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A B S T R A C T   

The longest common consecutive subsequences (LCCS) play a vital role in revealing the biological relationships 
between DNA/RNA sequences especially the newly discovered ones such as COVID-19. FLAT is a Fragmented 
local aligner technique which is an accelerated version of the local pairwise sequence alignment algorithm based 
on meta-heuristic algorithms. The performance of FLAT needs to be enhanced since the huge length of biological 
sequences leads to trapping in local optima. This paper introduces a modified version of FLAT based on 
improving the performance of the BA algorithm by integration with particle swarm optimization (PSO) algorithm 
based on a novel infection mechanism. The proposed algorithm, named BPINF, depends on finding the best- 
explored solution using BA operators which can infect the agents during the exploitation phase using PSO op-
erators to move toward it instead of moving toward the best-exploited solution. Hence, moving the solutions 
toward the two best solutions increase the diversity of generated solutions and avoids trapping in local optima. 
The infection can be propagated through the agents where each infected agent can transfer the infection to other 
non-infected agents which enhances the diversification of generated solutions. FLAT using the proposed tech-
nique (BPINF) was validated to detect LCCS between a set of real biological sequences with huge lengths besides 
COVID-19 and other well-known viruses. The performance of BPINF was compared to the enhanced versions of 
BA in the literature and the relevant studies of FLAT. It has a preponderance to find the LCCS with the highest 
percentage (88%) which is better than other state-of-the-art methods.   

1. Introduction 

Sequence alignment is one of the important tasks in bioinformatics 
which is used to measure the similarity and relationships between bio-
logical and genomic sequences. Sequence alignment operation is used as 
an essential step with other biological analysis processes such as 
phylogenetic tree construction (Feng & Doolittle, 1990), assembly of 
DNA fragments (L. Li & Khuri, 2004), protein structure prediction 
(Morshedian, Razmara, & Lotfi, 2019; Xiong, 2006), and drug design 
(Xiong, 2006). The local sequence alignment is a specific alignment 
operation that aims to discover the longest common consecutive sub-
sequences (LCCS) between two biological sequences. Hence, LCCS can 
help biologists to reveal the common features between the considered 
sequences. The contemporary worldwide circumstances resulting from 

COVID-19 spreading out (Zu et al., 2020) motivate researchers in 
diverse fields to recruit their tools to participate in such pandemic 
control efforts. Local alignment can be employed for seeking biological 
databases to detect probable LCCS between COVID-19 and other known 
viruses. Such findings aim to improve the knowledge of the nature of this 
emerging virus and hence to help the specialists in vaccination and drug 
design fields. 

From the Computer Science side, the problem of LCCS has been 
solved using the historical Smith-Waterman (SW) alignment algorithm 
(Smith & Waterman, 1981). It can detect the exact LCCS between two 
sequences since it is based on a dynamic programming approach (Cor-
men, 2009). However, the time complexity of SW algorithm, which is 
O(n3), where n is the length of the input sequences, ceases the direct 
application of such technique for extreme length sequences. For 
example, the sequence of COVID-19 has a length of more than 7000 bp 
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(Shereen, Khan, Kazmi, Bashir, & Siddique, 2020). 
The recently presented Fast Local Aligner Technique (FLAT) in (Issa, 

Hassanien, Oliva, et al., 2018) can accelerate the process of LCCS 
detection. It aims to find a near-exact LCCS in a reasonable time. In 
FLAT, the input sequences are divided into short fragments, which can 
be (individually) aligned iteratively using SW algorithm. Thus the 
operational time of SW algorithm will be highly degraded. Meta- 
heuristic Algorithms (MAs) are employed for looking for the best loca-
tions of fragment cut in input sequences. Sequences with huge lengths 
still introduce a challenge facing the application of FLAT where the 
working MA may get trapped in local optima regions (Issa & Abd Elaziz, 
2020; Issa et al., 2018). Early convergence during the search process 
results in poor performance of FLAT. 

As shown in Fig. 1, a sequence may have many subsequences (which 
are represented in yellow-filled rectangles) but the desired one is the 
exact LCCS with length (K). 

FLAT can be used to find the near-exact LCCS, which is part of the 
exact one. As shown in Fig. 1, the blue-filled rectangle with length (W) is 
part of the exact LCCS with length (K). Hence, the development of FLAT 
aims to two points:  

1- To find a common subsequence around the exact LCCS, not around 
other common subsequences.  

2- Increasing the length of near-exact LCCS with length (W) to cover a 
high percentage of the exact LCCS with length (K). 

FLAT is categorized as a discrete optimization problem where MA is 
used for choosing the positions at which the fragments to be cut. The 
positions lie in the range [1,L] where L is the length of the sequence. 
Hence, the positions are integer numbers 1, 2, 3,…, L. The discrete na-
ture of FLAT problem requires specific adaptation for the continuous 
optimization algorithms such as Particle Swarm Optimization (PSO) 
(Kennedy, 1995) and Bat Algorithm (BA) (Yang, 2010) when working in 
the problem. 

Therefore, this paper is mainly devoted to improving the perfor-
mance of FLAT via more clever MA when applied to recent sequences 

such as the protein of COVID-19. The key entry of handling the 
entrapment in local optima regions is to apply a more balanced explo-
ration/exploitation search strategy. On the other hand, previous related 
studies to FLAT application (Issa & Abd Elaziz, 2020; Issa et al., 2018) 
suggested that hybrid MA can be more effective than single optimizers 
for such complex problems (e.g., the product of the length of input se-
quences is up to 21,000,000). In this context, the No-Free-Lunch (NFL) 
theorem (Wolpert & Macready, 1997) that states that no one MA can 
solve all optimization problems with the same efficiency opens a win-
dow for developing new algorithms that can both improve the efficiency 
of existing ones and achieve better results for emerging problems. 

In this work, a novel hybrid technique is developed based on PSO 
(Kennedy, 1995) and BA (Yang, 2010). PSO, which is among the his-
torical MAs is an efficient optimization technique for diverse applica-
tions (Zahid, Hasan, Khan, & Ullah, 2015). As well, the superiority of BA 
in processing optimization problems with huge search space has been 
proven in many areas such as structure optimization (Hasançebi, Teke, 
& Pekcan, 2013), training Artificial Neural Networks (ANNs) (Jaddi, 
Abdullah, & Hamdan, 2015), DC wheel motor problem (Bora, Coelho, & 
Lebensztajn, 2012), load frequency control (Elsisi, Soliman, Aboelela, & 
Mansour, 2016), and other problems in the literature (Yang & He, 
2013). 

The combination between PSO and BA is taking place in the light of a 
novel infection propagation mechanism. The proposed technique, 
named BPINF, implements the movement strategy of BA to explore the 
input biological sequences to detect the candidate fragments with LCCS, 
in the first phase. In the second phase, the movements of the population 
are updated based on the operators of PSO to enhance the exploitation of 
the search space. The first-best solution in the first phase carries an 
infection that may transfer to other solutions during the exploitation 
phase. Using distance-based criteria, the first-best solution will infect 
nearby ones while far solutions may be infected with some probability. 
In the case of non-infection, the agents update their movement based on 
PSO’s operators toward the second-best solution. Moreover, the infected 
agents can be recovered and get attracted to the second-best solution. 

Thus, the proposed technique can generate more diverse solutions 

Nomenclature 

Acronyms 
ALO Ant Lion Optimizer 
ANNs Artificial Neural Networks 
BA Bat Optimization Algorithm 
BFA Bacterial Foraging Algorithm 
BPINF BA-PSO hybrid technique with infection mechanism 
DE Differential Evolution 
CSA Cuckoo Search Algorithm 
FLAT Fast Local Aligner Technique 
GA Genetic Algorithms 
GSA Gravitational Search Algorithm 

GWO Grey Wolf Optimization 
IMO Ions Motion Optimization 
IWO Invasive Weed Optimization 
LBBA Leader-Based BA Algorithm 
LCCS Longest Common Consecutive Subsequences 
MA Meta-heuristic Algorithm 
NFL No-Free-Lunch Theorem 
PSO Particle Swarm Optimization 
SCA Sine Cosine Algorithm 
SW Smith-Waterman 
TS Tabu search 
WOA Whale Optimization Algorithm  

Fig. 1. The near-exact LCCS versus the exact LCCS (Issa et al., 2018).  
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based on the novel infection mechanism among solutions which hope-
fully can overcome the early entrapment in local optima when handling 
biological sequences with huge lengths. 

The extensive experimental work in the paper shows that the pro-
posed BPINF can improve the performance of FLAT when applied to 
many datasets with the variant product of lengths between 25,000 and 
21,000,000. BPINF is impartially compared to other known hybrid 
techniques in literature such as integrated PSO with Ions Motion Opti-
mization (IMO-PSO) (Issa & Abd Elaziz, 2020), Adaptive Sine Cosine 
Optimization (ASCA-PSO) [9], BA-Cuckoo Search Algorithm (CSA) 
(Shehab, Khader, Laouchedi, & Alomari, 2019), BA-Differential Evolu-
tionary (DE) (Yildizdan & Baykan, 2020) and two different versions of 
BA-PSO (Ferdowsi, Farzin, Mousavi, & Karami, 2019; Manoj, Ranjitha, 
& Suresh, 2016). Moreover, the protein of COVID-19 is investigated 
against other five viruses, and the LCCS results are reported for many 
hybrid techniques, as well as the standard SW algorithm. Later simula-
tion figures out that BPINF can achieve a near-score to that one of SW 
algorithm in most examined datasets. This supports the motivation of 
this paper regarding the enhancement of FLAT, in particular for newly 
emerged biological sequences with huge length. 

