthesis147. 

Plazomicin has a broad spectrum of activity against Enterobacterales, including those 

with ESBL enzymes and multiple classes of CRE, including class A (KPC), class B 

(VIM, IMP), and class D (OXA-48)148–150. It has shown variable activity against the 

metallo-beta lactamase NDM-1, largely because NDM-1 often co-produces 16s ribosomal 

methyltransferases, which modify the 30s ribosomal subunit and prevent aminoglycoside 

binding148. Given this, it may be of limited clinical utility in regions where NDM-1 are 

endemic.

Plazomicin was approved by the US FDA in 2018 for cUTI151 following a non-inferiority 

trial comparing plazomicin to meropenem for cUTI including pyelonephritis caused by 

Enterobacterales152. This was later followed by the CARE trial, comparing plazomicin 

to colistin in combination with adjunctive meropenem or tigecycline in patients with 

CRE-causing BSI or VAP and found a 26% reduction in death or clinically-significant 

disease-related complications at 28 days in those who received plazomicin, and with 

fewer adverse events153. The trial was small, however, and the drug was therefore not 

granted expanded approval for use in BSI154. Plazomicin has not been approved by the 

European Medicines Agency and the application for approval has since been withdrawn 

due to financial reasons155, following the parent manufacturer of plazomicin declaring 

bankruptcy156.

Resistance to aminoglycosides most often occurs via aminoglycoside modifying enzymes 

(AMEs) that reduce the binding affinity for the ribosomal target157. Plazomicin has several 

structural modifications that prevent the activity of most AMEs, thereby reducing the risk 

of AME-mediated resistance158. As noted above, plazomicin cannot overcome modifications 

caused by 16s ribosomal methyltransferases and bacteria that possess these enzymes are 

resistant to plazomicin, a concerning finding given that these genes can be transferred 

horizontally via plasmids159.
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Tetracyclines

Eravacycline—Eravacycline is a fully-synthetic tetracycline developed in 2011160 that is 

structurally similar to tigecycline and inhibits bacterial protein synthesis by binding to the 

ribosomal 30s subunit resulting in broad gram positive and gram negative activity against 

both aerobic and anaerobic organisms, with the exception of Pseudomonas161. Eravacycline 

has activity against CRE including Class A (KPC), class B (VIM, NDM-1) and class D 

(OXA-48) enzymes 162,163 with consistently lower MICs than for tigecycline162–164. While 

it has reasonably high oral bioavailability, only IV formulations are available currently.

A pooled analysis of two phase III trials evaluating eravacycline for cIAI showed non­

inferiority compared to ertapenem and meropenem, although with higher levels of nausea, 

vomiting, and diarrhea compared to the carbapenems165. The results of these studies led to 

approval for the drug in 2018 by both the EMA and the US FDA for use in cIAI166,167. 

While initially promising as a potential option for urinary tract infections given in vitro 

activity against biofilms of uropathogenic E. coli168, a phase 3 trial comparing eravacycline 

to levofloxacin for cUTI failed to show noninferiority and thus it was not approved for this 

indication166,169.

Resistance to tetracycline antibiotics most often occurs via active drug efflux pumps 

encoded via tet genes, and ribosomal protection proteins170. Eravacycline evades these 

resistance mechanisms via a modified D ring side chain that maintains the drug’s 

efficacy160,171. Notably, the enzyme Tet(X) is a tetracycline destructase that enzymatically 

inactivates tetracyclines and is active against eravacycline172. This enzyme can be located on 

mobile genetic elements and has been shown to confer resistance to eravacycline. It has been 

found in various organisms, including E. coli, and can be found as asymptomatic carriage in 

human gut flora92,173, indicating the potential for spread of eravacycline resistance.

Omadacycline—Omadacycline is a semisynthetic tetracycline that most closely resembles 

tigecycline but with an aminomethyl group at the C9 position174. Similar to eravacycline, 

this substitution results in broad gram positive and gram negative activity and resistance to 

the activity of the tet efflux pumps and ribosomal protection proteins174,175. Two phase-3 

trials showed IV omadacycline to be noninferior to IV linezolid and IV moxifloxacin 

for acute bacterial skin and skin structure infection (ABSSSI) and community acquired 

bacterial pneumonia (CABP), respectively176,177. Subsequently, the OASIS-2 trial showed 

noninferiority of oral omadacycline to oral linezolid for ABSSTI178. Approval was obtained 

from the FDA in 2018 for both oral and IV formulations for ABSSSI and CABP179. 