The main contributions of this work can be summarized as follows: 

1- A novel integrated scheme between BA and PSO algorithms is pre-
sented which is based on an infection mechanism for enhancing the 
performance of FLAT. 

2- FLAT using the proposed hybrid mechanism was tested on real bio-
logical sequences in impartial comparison with other techniques in 
the literature.  

3- FLAT performance is examined on biological sequences with a 
challenging dimension that is up to 21,000,000 of product length.  

4- The findings of this work are directed at detecting the LCCS between 
the recent COVID-19 and the other five viruses to verify the perfor-
mance of the proposed technique. 

The rest of the paper is organized as follows: Section 2 introduces the 
related literature review to current work. Section 3 introduces a brief 
explanation of FLAT, besides the basic versions of each of PSO and BA. 
Section 4 illustrates the characteristics of the proposed technique 
(BPINF) for FLAT. Section 5 presents the results of testing the FLAT 
version using BPINF on biological sequences. The proposed technique is 
verified to detect the LCCS between the COVID-19 virus and other 
known diseases in Section 6. Finally, Section 6 concludes the presented 
work and provides future research directions. 

2. Literature review 

This section sheds light on the related literature work to the devel-
oped MAs and applied techniques in the current paper. First, some 
relevant applications of BA in medical and bioinformatics fields are 
illustrated, besides different versions and modifications of the algo-
rithm. After that, the trails of accelerating the SW algorithm are dis-
cussed, as well as the previous related studies that implemented FLAT. 
Finally, various hybrid MAs are mentioned with a summary of the hy-
bridization methodology and applications. 

BA was used in many medical and bioinformatics applications such 
as gene selection in a cancer classification (Al-Betar, Alomari, & Abu- 
Romman, 2020) where the algorithm was developed based on a new 
operator called Triz. It showed notable superiority for gene selection 
when tested on a dataset of Ten cancer benchmarks. 

BA was applied to optimize the parameters of a least square support 
vector machine (SVM) for disease classification in (Jiang, Li, Liao, & 
Jiang, 2019). This work developed BA to avoid premature convergence 
and avoiding trapping in local optima by calling chaotic functions for 
population initialization and using a decreasing weight parameter. The 
validation of this algorithm in (J. L. Jiang et al., 2019) was performed on 
a Hear disease (Statlog) and Breast cancer dataset. Besides, many other 

applications made use of BA, such as MR brain image segmentation 
(Alagarsamy, Kamatchi, Govindaraj, Zhang, & Thiyagarajan, 2019), 
human diseases prediction (Enireddy et al., 2021), and pathological 
brain detection (Lu, Wang, & Zhang, 2020). 

In (Shehab et al., 2019), BA was merged with CSA (BA-CSA) to speed 
up CSA’s convergence but avoiding early stuck in local optima. For each 
search step of an agent of CSA, updating equations of BA algorithm was 
applied, and new solutions survive only in case of better fitness. In (Dao 
et al., 2019), BA was hybrid with the Ant Lion algorithm (ALA) where 
the updating operators of ALA were embedded into the updating 
equations of BA. A leader-based BA algorithm (LBBA) was a developed 
BA based on using several micro-bats as a leader instead of only one best 
solution to influence the other agents (Neto, Pinto, Marcato, da Silva, & 
Fernandes, 2019). The best solution or one of the leader’s solutions is 
used for influencing other randomly selected agents. This developed 
version of the BA was validated on the mobile robot localization 
problem. 

Moreover, DE was merged with BA (Yildizdan & Baykan, 2020) 
where the updating mechanism of BA was modified to depend not only 
on the best solution but also on the other agents in the population. This 
helps in decelerating the convergence towards early found local optima 
solutions, hence, increasing the population’s diversity. This work tried 
to achieve the balance between exploration of BA and exploitation of 
DE. In (Alihodzic & Tuba, 2014), another trial of merging BA with DE 
was proposed where the crossover and mutation operators of DE were 
modified, besides new pulse rate and loudness functions were 
embedded. The performance of the developed BA-DE version in (Ali-
hodzic & Tuba, 2014) was validated on five mathematical benchmark 
functions. 

In (Pravesjit, 2016), the BA algorithm was developed by embedding 
the reproduction step of the Genetic Algorithm (GA) to clone each agent 
of the BA algorithm. Also, PSO was merged with GA (Garg, 2016) where 
the mutation and crossover operators of GA were embedded into the 
PSO update procedure. A hybrid algorithm of BA and Invasive Weed 
Optimization (IWO) algorithm was introduced in (Yue & Zhang, 2019), 
where IWO was applied to enhance the local search. The balance be-
tween exploration and exploitation was suggested based on a novel 
inertia weight depending on Lagrange interpolation. 

In addition, there were many trials for enhancing the PSO algorithm 
(Kennedy, 1995) to make use of its exploitation’s efficiency. In (Şenel, 
Gökçe, Yüksel, & Yiğit, 2019), PSO was merged with the Grey Wolf 
Optimization (GWO) algorithm to gain the benefit of better exploitation 
of PSO and better exploration of GWO. The agents are processed using 
the updating mechanism of PSO and for each particle, there is a small 
probability to update it using GWO’s updating strategy. 

PSO was combined with Gravitational Search Algorithm (GSA) 
(Eappen & Shankar, 2020) and the hybridization aims to balance be-
tween exploitation and exploration for the efficient spectrum of energy 
sensing in cognitive radio network in 5G heterogeneous network. In 
(Trivedi, Jangir, Kumar, Jangir, & Totlani, 2018), PSO was hybrid with 
Whale Optimization Algorithm (WOA) to achieve balance between 
exploration and exploitation, and the developed algorithm was vali-
dated on some mathematical benchmark functions. 

In (Issa et al., 2018), a two-layer ASCA-PSO was presented as a 
hybrid adaptive SCA with PSO. The bottom layer divides the agents into 
groups which are updated using SCA’s updating strategy and the best 
agent of each group is assigned to the top layer where updating strategy 
of PSO is working. ASCA-PSO was validated on mathematical bench-
mark functions, then it is applied to enhance the performance of bio-
logical sequence local alignment (Cohen, 2004). 

Moreover, PSO was combined with the IMO algorithm (Issa & Abd 
Elaziz, 2020) to enhance the performance of locating the longest com-
mon subsequences of biological sequences and it was validated on 
COVID-19 datasets. The developed PSO-IMO algorithm consists of the 
execution of the two algorithms in a serial manner where the IMO is used 
for exploring the search space while PSO is used to intensify the explored 
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solution founded. 
The cooperation between BA and PSO was considered in some pre-

vious studies. In (Manoj et al., 2016), an improved version of BA using 
PSO was proposed to enhance the image registration process for the 
diagnosis of medical images. 

Also, in (Yadav, Sharma, & Gupta, 2015) a hybrid mechanism of BA 
and PSO was proposed for optimization of the location of UPFC in 
electrical power systems. In (Manoj et al., 2016) and (Yadav et al., 
2015), BA and PSO were executed in a serial manner where the solutions 
were explored by BA for some iterations, and then PSO intensifies the 
best solution so far. Besides, BA was integrated with PSO to optimize the 
labyrinth spillway (Ferdowsi et al., 2019). The population was divided 
into two groups (one group for each algorithm) executed in parallel. 
After each specified number of iterations, some search agents with the 
worst fitness of each algorithm get replaced by that one with the best 
fitness of the other algorithm. 

Various research studies have pointed out the superiority of hybrid 
MAs over single optimizers to address complex optimization applica-
tions. Table 1 introduces a gentle summary of some hybrid MAs that 
involve BA and PSO. It is noticed that the hybridization between BA and 
PSO received a notable interest in literature (Ferdowsi et al., 2019; 
Manoj et al., 2016; Yadav et al., 2015). PSO has been called, as well, for 
integration with other algorithms in different applications such as (Abd- 
Elazim & Ali, 2013; Issa & Abd Elaziz, 2020; Issa et al., 2018; S. Jiang, Ji, 
& Shen, 2014; Shen, Shi, & Kong, 2008; Yadav et al., 2015) which re-
flects its effective exploitation capabilities. 

SW algorithm (Smith & Waterman, 1981) aims to find the accurate 
LCCS between pair of biological sequence while Neeldemean-Wunch 
global sequence alignment algorithm aims to find the whole alignment 
between two sequences (Issa, Hassanien, Helmi, Ziedan, & Alzohairy, 
2018; Needleman & Wunsch, 1970). Various trials have been devoted to 
accelerate the SW algorithm such as (Zahid et al., 2015), a fast version of 
this algorithm was proposed based on dividing the two sequences into 
two portions and each portion is again divided into two sub-portions 
until reaching the minimum length of sub-portions. Every two sub- 
portions of the two sequences were aligned and if the score passed 
some certain threshold then the length of sub-portions is increased and 
the alignment process is repeated. The limitation of this technique is 
ignoring the affine gap penalty when estimating the alignment score 
which affects the alignment accuracy. Also, hardware accelerators were 

used to accelerate the execution of the SW algorithm in a parallel 
manner, such as using a graphical processing unit (GPU) (Ahmed et al., 
2019; Elloumi, Issa, & Mokaddem, 2013; Khajeh-Saeed, Poole, & Perot, 
2010; Mohamed Issa, 2017; Zou et al., 2019). Moreover, the field- 
programmable gate array (FPGA) was used to speed up the SW algo-
rithm (Benkrid, Liu, & Benkrid, 2009; Di Tucci, O’Brien, Blott, & San-
tambrogio, 2017; Issa, Bakr, Alzohairy, & Zeidan, 2012; Li, Shum, & 
Truong, 2007; Yamaguchi, Tsoi, & Luk, 2011). The high cost of needed 
hardware accelerators (GPUs and FPGAs) is one drawback in the latter 
approach. 

FLAT is a so-recent technique for solving the sequence alignment 
problem. It was first developed based on ASCA-PSO in (Issa et al., 2018). 
ASCA-PSO was developed to enhance the exploitation (performing the 
search process in a narrow region in the search space) capabilities of SCA 
with the benefit of the efficient search mechanism of PSO. Besides, IMO- 
PSO [10] was developed to enhance FLAT’s performance. FLAT-ASCA- 
PSO finds the near exact LCCS with a percent of 77% of the length of 
the exact LCCS, while FLAT-IMO-PSO produced a percent 81%. The 
main limitation of these FLAT methods was their poor performance 
when FLAT was executed on biological sequences that have a product of 
lengths up to 21,000,000. The reason for this degradation in FLAT’s 
performance using ASCA-PSO and IMO-PSO is the extreme length of 
sequences which leads the algorithms to be trapped in local optima. 

This detailed literature review reveals the gaps of current techniques 
to solve the LCCS problem for biological sequences. The exact method of 
SW is time inefficient, and its hardware-based implementations seem 
expensive in the case of huge length sequences. FLAT is a promising 
stochastic technique that can report a near-optimal result in a reason-
able time but may suffer from the premature convergence of applied 
optimizers which leads to performance degradation. On the other side, 
BA gained popularity in bioinformatics problems, but it was applied for 
neither sequence alignment nor FLAT in past research studies. 
Furthermore, newly discovered biological sequences such as the protein 
of COVID-19 with huge length require that FLAT should be incorporated 
by efficient optimization algorithms. For challenging optimization 
problems, such as listed in Table 1, hybrid techniques seem to outper-
form single optimizers. According to the aforementioned discussion, the 
current paper introduces a hybrid version of BA and PSO using a novel 
infection mechanism to improve FLAT performance. Such a combination 
aims to enhance the capabilities of both techniques in tackling the 

Table 1 
Summary of some BA-based and PSO-based hybrid techniques.  

Ref. Technique Hybridization methodology Application 

(Issa et al., 2018) ASCA- 
PSO* 

PSO exploits the regions around solutions found by SCA LCCS between biological sequences 

(Issa & Abd Elaziz, 
2020) 

IMO-PSO* IMO starts exploring the search space then PSO refines the found solutions 
(exploitation phase) 

LCCS between biological sequences 

(Shehab et al., 2019) BA-CSA BA update procedure is applied to agents of CSA where new solutions survive 
if fitness improves 

Global numerical optimization 

(Yildizdan & 
Baykan, 2020) 

BA-DE The population is updated randomly using improved BA or DE mechanism to 
improve both exploration and exploitation 

Global numerical optimization 

(Manoj et al., 2016) BA-PSO PSO operators are applied to BA solutions in the exploitation phase ANN training for Enhancement of image registration process 
of the diagnosis of medical images 

(Ferdowsi et al., 
2019) 

BA-PSO Swap and update mechanism is applied where best solutions of one 
algorithm replace worst solutions in the other one 

Design of the labyrinth spillway geometry 

(Yadav et al., 2015) BA-PSO Non satisfied solutions in the PSO population are updated using BA operators Location of unified power flow controller in power systems 
(Abd-Elazim & Ali, 

2013) 
PSO-BFA PSO is applied as a mutation operator for BFA individuals Design of power systems stabilizers in multimachine power 

systems 
(Shen et al., 2008) PSO-TS TS works as a local improvement procedure for PSO solutions Tumor classification using gene expression data 
(Jiang et al., 2014) PSO-GSA Each updates its position with the contribution of both algorithms (co- 

evolutionary technique) 
Economic emission load dispatch problems 

(Dao et al., 2020) BA-ALO Updating operators of ALO were embedded into the updating equations of 
BA 

Global numerical optimization 

(Neto et al., 2019) BA-LBBA One of many micro-bats is assigned as a leader instead of only one best 
solution to influence the other agents of LBBA 

The mobile robot localization problem 

(Garg, 2016) PSO-GA Balancing exploration and exploitation is achieved via incorporating the 
crossover and mutation operators within PSO 

Solving constrained optimization problems 

*Studies which implement the FLAT technique. 
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problem search space. The newly developed technique, namely BPINF, 
helps FLAT to report better results than previous techniques such as (Issa 
& Abd Elaziz, 2020; Issa et al., 2018) for both sequences of standard 
biological datasets and the protein of COVID-19. 

3. Preliminaries 

In this section, the description of the FLAT procedure for the detec-
tion of LCCS between a pair of sequences is presented. As well as, the 
procedure of the standard version of each of BA and PSO algorithms is 
illustrated. 

3.1. Flat 

Sequence alignment is considered one of the frequently addressed 
problems in bioinformatics. It aims to determine the regions of simi-
larities between genomic sequences like DNA, RNA, and protein. Such 
similarity between aligned sequences expresses the corresponding sim-
ilarity in their function, their secondary and tertiary structure [46, 47]. 
Other operations like DNA fragment assembly [12] and construction of 
phylogenetic trees [11] can also make use of sequence alignment. 

In particular, local pairwise alignment between two sequences de-
pends on gap insertion incorrect places to achieve high scores [48]. The 
famous SW technique [14] can solve the problem deterministically. It 
follows a dynamic programming approach where, after filling a scores 
matrix, the optimal solution can be found. For large sequences, the later 
technique is expected to exhaust huge computational time rather than 
memory. Fragmentation was employed to two huge length sequences to 
extract many shorter length fragments, then applying the SW algorithm 
becomes more time-efficient. 

Let A and B denote two sequences of length L, each of them is divided 
into several fragments with a length Lf . Applying the SW algorithm can 
perform the alignment over the fragments and report the LCCS with 
length W. Fig. 2 shows a simplified example of the fragmentation of two 
sequences into shorter-length ones, where Seq1 and Seq2 are the input 
two strings. After fragmentation into three fragments (i.e., substrings) 
with Lf fragment length, the LCCS is found with length W. 

Using stochastic optimization such as MAs involves pointing search 
agents toward the position of the discovered LCCS. The defined fitness 
function in Eq. (1) (Issa et al., 2018) is called to evaluate the determined 
alignments during the search process. 

fitness =
∑L

i=1

{
penalize( + 1)scoreif Ai = Bi

penalizezerootherwise

}

(1)  

where A and B are the aligned sequences, L denotes the length of aligned 
sequences, and idenotes the index. According to implementing the SW 
algorithm, the FLAT time complexity is O(TNL3

f ) where T and N repre-
sent the maximum number of iterations and population size of the 

applied optimizer, resp. Algorithm 1 presents a pseudo-code of FLAT.  
Algorithm 1: The procedure of FLAT 

1: Input: two sequences with length Seq1 and Seq2.  
2: Output: LCCS between Seq1 and Seq2 
3: Set the parameters: fragment length Lf , search agent size N, and number of 

iterationsT  
4: Initialize a random population where each agent marks two positions, one in 

each sequence, in the range (1, length (Seq1 or Seq2) − Lf )  
5: While T hasn’t been reached yet  
6: Apply the SW algorithm to every two fragments pointed out by each agent. 
7: Evaluate solutions using Eq. (1) 
8: Move positions of search agents using the update procedure of applied optimizer 

toward the location of fragments where LCCS is found. 
9: End While  

3.2. BA algorithm 

The main characteristics of the echolocation process of micro-bats 
motivated Yang (Yang, 2010) to design the basic version of BA. Dur-
ing flying to search for prey, bats tend to change position and velocity. 
The emitted echolocation pulses, which is their tool to detect barriers 
and preys, have a varying frequency (or varying wavelength) and 
loudness value. Also, the pulse emission rate can be adapted according 
to the proximity of the prey. Bat position represents the problem under 
study solution while remaining properties are called for search and 
update operations. In a population of BA, the i − th individual updates its 
position xi using Eq. (2) (Yang, 2010): 

x(t+1)
i = x(t)i + v(t+1)

i (2)  

where vi is bat velocity, and t is the current iteration index. Bat velocity 
is evolving during the search process according to the distance between 
the current solution and the global best one xbest and the frequency fi as 
given by Eq. (3) and Eq. (4) (Yang, 2010): 

v(t+1)
i = v(t)i +(xbest − x(t)i )∙fi (3)  

fi = fmin +(fmax − fmin)∙R (4)  

where fmin and fmax determine the band of allowable frequencies, while 
R ∈ [0, 1] is a randomly generated number. To improve exploitation 
capabilities, BA involves applying a random walk to generate a local 
solution around each individual using Eq. (5) (Yang, 2010). 

xnew
i = xold

i + ∊∙A(t+1)
m (5)  

where ε ∈ [ − 1, 1] is a random value and A(t+1)
m represents the mean 

loudness factor of all individuals in the current population. The loudness 
factor is updated using Eq. (6) (Yang, 2010). 