Approval was sought from the EMA for the same, however the agency requested additional 

studies for an indication for CABP and the manufacturer of omadacycline subsequently 

withdrew the application for financial reasons180.

As with eravacycline, omadacycline is deactivated by the Tet(X) destructase enzyme172. A 

recent study of NDM-producing Enterobacterales from the United States found that 59.6% 

were susceptible to omadacycline, indicating this may be a possible oral treatment option for 

selected patients infected with CRE181.
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Cephalosporins

Cefiderocol—Cefiderocol is a novel siderophore cephalosporin that acts through a “trojan 

horse” mechanism that uses the bacterial iron transport system to facilitate antibiotic 

uptake and evade bacterial defense systems182. Once inside the bacterium, cefiderocol has 

high affinity for several penicillin binding proteins, inhibiting peptidoglycan synthesis and 

ultimately causing cell death183. Modifications in the C3 and C7 side chains of cefiderocol 

render it highly stable against a variety of β-lactamases, including carbapenemases184,185. 

Cefiderocol has a similar safety profile to other cephalosporins, with the most common 

adverse reactions being gastrointestinal disturbance, rash, and fever186.

In vitro studies show activity of cefiderocol against a variety of CRE, including those 

harboring Class A (KPC), Class B (NDM, VIM, IMP), and Class D (OXA-48-like) 

enzymes184,187,188. Cefiderocol was approved by the FDA in 2019189 for cUTI and 

HAP/VAP following a phase 2 non-inferiority trial comparing cefiderocol to imipenem­

cilastatin for treatment of cUTI caused by gram negative uropathogens190 and a phase 3 

non-inferiority trial comparing cefiderocol to meropenem for gram negative nosocomial 

pneumonia191. The EMA authorization is broader, and includes gram negative aerobic 

infections in patients with limited treatment options192. The CREDIBLE-CR study 

was subsequently undertaken to evaluate cefiderocol in serious carbapenem-resistant 

infections193. It found that cefiderocol had comparable clinical and microbiologic 

effectiveness when compared to the best alternative therapy, however there was an increase 

in all-cause mortality in the cefiderocol group in those treated for BSI, nosocomial 

pneumonia, and sepsis193. This increase was not seen for cUTI and appeared to be 

driven largely by Acinetobacter infections. The clinical efficacy of cefiderocol against CRE 

remains to be determined in practice and the FDA approval now includes a warning for 

increased all-cause mortality as a result of the trial189.

There is some evidence of emerging resistance to cefiderocol, however it remains 

rare194–196. In vitro studies suggest that cefiderocol resistance among Enterobacterales is 

likely due to the co-production of both serine and metallo-beta lactamases, and may be able 

to be overcome with the addition of avibactam197.

Phage Therapy—As bacteria become increasingly resistant to chemical antibiotics 

through mutations and horizontal gene transfer, an area that is gaining increasing attention 

and promise as a therapeutic option for multidrug resistant organisms is phage therapy. 

Phage therapy is derived from naturally occurring bacteriophages that use lytic viruses 

to infect and ultimately lyse bacteria198. Phages attach to receptors on the surface of 

target bacteria and deliver viral genomic material into the bacterial cell. The bacteria then 

use that genetic material to produce viral copies and package new viral particles which 

then escape the bacterium via cell lysis. This kills the infected bacterial cell and releases 

new phage particles to infect other susceptible bacteria, making the process potentially self­

amplifying198, although in clinical practice repeated ongoing dosing is likely required199.

The use of bacteriophages to treat human infections was first pioneered at the turn of 

the 20th century and used successfully in several human infections including cholera, 

plague, and conjunctivitis, however their use was limited and phages soon fell out of 
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favor with the advent of chemical antibiotics in the mid-twentieth century200. Phages have 

several advantages over antibiotics, including specificity for the infecting organism, self­

amplification, self-destruction when the bacterial infection is cleared, ability to penetrate 

biofilms, and preservation of the commensal human microbiota201. However, phages 

may induce inflammatory immune response202 and antiviral immunity203 in humans. The 

requirement for strain-specific phages may also limit the timely administration and scaling 

of phage therapy. As antibiotic resistance has increased at an alarming rate, there has been a 

renewed interest in phage therapy for treatment of multidrug resistant infections.