A(t+1)
i = α∙A(t)

i (6)  

where 0 < α < 1 is a predetermined parameter, as well as an initial 
value A0. The pulse emission rate, shown in Eq. (7), is employed to 

Fig. 2. A simplified example of FLAT (Issa et al., 2018).  
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control the convergence of solutions. The initial value of pulse emission 
is r0

i ∈ [0,1]. 

r(t+1)
i = r0

i ∙(1 − e− γt) (7)  

where γ > 0 is a constant. Thus, as the search proceeds, the best bat 
becomes closer to the prey, and it is supposed to stop emitting any sound 
when catching it, i.e., At

i→0 and rt
i →r0

i as t→∞. The main procedure of 
the BA appears in Fig. 3. 

3.3. PSO algorithm 

The social behavior of particle swarms such as birds and fish schools 
was the basis of the applied mechanism in PSO. In the swarm, every 
individual has its position and velocity, which are dynamically updated. 
The distances between the current individual position and each of the 
best position along search history and the global best position are used to 
update the velocity. Then, according to changing velocity, the new po-
sition is determined. 

Let x(t)
i and v(t)i denote the i − th particle position and velocity in the 

current population, resp. Then the update mechanism of PSO is given by 
Eq. (8) (Kennedy, 1995). 

x(t+1)
i = x(t)i + v(t+1)

i (8) 

The velocity update is commonly adjusted by an inertia factor ω as 
shown in Eq. (9) (Kennedy, 1995): 

v(t+1)
i = ω∙v(t)

i + c1∙R1∙(x(t)
g − x(t)

i )+ c2∙R2∙(x(t)
p − x(t)

i ) (9) 

where ω ∈ [0, 1], c1, and c2 are two constants that control particle 

acceleration, R1and R2 are two randomly generated numbers in [0,1], 
x(t)

g denotes the global best position so far and x(t)
p is the best historical 

position of the particle. Moreover, the inertia factor is decreased using 
Eq. (10) for convergence purposes. 

ω(t) = ωo − (t/T)(ωo − ωf ) (10)  

where t and T denote current iteration and the total number of itera-
tions, resp., while ωo and ωf are the initial and final values of inertia, 
resp. Fig. 4 introduces the main procedure of PSO. 

4. The proposed hybrid method between BA and PSO based on 
infection technique (BPINF) for FLAT 

The proposed method, named BPINF, integrates BA and PSO algo-
rithms so that search agents can be updated using BA’s operators for 
efficient exploration of the search space, whilst PSO’s update mecha-
nism can improve the exploitation task of the search space. Hence, this 
integration tends to enhance both capabilities, the exploitation of BA 
and the exploration of PSO algorithms. The main problem when 
implementing FLAT based on this integration is that the agents are early 
trapped into local optima during applying PSO algorithm (due to the 
huge length of sequences). So that, an infection mechanism is proposed 
to avoid this drawback. In the next subsections, the inspiration of the 
developed BPINF technique besides its mathematical model is intro-
duced in Section 3.1, then the framework of BPINF for implementing 
FLAT is discussed in Section 3.2. 

Fig. 3. Main procedure of BA algorithm (Yang, 2010).  
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4.1. Inspiration and mathematical model 

The infection is defined as the infestation of body tissues by disease- 
causing agents which cause an illness due to infection and is called 
infection disease (Aljamali, Jawad, & Alsabri, 2020). The infection can 
be transferred with a high probability from one organism to other if two 
organisms being nearby in the distance. Based on this concept, the 
entrapment in local optima when updating the search agents using PSO 
operators can hopefully be avoided. The agents simulate the organisms, 
and the search space is the distances between organisms. Changing the 

way of movement of an agent simulates the infection. The infection 
mechanism simulates the infection process where the first best solution 
(α) is considered as an infection carrier. This infection can spread out 
through some/all agents; thus the infected agents are moved toward (α) 
based on PSO’s updating strategy instead of moving toward the second- 
best agent (β). 

The agents get infected from (α) will be moved toward it based on the 
following conditions:  

- If the agent has a position that lies within a specified neighborhood 
(D) around α (i.e., in the range from (α − D) to (α + D)).  

- Otherwise, the agent will be infected based on a random criterion 
(generating a random value bigger than a user-specified infection 
parameter (Inf_rate)). 

If the previous conditions cannot be achieved, then the agent can be 
updated by moving toward the second-best solution (β), and in this case, 
the agent is considered as non-infected. 

For clarifying these concepts, Fig. 5 describes the operation of the 
infection mechanism. Five agents are represented in blue-empty circles 
(numbered as 1, 2, 3, 4, and 5), and β is represented in the blue-filled 
circle, while α is represented in a red-filled circle. As seen in the 
figure, the circle which lies in the boundary of 2D around α, gets 
infected, and thus it has to update its position toward the red-filled circle 
α. Whereas the solutions which are represented in circle 3 and circle 4 lie 
out of the range of infection distance from (α). Hence, they may be get 
infected too, according to the stochastic criteria (rand > Inf_rate), where 
rand is a randomly generated number in [0,1]. Circle 2 and circle 5 are 
not infected hence the movement of each of them will be updated to-
ward the best solution (β). 

The infection can be propagated through the agents where the user- 
specified parameter (Spread Rate) controls the propagation intensive-
ness. The parameter (Spread Rate) also follows stochastic criteria in 
order to determine carrying the infection to another agent. While the 
(Inf_Rate) controls the chance of an agent if being infected or not based 
on stochastic criteria, in case of the agent is not located in the infection 
boundary around the agent (α). The propagation of infection is simu-
lated by transferring the infection from an infected agent i to other three 
non-infected agents (are chosen randomly from the population) to up-
date their movements toward the infection carrier xi. The number of 
three agents is chosen experimentally as a tradeoff between enhancing 
the quality of solutions and keeping the execution time reasonable. 

The infected agents can be recovered (then moving toward β) ac-
cording to another stochastic criterion controlled by the parameter 
(Recovery Rate). The recovery increases the possibility of producing 
more diverse solutions. This mechanism of integration aims to release 

Fig. 4. Main procedure of the PSO algorithm (Kennedy, 1995).  

Fig. 5. An explanation of updating agents based on the proposed infection mechanism in BPINF.  
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more diversification of solutions due to the infection mechanism for 
updating agents toward two agents (the α and β best solutions). Besides, 
spreading the infection between the agents also increases the avoidance 
of local optima and convergence to the optimal solutions. 

Regarding the mathematical model of BPINF, during the exploration 
phase (i.e., BA execution), the agents are updated based on Eq. (2) to Eq. 
(7). In the exploitation phase (i.e., execution of PSO), the infected agents 
follow Eq. (11) and Eq. (12) 

vi
(t+1) = w*vi

(t) + c1rand
(
xlbest

i − xi
(t) )+ c2rand

(
α − xi

(t) ) (11)  

xi
(t+1) = xi

(t) + vi
(t+1) (12)  

where xi
(t) is the current position of agent i, α is the first best solution, 

xlbest
i is the best solution achieved by agent i, vi is the speed of agent i and 

w, c1 and c2 are predetermined constants. 
For propagation of infection through agents, Eq. (13) and Eq. (14) 

are used assuming the chosen agent is j then it will move toward the 
infection carrier agent i if a stochastic criterion is satisfied. 

vj
(t+1) = w*vj

(t) + c1rand
(
xj

lbest − xj
(t) )+ c2rand

(
xi

(t) − xj
(t) ) (13)  

xj
(t+1) = xj

(t) + vj
(t+1) (14)  

where xi
(t) is the position of the current agent who carries infection to 

agent j, vi and vj are the speed of the infection carrier and the infected 
agents, respectively. 

For the non-infected agents, Eq. (15) and Eq. (16) can be used for 
updating their positions: 

vi
(t+1) = w*vi

(t) + c1rand
(
xlbest

i − xi
(t) )+ c2rand

(
β − xi

(t) ) (15)  

xi
(t+1) = xi

(t) + vi
(t+1) (16) 

where xi
(t) is the current position of agent i, β is the second-best so-

lution, xlbest
i is the best solution achieved by agent i, vi is the speed of 

agent i, and w, c1, and c2are predetermined constants. 

4.2. FLAT based on the developed BPINF technique 

The proposed BPINF technique is applied to enhance FLAT to align 
huge sequences. In the previous studies (Issa & Abd Elaziz, 2020; Issa 
et al., 2018), employing FLAT has achieved a score of 77% of the exact 
LCCS which gives a strong motivation to present the current work. Al-
gorithm (2) describes the details of the BPINF algorithm for imple-
menting FLAT. It accepts two biological sequences (SeqA and SeqB) as 
inputs and the required output is the near-exact LCCS between the two 
sequences. The solution of each search agent points to two positions (one 
in SeqA and the other in SeqB) where these positions represent the cut 
starting location of a fragment with length (LF). 

In line 2, N agents (xi, i = 1 : N) are initialized with two random 
positions, one in SeqA and the other in SeqB. The positions lie in the 
range from 1 to (Length (SeqA or SeqB) - LF), where LF represents the 
length of the cut fragments. Each agent cuts two fragments (one in each 
sequence) starting from the positions (xi) such as indicated in line 3. 

Each pair of fragments is aligned using the SW algorithm (Smith & 
Waterman, 1981), as in line 4. Then, the fitness of each solution is 
computed based on Eq. (1), and the first-best (α) and the second-best (β) 
solutions can be determined by sorting the fitness descendingly as in line 
5. 

In lines 7–8, if the exploration phase is performed during the first half 
of iterations (t <= T/2), the agents are updated based on the strategy of 
BA using Eq. (2) to Eq. (7). For exploitation (i.e., t > T/2), the search 
agents are updated based on the PSO’s updating strategy and the 
infection mechanism. For each agent, the infection conditions are 
checked as stated in line 11 based on the following conditions :  

- If the agent has a position that lies within a specified neighborhood 
(D) around α (i.e., in the range from (α − D) to (α + D)), see line 12.  

- Otherwise, the agent still has some chance to get infected based on a 
stochastic criterion as described in line 14. 

To mark infected agents, an infection array that has a size of popu-
lation size (Infection (i), i = 1 : N) is used. The array Infection is binary- 
valued 1/0 to refer to infected/non-infected agents, resp. Then, all 
agents are updated according to their status (infected or non-infected), 
where the infected agents are updated based on Eq. (11) and Eq. (12) 
by moving toward the first best solution (α) as described in line 21. If the 
agent is infected, there is a possibility of infecting the other three agents 
that have been chosen randomly (line 24) based on stochastic criteria 
(rand () > Spread_Rate). The parameter Spread_Rate is tuned practically 
in order to achieve the highest performance. Line 25 shows the updating 
of agents during infection propagation through population using Eq. 
(13) and Eq. (14). For infected agents, the recovery conditions (rand () 
> Recovery_Rate) can be applied, which recover the infected agents to 
the non-infected status as described in line 28. 

In line 33, the non-infected agents are updated based on Eq. (15) and 
Eq. (16) by moving toward the best solution (β). Once search termina-
tion, each agent points to two positions in the aligned sequences; hence 
fragments are cut to be aligned using the SW algorithm. The length of 
near-exact LCCS for each agent can be computed as in line 37. In line 40, 
the near-exact LCCS pointed by the first best solution (α), and its length 
are reported as the best-found solution. For more clarification, Fig. 6 
shows the procedure of implementing the FLAT based on the proposed 
BPINF.  

Algorithm 2: The proposed BPINF algorithm for implementing FLAT 

1: Input SeqA and SeqB; initialize the parameters: t, T, Inf_Rate, Spreed_Rate, 
Recovery_Rate  

2: Initialize the population (X) with (N) search agents, each (xi), i∊(1,N), locates two 
positions one in SeqA and the other in SeqB such that xi∊ (Length (SeqA or SeqB) - LF)  

3: Cut two fragments starting from the positions of (xi) in the two sequences (SeqA and  
SeqB) 
4: Apply SW algorithm on each pair of fragments of each search agent (xi), i∊(1,N).  
5: Compute the alignment score (length of near-exact LCCS found) for each search 

agent based on Eq. (1). 
6: While (t ≤ T)  
7: Update the first (α) and second (β) best solutions from the population (X) based on 

the alignment score.  

8: If (t ≤
1
2 

T)  

9: Update each solution (xi) based on BA’s operator using Eqs. (2) - (6).  
10: Else 
11: Check the infection conditions for each solution (xi):  
12: IF ((α − D) < xi < (α+ D))  
13: Infection (i) = 1  
14: Else IF (rand () > Inf_Rate) 
15: Infection (i) = 1  
16: Else 
17: Infection (i) = 0  
18: End IF 
19: For i = 1 : N  
20: IF Infection (i) = 1  
21: Update the solution (xi) toward (α) based on Eqs. (11) - (12).  
22: For p = 1 : 3 (propagate the infection through three agents)  
23: Select randomly one solution (xj) , j∊(1 : N)

24: IF (rand () > Spread_Rate): 
25: Update the solution (xj) toward (xi) according to Eqs. (13) - (14).  
26: Infection (j) = 1  
27: End IF 
28: IF (rand () > Recovery_Rate): Infection (j) = 0 End IF  
30: End For 
31: IF (rand () > Recovery_Rate): Infection (i) = 0 End IF  
32: Else 
33: Update the solution (xi) toward (β) based on Eq. (15) - (16)  
34: End IF 
35: End For 
36: End IF 

(continued on next page) 
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(continued ) 

Algorithm 2: The proposed BPINF algorithm for implementing FLAT 

37: Cut two fragments starting from the positions of (xi) in the two sequences (SeqA 
and SeqB)  

Compute the alignment score for the search agents based on Eq. (1). 
38: t = t + 1;  
39: End While 
40: Output the near-exact LCCS pointed by the first best solution (α) and its length.   

FLAT based on BPINF has a time complexity O((T/2)*N*(CBA + CPSO))* 
L3

F)) where T is the total number of iterations, LF represents the length of 
the cut fragment, Nis the population size of the working algorithm, and 

CBA is the execution time for updating one agent of BA population, and 
CPSO is the execution time for updating one agent of PSO population, as 
well as the updating the movement of three other agents of PSO in case 
of spreading out the infection. 

5. Experimental results and discussion 

This section presents the performance evaluation of FLAT based on 
the proposed technique (BPINF) against the standard BA (Yang, 2010) 
and other techniques in the literature such as ASCA-PSO (Issa et al., 
2018), SCA (Mirjalili, 2016), IMO-PSO (Issa & Abd Elaziz, 2020), BA-DE 
(Yildizdan & Baykan, 2020) and BA-CSA (Shehab et al., 2019). The 

Fig. 6. The flow charts of BPINF for FLAT.  
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integrated versions of BA and PSO algorithms in (Manoj et al., 2016) and 
(Ferdowsi et al., 2019), namely BA-PSO-1 and BA-PSO-2, resp., are 
reimplemented for purposes of comparison. BPINF performance is 
evaluated using a set of pairs of real viruses protein sequences datasets 
gathered from the National Center for Biotechnology Information 
(NCBI). The pairs of sequences have a product length ranges from 
250,000 to 21,000,000. 

In this application, it is more meaningful to refer to the product of the 
sequence’s length as a distinguished parameter instead of each indi-
vidual sequence length (the sequences don’t have the same length). In 
this work, the range of sequence’s length gets increased compared to the 
previous versions of FLAT (ASCA-PSO (Issa et al., 2018) and IMO-PSO 
(Issa & Abd Elaziz, 2020)) where the product of sequence’s length 
reached 9,000,000. The exact LCCS of each pair of sequences over 
different product lengths are determined by SW algorithm (Smith & 
Waterman, 1981), and it is used as a reference in the experimental tests. 

The evaluation metrics that are applied for characterizing the per-
formance of examined algorithms through the experimental tests are 
illustrated as follows:  

1- The percentage of similarity (%) between the reported near-exact 
LCCS’ length (W) and the exact LCCS’ length (K), see Fig. 1.  

2- The standard deviation of the numerical results.  
3- The statistical analysis using the Wilcoxon test (Gehan, 1965).  
4- The execution time. 

The implementations of FLAT based on various MAs are coded under 
MATLAB environment using a computer machine with a multiprocessor 
CORE-I3 (2.14 GHz per processor) and 4 GB RAM. The length of a 
fragment being cut at each position is 50 residues for FLAT versions. 
Table 2 shows the settings of various parameters of all implemented Mas 
in the tests. These parameters are tuned practically where certain ad-
justments are held in order to find the most useful value for each 
parameter. The population size is tuned experimentally to produce the 
best performance according to the product of sequences’ length (m*n), 
where m and n represent the length of the aligned sequences, as shown in 
Table 3. The maximum number of iterations is set to 30. 

Table 3 shows the percentage of similarity (%) using FLAT based on 
BPINF (30 independent runs) against the relevant algorithms in the 
literature. The first column shows the product of lengths of sequences 
that ranges from 250,000 to 21000000. In Table 3, the first column 
shows the product of aligned sequences (m*n), and the second column 
shows the corresponding agent size required to align the two sequences 
using FLAT. The population size differs across the lengths as the 
sequence length increases. Search space becomes more complicated as 
sequence length gets longer; thus population size should be increased in 
order to efficiently seek such emerging search space. The suitable pop-
ulation size with respect to the length of sequences is chosen practically 
after trying many values for BPINF-based FLAT. Notice that the choice of 
population size bears a tradeoff between the execution time and the 
quality of results. For each sequence length, there is a limit for 
increasing the number of agents to keep execution time below the cor-
responding one taken by the SW algorithm. As shown in Table 3, BPINF- 
based FLAT achieves the highest percentage over the whole range of the 
product of sequences length (especially for huge-length sequences), and 
the average percentage reaches 88% for all examined sequences. 

While FLAT based on each of IMO-PSO and ASCA-PSO achieves an 
average percentage of 82% and 78%, resp. Using BA-PSO-1 and BA-PSO- 
2, FLAT can achieve 60% and 63%, resp., and using BA-CSA and BA-DE, 
the percentage only reaches 57% and 61%, resp. FLAT based on stan-
dard algorithms such as IMO, SCA and BA achieve an average percent-
age of 43%, 45%, and 34%, resp. These results reflect the efficiency of 
BPINF for finding near-exact LCCS using FLAT by avoiding early trap-
ping in local optima for a sequence with a huge length. 

Table 4 shows the standard deviation of 30 individual runs of the 
FLAT based on various algorithms over various sequences length. As 

shown, FLAT based on BPINF has the lowest standard deviation in 
comparison to the other versions (see Fig. 7). The highest standard de-
viation is reported by IMO, SCA, and BA, while other algorithms have 
less standard deviations but are still higher than that one of BPINF. 
Moreover, the standard deviation of BPINF is < 1 for all examined 
datasets that gives a positive indicator of the robustness and precision of 
such a developed version of FLAT. 