While use of phage therapy continued in the twentieth century in Georgia, Poland, and 

Russia200,204, the first randomized controlled phase I/II trial that met guidelines of good 

manufacturing practice for phage therapy was the PhagoBurn trial205. It was conducted 

between 2015 and 2017 and enrolled 27 individuals with burn wounds infected with 

Pseudomonas aeruginosa to receive topical therapy with a lytic phage cocktail or standard 

dressings205. The study showed a slower decrease in bacterial burden with phage therapy 

compared to standard of care, but the study authors note that a low concentration of phage 

was used. Since then, several case reports have shown efficacy of phages for treating 

multidrug resistant infections. A case series of 10 patients with highly resistant infections 

from a single center in the United States showed success with phage therapy in 7 of 10 

cases, failure in 2, and uninterpretable results in 1 with few adverse effects206. These 

infections were primarily MDR Acinetobacter, Pseudomonas, and S. aureus, with one case 

of a persistent ESBL E. coli infection.

Although clinical trials of phage therapy specifically for CRE treatment are lacking, there 

is promising data from in vitro studies. Phages have recently been discovered that show in 
vitro activity against MDR E. coli isolates207, carbapenem-resistant Citrobacter freundii208, 

and there have been several phages discovered with activity against various strains of 

carbapenem-resistant Klebsiella isolates209–212. Additional studies in mouse models show 

success using phages to treat CRE Klebsiella infections213. These provide promising options 

for future studies targeting infections caused by CRE, where few antibiotic options remain 

or where toxicities preclude their use198.

As with antibiotics, phages are not immune to the development of bacterial resistance. A 

variety of resistance mechanisms have been described, including blocking phage attachment 

and adsorption, cutting phage DNA via the CRISPR system, and mechanisms to block phage 

transcription, translation, and cell lysis214. Combining phages with traditional antibiotics has 

proven efficacious in some cases206,215 as a way to overcome these challenges.

Future directions: Antibiotics in the pipeline—The World Health Organization has 

identified CRE as a critical priority pathogen for prioritizing new drug development216 

and there are several drugs currently undergoing clinical trials that are promising 

candidates for increasing the armamentarium against CRE. Zidebactam (WCK 5222) is 

a DBO that functions as both a direct antibacterial and a beta lactamase inhibitor that, 

when combined with cefepime, has activity against KPC, OXA-48, and several class B 

carbapenemases217,218. Isolates of Enterobacterales, Acinetobacter spp., and Pseudomonas 
spp. collected worldwide showed high levels of susceptibility to the zidebactam/cefepime 
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combination219, making this a promising drug for clinical trials. Phase 1 pharmacokinetic 

studies have shown high plasma concentrations as well as good pulmonary penetration of 

the drug220 and it is well-tolerated in individuals with renal impairment, although it requires 

dose-adjustment221.

Taniborbactam (VNRX-5133) is a boronic-acid-containing pan-spectrum β-lactamase 

inhibitor that restores the activity of beta-lactam antibiotics against ESBL and CRE and 

is considered the first pan-spectrum β-lactamase inhibitor in clinical development222. The 

boronic acids and esters bind to the active-site serine residue of enzymes, including β­

lactamases, thereby inhibiting their function, and bicyclic boronates are able to inactivate 

serine- and metallo-beta lactamases223. When combined with the β-lactam drug cefepime, 

taniborbactam restored in vitro activity against all Enterobacterales tested, including 

CRE with class A, B, and D enzymes, as well as ESBL-Enterobacterales containing 

class C enzymes224. Studies in animal models showed high in vitro activity of cefepime/

taniborbactam against Enterobacterales225 and there is currently a phase 3 trial underway 

testing cefepime/taniborbactam for cUTI (clinical trials.gov NCT03840148).

LYS228 is a monobactam antibiotic, similar to aztreonam, that retains activity against 

metallo-β-lactamases but with structural changes that also provide activity against the serine 

β-lactamases226 by targeting penicillin binding protein 3. In vitro studies have shown potent 

activity against Class A (KPC) and Class B (NDM) carbapenemases227,228. Pharmacokinetic 

studies showed good safety and tolerability229. Two phase 2 trials of LYS228 were 

underway when Novartis, the parent company that developed LYS228, licensed the drug 

to Boston Pharmaceuticals for further development230. The proposed clinical trials were 

halted and as of publication there are no additional trials for LYS228/BOS228 yet registered 

with clinicaltrials.gov.

Nacubactam is a bridged diazabicyclooctane β-lactamase inhibitor that inactivates class 

A and class C β-lactamases and functions both as an independent antibiotic as well as 

providing “enhancement” when combined with β-lactam antibiotics with potent activity 

against Enterobacterales231. When combined with meropenem, nacubactam has shown 

strong in vitro activity against class A and class D carbapenemases as well as class 

C ESBL enzymes232 and has shown some activity against the metallo-β-lactamases233. 