Table 5 shows the results (p-value) of the Wilcoxon test (Gehan, 
1965) for evaluating the quality of solutions produced by BPINF-based 
FLAT compared to other related MAs. FLAT based on BPINF runs for 
30 trials, and these results were compared with each other algorithm 
using the Wilcoxon test. As shown in Table 5, the p-value of all com-
parisons is below 0.05, which indicates there is a significant superiority 
of the performance of BPINF. 

Fig. 8 shows the convergence curve of BPINF versus BA-PSO-1 and 
BA-PSO-2. As shown in Fig. 8, BPINF is able to avoid entrapment in local 
optima in the time that the other two algorithms converged early. The 
speedup of FLAT using BPINF is measured and compared against that of 
the standard SW algorithm (Smith & Waterman, 1981) as in Fig. 9. There 
is a notable speedup of performing the local alignment process between 
a pair of sequences using BPINF-based FLAT over that one of SW. Fig. 10 
shows the comparison of the execution time of PBINF versus that of 
other algorithms over various sequence lengths. 

5.1. Sensitivity analysis of BPINF parameters 

This subsection demonstrates the impact of different BPINF param-
eters on its performance. BPINF’s main parameters are loudness factor 
(A), pulse emission rate (ro), weight inertia (w), infection rate (Inf Rate), 
infection propagation rate (Spread Rate), recovery rate (Recovery Rate), 
population size and the maximum number of iterations. The sensitivity 
analysis tests are performed by trying different values for each param-
eter over a reasonable range for a subset of the datasets. Each parameter 
under test is assigned three values while the best settings for other pa-
rameters are fixed. 

Loudness factor is an important parameter of BA (see Eq. (6)). It 
controls the search process where it decreases by increasing the itera-
tions until reaching approximately zero by search termination. A0 rep-
resents the initial loudness in Eq. (6) and has a great influence on the 
value of loudness through the rest of the iterations. Table 6 shows the 
influence of A0on the performance of BPINF for a set of sequences that 

Table 2 
The settings of parameters of various examined MAs.  

Algorithm Parameter Value 

SW alignment Match +1.0 
ge − 0.5 
go − 1.0 

FLAT SCA A 2.2 
ASCA-PSO W 0.25 

C1, C2 0.5 
A 2.0 

BA A0 0.8 
F_min 5.0 
F_max 20 
А 0.95 
Γ 2 

BPINF, BA-PSO-1, BA-PSO-2, BA-CSA and BA-DE A0 0.8 
F_min 5.0 
F_max 20 
А 0.95 
Γ 2 
W 0.25 
C1, C2 0.5 
Inf_Rate 0.30 
Spread_Rate 0.70 
Recovery_Rate 0.30 
D 25  
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have a product that ranges from 3,000,000 to 8000000. Three values 
(0.1, 0.6, and 0.8) are examined for this parameter. The performance is 
worst at (A0 = 0.1) while it increases as increasing A0 (which may be 
justified by improving search space exploration), until reaching the best 
performance at (A0 = 0.8). 

The pulse emission rate (r) which is described in Eq. (7), decays as 
the search proceeds. r0 represents the initial pulse emission rate and 
three values of r0 (0.1, 0.5, and 0.8) are used to test its influence on the 
performance of BPINF. In Table 6 (r0 = 0.1) delivers the best perfor-
mance while the performance was decreasing when increasing r0. 

The weight inertia (w) mentioned in Eq. (9) is used in updating the 
movement of the agents according to the PSO strategy. It controls the 
influence of the velocity of the previous iteration on the new velocity in 
the current iteration. The allowable range of w is from 0.2 to 0.9 (Ken-
nedy, 1995). Three values of w (0.25, 0.5, and 0.9) are examined to test 
the influence of w on performance. Table 6 shows the results of changing 
w,where small values lead to better performance over large values. The 
best performance is reported at (w = 0.2) using experimental tunning. 

The infection rate (Inf Rate) BPINF is employed for controlling the 

Table 3 
Average LCCS similarity percentage (%) measured by FLAT for compared optimizers.  

m*n  N  PSO IMO IMO-PSO SCA ASCA-PSO BA BA-PSO-1 BA-PSO-2 BA-DE BA-CSA BPINF 

250,000 40 53 50 87 56 89 39 73 71 81 78 92 
350,000 40 52 53 87 55 89 36 75 73 78 75 92 
550,000 100 54 58 88 58 85 37 71 70 79 76 90 
750,000 120 51 56 91 55 86 34 69 72 77 74 91 
1,000,000 150 52 51 88 56 82 34 68 74 76 73 90 
1,400,000 180 48 48 85 50 78 36 70 69 70 65 92 
1,800,000 200 45 52 84 48 80 35 62 68 67 65 89 
2,200,000 240 46 47 81 49 78 34 63 67 69 64 91 
2,600,000 400 39 43 84 44 76 33 58 62 61 56 90 
3,000,000 400 38 41 87 41 80 32 55 60 62 59 90 
4,000,000 450 42 44 86 44 75 33 52 61 58 54 91 
5,000,000 450 43 45 84 45 78 34 53 59 59 56 90 
6,000,000 450 45 39 89 46 74 34 63 60 60 58 88 
7,000,000 500 40 38 81 43 75 35 65 62 56 52 87 
8,000,000 700 39 39 84 40 73 33 64 61 52 47 84 
9,000,000 900 36 37 75 38 74 34 60 57 50 43 85 
11,000,000 1000 36 33 80 39 71 36 50 56 51 46 81 
13,000,000 1300 32 30 70 36 70 31 53 57 47 41 81 
15,000,000 1600 27 31 71 32 71 28 45 50 42 38 78 
18,000,000 1900 31 29 68 34 69 29 42 47 44 38 79 
21,000,000 2200 29 28 65 30 70 26 38 48 39 33 80  

Table 4 
Standard deviation of LCCS similarity percentage measured by FLAT for compared optimizers.  

m*n  PSO IMO IMO-PSO SCA ASCA-PSO BA BA-PSO-1 BA-PSO-2 BA-DE BA-CSA BPINF 

250,000  2.24  2.28  1.28  3.52  0.90  3.64  0.64  0.37  0.89  0.89  0.56 
350,000  1.52  1.79  1.00  1.96  0.75  2.08  1.65  0.33  2.31  2.31  0.75 
550,000  2.57  2.64  1.28  1.76  1.01  1.88  0.85  0.66  1.19  1.19  0.32 
750,000  2.27  2.41  0.77  2.70  0.94  2.82  0.95  1.13  1.33  1.33  0.19 
1,000,000  2.93  3.12  1.11  4.48  1.15  4.60  2.49  0.92  3.73  3.73  0.75 
1,400,000  1.58  1.59  0.85  3.92  0.69  4.04  0.77  0.14  1.15  1.15  0.39 
1,800,000  2.09  2.41  1.12  2.05  0.94  2.17  1.29  1.46  1.93  1.93  0.50 
2,200,000  1.77  2.22  0.79  2.26  0.88  2.38  1.43  1.08  2.14  2.14  0.58 
2,600,000  1.89  2.32  1.47  1.58  0.91  1.70  1.11  0.95  1.80  1.80  0.35 
3,000,000  1.59  1.91  0.96  2.90  0.79  3.02  0.96  0.87  1.56  1.56  0.69 
4,000,000  4.31  4.45  1.31  9.22  1.55  9.34  2.73  2.49  4.44  4.44  0.86 
5,000,000  2.07  2.32  1.49  3.12  0.91  3.24  4.12  0.79  6.71  6.71  0.18 
6,000,000  2.53  2.67  1.10  1.18  1.01  1.30  1.01  1.56  1.64  1.64  0.35 
7,000,000  3.55  3.72  1.27  1.35  1.33  1.47  0.84  0.44  1.36  1.36  0.43 
8,000,000  0.75  1.02  0.92  2.35  0.52  2.47  1.65  0.09  2.68  2.68  0.67 
9,000,000  5.51  5.91  2.35  2.83  1.99  2.95  1.38  4.11  2.24  2.24  0.79 
11,000,000  1.4  1.79  1.00  1.79  0.75  1.91  0.48  0.49  2.75  2.75  0.90 
13,000,000  1.61  1.95  1.13  1.91  0.8  2.03  1.62  0.52  2.30  2.30  0.61 
15,000,000  1.2  1.35  1.50  1.35  0.62  1.47  1.02  0.98  2.33  2.33  0.31 
18,000,000  2.08  2.20  1.31  3.39  0.88  3.51  1.92  1.06  2.70  2.70  0.56 
21,000,000  2.14  2.47  1.51  2.59  0.43  2.71  0.64  0.92  1.70  1.70  0.23  

Fig. 7. Average standard deviation of BPINF-based FLAT versus other exam-
ined versions. 
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degree of infection through population conditioned to a boundary of 
(2D) around the first best solution (α). Table 6 presents the impact of this 
parameter on BPINF performance. A small value of Inf Rate leads to 
better performance than higher ones. Inf Rate which is located in the 
range from 0.25 to 0.35, can produce acceptable performance; however, 
based on the experimental tuning, the best performance is registered at 
(Inf Rate = 0.3). 

The spread rate (Spread Rate) controls the propagation of the infec-
tion through the agents where three randomly chosen agents can be 
additionally infected. Three values of Spread Rate (0.3, 0.7, and 0.9) are 
examined. In Table 6, the best choice of Spread Rate is 0.7 using the 
experimental tunning, where the range from 0.6 to 0.8 produces 
acceptable performance. Raising the value of Spread Rate up to 0.9 
negatively impacts the performance due to the small probability of 
generating a random number that exceeds 0.9. 

The recovery rate parameter (Recovery Rate) controls the recovery 
operation of infected agents so that it can be updated conventionally 
toward the second-best solution (β). In Table 6, for small values such as 
(Recovery Rate = 0.1), it can produce better performance than for 
higher value (Recovery Rate = 0.8). Conversely, the small value of 

Recovery Rate as the probability of recovery may lead to a weak explo-
ration phase, and hence falling into local optima. So that, choosing the 
value of Recovery Rate at (0.3) provides a balanced compromise for the 
sake of achieving a satisfying quality of solutions. 

For the population size, different values such as (100, 400, and 800) 
are used in order to test the influence on the performance of BPINF. In 
Table 6, the population size (100) produced a lower performance than 
that one reported by larger size, which is an obvious result. However, for 
relatively small-length sequences, increasing population size over 100 is 
not suggested in order to keep the execution time of FLAT at reasonable 
limits. Furthermore, the number of exhausted search iterations is 
examined at the values (10, 30, and 60). For a value of (10) BPINF 
performance is the lowest. However, as the number of iterations is 
increased, the performance is increased as well but gets saturated at 
some limit. In Table 6, increasing the total number of iterations from 
(30) to (60) does not improve the BPINF perfomance. 

6. BPINF-based FLAT for COVID-19 

The promising numerical results of BPINF, when applied to operate 
FLAT for some conventional datasets, pave the way to examine such a 

Table 5 
Wilcoxon test results for the numerical results of various FLAT versions against BPINF.  

m*n  PSO IMO IMO-PSO SCA ASCA-PSO BA BA-DE BA-CSA BA-PSO-1 BA-PSO-2 

250,000 4.0E-06 2.5E-05 2.8E-07 7.7E-06 3.9E-07 2.1E-06 2.0E-06 1.3E-05 2.5E-06 3.5E-05 
350,000 1.4E-06 3.2E-06 1.8E-06 4.7E-06 2.3E-06 2.6E-06 1.6E-07 1.5E-06 2.9E-07 1.9E-06 
550,000 8.5E-07 4.6E-05 1.0E-06 5.8E-06 8.0E-08 2.2E-06 3.2E-07 3.1E-05 2.5E-06 3.4E-05 
750,000 5.5E-06 2.9E-06 5.5E-07 1.1E-05 3.8E-08 1.7E-06 3.5E-05 2.0E-05 7.7E-05 6.6E-05 
1,000,000 1.2E-05 4.1E-07 2.6E-07 2.3E-05 2.4E-07 1.5E-06 5.1E-06 3.9E-07 7.0E-06 4.1E-07 
1,400,000 6.2E-06 3.2E-06 5.9E-06 1.3E-05 2.4E-06 9.5E-06 1.6E-06 2.2E-05 3.5 E-06 2.3E-05 
1,800,000 9.1E-07 4.5E-06 8.1E-07 1.5E-06 3.5E-07 1.2E-06 2.2E-07 4.5E-05 4.2E-07 5.6E-05 
2,200,000 1.3E-06 1.0E-05 1.0E-08 1.9E-06 1.3E-07 1.2E-06 1.7E-04 2.8E-06 3.3E-04 4.6E-06 
2,600,000 4.7E-06 3.8E-05 2.5E-06 2.8E-05 1.2E-06 2.9E-06 4.8E-05 2.6E-04 7.1E-05 6.2E-04 
3,000,000 5.2E-07 1.4E-06 1.4E-07 1.4E-06 1.5E-07 1.2E-06 2.5E-05 2.0E-07 7.0E-05 5.0E-07 
4,000,000 1.0E-05 1.5E-06 1.2E-06 1.4E-05 3.3E-07 1.3E-06 2.2E-07 6.9E-05 7.0E-06 7.1E-05 
5,000,000 1.1E-06 9.5E-06 1.8E-06 2.4E-06 9.7E-07 1.9E-06 3.0E-04 2.3E-07 3.5E-04 6.3E-07 
6,000,000 6.3E-05 7.7E-05 3.4E-07 8.0E-05 1.8E-08 5.1E-07 2.9E-05 3.9E-05 7.0E-05 4.5E-05 
7,000,000 9.1E-07 1.8E-06 1.3E-07 1.2E-06 4.9E-07 1.2E-06 3.2E-06 5.0E-07 7.0E-06 5.3E-07 
8,000,000 6.0E-07 5.6E-07 3.4E-07 2.3E-06 2.1E-08 4.5E-07 1.2E-05 4.4E-04 6.0E-05 5.3E-04 
9,000,000 6.5E-06 5.9E-06 4.0E-08 8.4E-05 4.7E-07 1.4E-06 7.3E-07 1.4E-05 3.7E-06 4.3E-05 
11,000,000 6.9E-07 3.5 E-06 8.5E-06 2.2E-06 5.1E-06 1.3E-05 9.5E-07 2.2E-06 2.1E-06 2.4E-06 
13,000,000 2.3E-07 4.0E-07 2.8E-07 2.7E-07 4.0E-07 2.5E-06 1.8E-08 1.7E-05 3.5E-06 3.2E-05 
15,000,000 6.2E-06 3.3E-04 3.8E-07 1.5E-05 8.9E-08 3.9E-07 3.5E-07 4.9E-04 4.3E-06 5.3E-04 
18,000,000 6.0E-07 1.6E-06 9.8E-06 1.4E-06 5.3E-06 2.8E-05 2.8E-06 1.8E-05 5.3E-06 4.3E-05 
21,000,000 3.2E-06 1.8E-06 1.0E-07 1.7E-05 4.5E-08 1.4E-07 9.3E-07 1.3E-04 1.6E-06 2.3E-04  

Fig. 8. Convergence curve of BPINF.  
Fig. 9. The execution time of FLAT using BPINF technique against SW for 
variable lengths. 
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procedure for investigating the newly discovered sequences like the 
protein of COVID-19 virus. BPINF-based FLAT is evaluated to detect the 
LCCS between the protein of COVID-19 virus, and a set of diseases were 
gathered from NCBI such as (1) Middle East respiratory syndrome 
coronavirus (MERS-CoV), (2) Hepatitis B, (3) Severe acute respiratory 
syndrome coronavirus (SARS-CoV), (4) Dengue virus and (5) Cowbox 
virus. Table 7 shows the results of FLAT based on BPINF when looking 
for LCCS in comparison of SW algorithm (Smith & Waterman, 1981) and 
the other relevant FLAT versions. The column score presents the length 
of the detected near-exact LCCS for each technique besides the exact 
LCCS that can be found by the exact SW algorithm. 

In Table 7, FLAT using BPINF can achieve a high percentage of the 
exact LCCS found by the SW algorithm while other algorithms report 
lower-percentage solutions. The sequences may have many common 
subsequences with different lengths; however, the objective is to find the 
longest one (LCCS) or as high a percentage of it as possible. The 1st 
disease (MERS-CoV), 4th disease (Dengue virus), and 5th disease 
(Cowbox virus) have many LCCS with 5 residues, and BPINF is able to 
find one of such LCCS. ASCA-PSO and IMO-PSO achieve a percentage of 
exact LCCS but with a lower length, while the rest of the algorithms of 
comparison fail to find a portion of the exact LCCS. For the 3rd disease 
(SARS-CoV), the exact LCCS has a length of 280 residues, and BPINF 
succeeded in achieving the highest portion of it (30 residues), where the 
fragment size used in the experimental tests is 50 residues. Besides, it is 
noticed from Table 6 that the length of found near-exact LCCS has 
different lengths. Such results are sensitive to the positions of the frag-
ments cut, such as in cases (1) and (2) illustrated in Figs. 10 and 11. 

For case (1) in Fig. 10, the agent points to the start of the exact LCCS 
(the blue-filled rectangle) with positions (PA) in sequence (A) and po-
sition (PB) in sequence (B). The two fragments are cut with length (LF) 
which is equal to the length of the exact LCCS. Hence when the two cut 
fragments are aligned the maximum possible LCCS with length (W) can 
be found using FLAT (Fig. 12). 

This case is rarely occurred due to the following reasons:  

• It is impossible to guess the length of exact LCCS from the very 
beginning, and thus one user could assign it as the length of the cut 
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Fig. 10. The execution time of FLAT using BPINF technique versus other algorithms.  