Phase 1 pharmacokinetic trials showed it to be well-tolerated without significant adverse 

reactions234.

Conclusion

The spread of carbapenem-resistant Enterobacterales is an urgent public health issue and 

represents a threat to antibiotic efficacy worldwide. There are several treatment classes 

currently available to clinicians to treat these infections including “traditional” antibiotics 

that have retained anti-CRE-activity, novel β-lactam-β-lactamase inhibitor combinations that 

have come on the market in the last decade, and novel aminoglycosides, tetracyclines, 

and cephalosporins. Local resistance patterns and the regional prevalence of specific 

carbapenemase enzymes are important to consider when selecting therapy, as not all agents 

have activity against all classes of enzymes. Phage therapy represents a promising alternative 
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therapy for highly drug-resistant infections, however the applicability of this technology to 

a broad range of clinical scenarios remains to be seen. With all these treatments, enhanced 

antimicrobial stewardship will be paramount to ensuring the continued efficacy of these 

therapies for years to come.
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Table 1:

Major carbapenemase enzymes

Ambler class Major enzymes Active site Primary geographic distribution Treatment notes

A KPC Serine United States, Colombia, Greece Inhibited by clavulanate, tazobactam

NMC, SME Rare

B VIM Zinc Spain, Italy, Greece Do not hydrolyze monobactams*

IMP Japan, Taiwan

NDM India, Pakistan, Romania, Poland

D OXA-48 Serine Turkey, Mediterranean, Morocco Low-level resistance against cephalosporins*

*
Are often co-occurring with ESBL enzymes that confer resistance to these classes
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Table 2:

Spectrum of Activity anti-CRE therapeutics

Agent Therapeutic Class Activity 
against 
Class A

Activity 
against 
Class B

Activity 
against 
Class D

Notes

Aztreonam Monobactam − + + Not recommended. CRE often have co­
occurring ESBL enzymes which render 
aztreonam ineffective.

Colistin, 
Polymyxin B

Polymyxin +/− +/− +/− Limited efficacy, significant toxicities.

Fosfomycin Phosphoenolpyruvate 
analogue

+ + + Primarily used for urinary tract infections.

Tigecycline Tetracycline +/− +/− +/− Typically used as combination therapy.

Ceftazidime-
avibactam

β-lactam-β-lactamase 
inhibitor

+ − + Approved for cUTI, cIAI (with 
metronidazole), HAP/VAP. Can be used 
with aztreonam for treatment of NDM­
producing infections.

Meropenem-
vaborbactam

β-lactam-β-lactamase 
inhibitor

+ − − Approved for cUTI, cIAI, HAP/VAP.

Imipenem-
relebactam

β-lactam-β-lactamase 
inhibitor

+ − − Approved for cUTI, cIAI by FDA. 
Approved for HAP/VAP, BSI, resistant GN 
infections by EMA.

Plazomicin Aminoglycoside + + + NDM-carrying CRE often resistant due to 
16s ribosomal methyltransferases. Approved 
for cUTI by FDA. Not approved by EMA.

Eravacycline Tetracycline + + + Approved for cIAI by FDA and EMA.

Omadacycline Tetracycline + + + Oral and IV formulations. Approved by 
FDA for ABSSSI and CABP. Not approved 
by EMA.

Cefiderocol Cephalosporin + + + Approved for cUTI and HAP/VAP by 
FDA. Approved for resistant GN infections 
by EMA. CREDIBLE-CR study showed 
increased all-cause mortality.

Phage therapy N/A + + + Few clinical trials showing efficacy for CRE 
at this time. Require specificity for infecting 
organism, often leading to significant lag 
time to start treatment.

Zidebactam* β-lactamase inhibitor + +/− + Combined with cefepime. Clinical trials 
pending.

Taniborbactam* β-lactamase inhibitor + + + Combined with cefepime. Currently in 
phase 3 trials for cUTI.

LYS228* Monobactam + + +/− No clinical trials currently underway

Nacubactam* β-lactamase inhibitor + +/− + Combined with meropenem. Completed 
phase 1 clinical trials.

cUTI=complicated urinary tract infection; cIAI=complicated intraabdominal infection; HAP/VAP=hospital acquired pneumonia/ventilator­
associated pneumonia; GN=gram negative; ABSSSI=acute bacterial skin and skin structure infection; CABP=community acquired bacterial 
pneumonia; FDA= United States Food and Drug Administration; EMA= European Medicines Agency.

*
antibiotic currently in development
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