Table 6 
Results of conducted sensitivity analysis of the BPINF parameters.  

m*n  Performance of Parameters 

Loudness (Ao) Pulse Rate Emission (ro) 

Ao ¼ 0.1 Ao ¼ 0.6 Ao ¼ 0.8 ro ¼ 0.1 ro ¼ 0.5 ro ¼ 0.8 

3,000,000 65 85 90 90 82 78 
4,000,000 73 82 91 91 79 76 
5,000,000 68 84 90 90 78 78 
6,000,000 63 80 88 88 81 72 
7,000,000 60 83 87 87 76 74 
8,000,000 61 81 84 84 78 73  

m*n  Weight Inertia (w) Inf_rate 

w ¼ 0.2 w ¼ 0.5 w ¼ 0.9 0.1 0.3 0.9 

3,000,000 90 75 60 79 90 60 
4,000,000 91 73 65 77 91 59 
5,000,000 90 69 63 74 90 57 
6,000,000 88 63 61 71 88 61 
7,000,000 87 68 59 65 87 62 
8,000,000 84 72 60 62 84 58  

m*n  Spread_rate Recovery_rate 

0.3 0.7 0.9 0.1 0.3 0.8 

3,000,000 89 90 72 82 90 68 
4,000,000 90 91 81 75 91 72 
5,000,000 87 90 73 77 90 66 
6,000,000 83 88 79 79 88 69 
7,000,000 86 87 74 76 87 71 
8,000,000 83 84 72 73 84 67  

m*n  Population Size Iteration 

100 400 800 10 30 60 

3,000,000 43 90 91 62 90 90 
4,000,000 39 86 90 69 91 91 
5,000,000 41 84 89 65 90 90 
6,000,000 37 85 91 69 88 88 
7,000,000 34 74 88 59 87 87 
8,000,000 32 69 86 63 84 84  
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Table 7 
Detecting the LCCS between COVID-19 virus with other viruses with FLAT using BPINF and other versions.  

Virus Protein Name Technique Score LCCS 

1 MERS-CoV SW 5 CVYSV 
SCA 3 LAT 
ASCA-PSO 3 QVL 
IMO 2 NR 
IMO-PSO 3 LSA 
BA 2 HT 
BA-DE 3 YSV 
BA-CSA 4 LEGN 
BA-PSO-1 3 NRA 
BA-PSO-2 4 LPTG 
BPINF 5 QVLSA 

2 Hepatitis B SW 5 SIFSR 
SCA 5 SIFSR 
ASCA-PSO 5 SILSP 
IMO-PSO 3 LSP 
IMO 3 ILS 
BA 3 IGD 
BA-DE 4 SIFS 
BA-CSA 4 IGD 
BA-PSO-1 3 FSR 
BA-PSO-2 4 IGDA 
BPINF 5 SIFSR 

3 SARS-CoV SW 280 SGFRKMAFPSGKVEGCMVQVTCGTT 
TLNGLWLDDVVYCPRHVICTSEDML 
NPNYEDLLIRKSNHNFLVQAGNVQL 
RVIGHSMQNCVLKLKVDTANPKTPK 
YKFVRIQPGQTFSVLACYNGSPSGVY 
QCAMRPNFTIKGSFLNGSCGSVGFNID 
YDCVSFCYMHHMELPTGVHAGTDLE 
GNFYGPFVDRQTAQAAGTDTTITVNV 
LAWLYAAVINGDRWFLNRFTTTLNDFN 
LVAMKYNYEPLTQDHVDILGPLSAQTG 
IAVLDMCASLKELLQNGMNGRTILGSA 
LLEDEFTPFDVVRQCSGVTFQ 

SCA 12 TIKGSFLNGSCG 
ASCA-PSO 30 YNYEPLTQDHVDILGPLSAQTGIAVLDMCA 
IMO-PSO 23 SALLEDEFTPFDVVRQCSGVTFQ 
IMO 18 EGCMVQVTCGTTTLNGLW 
BA 11 TIKGSFLNGSC 
BA-DE 15 EDMLNPNYEDLLIRK 
BA-CSA 16 GTTTLNGLWLDDTVYC 
BA-PSO-1 14 SGFRKMAFPSGKVE 
BA-PSO-2 16 FTPFDVVRQCSGVTFQ 
BPINF 30 SGFRKMAFPSGKVEGCMVQVTCGTTTLNGL 

4 Dengue virus SW 5 IVTCA 
SCA 4 LTGY 
ASCA-PSO 5 SGNLL 
IMO 3 VLV 
IMO-PSO 4 FLNG 
BA 4 FDGS 
BA-DE 4 FDGS 
BA-CSA 4 TLVT 
BA-PSO-1 3 TLV 
BA-PSO-2 4 SGNL 
BPINF 5 ETLVT 

5 Cowbox virus SW 5 QAIAS 
SCA 4 IKRS 
ASCA-PSO 5 SVRVV 
IMO-PSO 4 IKRS 
IMO 3 VDS 
BA 2 VN 
BA-DE 3 RVV 
BA-CSA 4 VDSA 
BA-PSO-1 3 QVT 
BA-PSO-2 4 VNAS 
BPINF 5 SVRVV  
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fragment (LF). Besides, the length of LCCS is variable for different 
sequences.  

• In case of much increasing LF, the execution time of FLAT will 
enormously increase which affects the main advantage of using FLAT 
that is processing a reasonable execution time. Hence, the LF 
parameter setting represents a tradeoff between the quality of found 
near-exact LCCS and the execution time.  

• Pointing to the start of the exact LCCs by search agents is quite 
difficult where the positions of agents are updated based on random 
criteria. That means that if (PA) points to the start of exact LCCS in 
sequence (A), there is still a high probability that (PB) does not point 
to the start of exact LCCS in sequence (B). 

In case (2), the positions (PA) and (PB) point to some positions that 
differ from the start of the exact LCCS but are still close to it. Hence, the 
percentage of cutting part of one exact LCCS by the cut fragments (de-
pends on LF starting from the cutting positions) will determine the 
length of the reported near-exact LCCS by an optimizer. Moreover, the 
length of the near-exact LCCS (W) is shorter than that one in the case (1). 
The main reason for such issue is the stochastic nature of MAs when 
updating the positions of search agents, as well as the predetermined 
length of cut fragments which is a critical parameter for FLAT. 

The main merits of BPINF-based FLAT can be summarized as follows:  

1- Detecting near-exact LCCS with an average similarity percentage of 
88% with the exact LCCS that can be found by SW for a product of 

sequence length up to 21,000,000. While the rates of FLAT using 
ASCA-PSO and IMO-PSO are 78% and 82%, resp.  

2- The proposed infection propagation mechanism is able to reduce the 
chances of trapping in local optima, which is reflected in the 
behavior of BPINF when applied for FLAT in comparison of both 
conventional MAs and recent related hybrid techniques to the same 
problem. 

However, the proposed approach still suffer from the following listed 
limitations:  

1- Despite, BPINF-based FLAT is able to achieve high performance by 
finding 88% (on average) of the exact LCCS for tested sequences with 
a product of the length of 21,000,000, but the performance is ex-
pected to degrade for longer sequences.  

2- The fragment length (LF) was tuned practically to be (50) residues in 
order to keep the balance between the execution time and the quality 
of solutions. Such length value may be considered limited when 
compared to the real length of existing LCCS. Hence, the fragment 
length needs to be tuned in a more clever way so that a satisfying 
performance can be reached in a reasonable time.  

3- The developed infection mechanism of BPINF propagates infection 
through agents, which adds execution time overhead. As the popu-
lation grows, which is a need to face extreme sequence length, then 
the number of infected agents needs to be increased too in order to 
maximize the benefit of such mechanism. In other words, the number 
of infected agents is better to get increased as population size in-
creases. But this modification for the proposed BPINF will be stuck 
with the aim of reducing the execution time as possible to meet the 
goals of operating FLAT. 

7. Conclusions and future research directions 

This work presents an enhancement for FLAT based on a novel 
integration mechanism between BA and PSO algorithms. The integra-
tion mechanism is based on updating the positions of search agents using 
BA operators to first explore the input sequences to find the best region 
that may have the longest common subsequences. After exploration, the 
first and second-best solutions are reported and the exploitation phase 
starts to move the agents using PSO operator. In the proposed mecha-
nism (BPINF), during the exploitation, some agents are infected toward 
the first best solution, while the non-infected agents are moved toward 
the second-best solution. The infection is transferred according to the 
current distance of the position of an agent to the first-best solution. 
Besides, each infected agent can transfer the infection to the other three 
agents in order to propagate the infection through the population. The 
main merit of the BPINF is increasing the diversity of generated solu-
tions which maximizing the chance to avoid early trapping in local 
optima during the search. The infected agents can be recovered based on 
some stochastic criteria, which also helps to increase the diversity of 
generated solutions. The performance of FLAT based on BPINF is eval-
uated on a real protein sequence that has a various range of sequence 
lengths (have a product of lengths from 250,000 to 21,000,000). The 
BPINF shows outstanding performance for detecting near-exact LCCS in 
comparison to other versions of FLAT based on ASCA-PSO, IMO-PSO, 
BA-PSO-1, BA-PSO-2, BA-DE, BA-CSA, and SCA. Besides, the small 
standard deviation, relative to other versions of FLAT, shows the high 
robustness and precision of the proposed technique. The developed 
technique shows usefulness for investigating newly discovered biolog-
ical sequences such as the protein of COVID-19. Results of LCCS detec-
tion between COVID-19 and the other five viruses are available using 
BPINF-based FLAT. 

The findings of current research give a great motivation to continue 
investigating the recently discovered genetic strains of COVID-19. 
Moreover, it is interesting to implement a faster version of BPINF- 
based FLAT using a GPU accelerator. In the later environment, the 

Fig. 11. Case of finding the exact LCCS.  

Fig. 12. Case of finding portions of the exact LCCS.  
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critical parameters such as population size, fragment length, and 
infection rate can be adapted in the more wider window to efficiently 
seek search space of huge sequences without losing the advantage of 
limited execution time (i.e., reasonable execution time in comparison of 
the time taken by the standard SW algorithm). 
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