

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Expert Systems With Applications 189 (2022) 116063

Available online 20 October 2021
0957-4174/© 2021 Elsevier Ltd. All rights reserved.

A biological sub-sequences detection using integrated BA-PSO based on
infection propagation mechanism: Case study COVID-19

Mohamed Issa a,*, Ahmed M. Helmi a,c, Ammar H. Elsheikh d, Mohamed Abd Elaziz b,e,f

a Computer and Systems Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
b Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
c Engineering and Information Technology College, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
d Department of Production Engineering and Mechanical Design, Tanta University, Tanta 31527, Egypt
e Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
f Faculty of Computer Science & Engineering, Galala University, Egypt

A R T I C L E I N F O

Keywords:
Longest common consecutive subsequence
(LCCS)
COVID-19
Computaional Biology
Meta-heuristics
BA algorithm

A B S T R A C T

The longest common consecutive subsequences (LCCS) play a vital role in revealing the biological relationships
between DNA/RNA sequences especially the newly discovered ones such as COVID-19. FLAT is a Fragmented
local aligner technique which is an accelerated version of the local pairwise sequence alignment algorithm based
on meta-heuristic algorithms. The performance of FLAT needs to be enhanced since the huge length of biological
sequences leads to trapping in local optima. This paper introduces a modified version of FLAT based on
improving the performance of the BA algorithm by integration with particle swarm optimization (PSO) algorithm
based on a novel infection mechanism. The proposed algorithm, named BPINF, depends on finding the best-
explored solution using BA operators which can infect the agents during the exploitation phase using PSO op-
erators to move toward it instead of moving toward the best-exploited solution. Hence, moving the solutions
toward the two best solutions increase the diversity of generated solutions and avoids trapping in local optima.
The infection can be propagated through the agents where each infected agent can transfer the infection to other
non-infected agents which enhances the diversification of generated solutions. FLAT using the proposed tech-
nique (BPINF) was validated to detect LCCS between a set of real biological sequences with huge lengths besides
COVID-19 and other well-known viruses. The performance of BPINF was compared to the enhanced versions of
BA in the literature and the relevant studies of FLAT. It has a preponderance to find the LCCS with the highest
percentage (88%) which is better than other state-of-the-art methods.

1. Introduction

Sequence alignment is one of the important tasks in bioinformatics
which is used to measure the similarity and relationships between bio-
logical and genomic sequences. Sequence alignment operation is used as
an essential step with other biological analysis processes such as
phylogenetic tree construction (Feng & Doolittle, 1990), assembly of
DNA fragments (L. Li & Khuri, 2004), protein structure prediction
(Morshedian, Razmara, & Lotfi, 2019; Xiong, 2006), and drug design
(Xiong, 2006). The local sequence alignment is a specific alignment
operation that aims to discover the longest common consecutive sub-
sequences (LCCS) between two biological sequences. Hence, LCCS can
help biologists to reveal the common features between the considered
sequences. The contemporary worldwide circumstances resulting from

COVID-19 spreading out (Zu et al., 2020) motivate researchers in
diverse fields to recruit their tools to participate in such pandemic
control efforts. Local alignment can be employed for seeking biological
databases to detect probable LCCS between COVID-19 and other known
viruses. Such findings aim to improve the knowledge of the nature of this
emerging virus and hence to help the specialists in vaccination and drug
design fields.

From the Computer Science side, the problem of LCCS has been
solved using the historical Smith-Waterman (SW) alignment algorithm
(Smith & Waterman, 1981). It can detect the exact LCCS between two
sequences since it is based on a dynamic programming approach (Cor-
men, 2009). However, the time complexity of SW algorithm, which is
O(n3), where n is the length of the input sequences, ceases the direct
application of such technique for extreme length sequences. For
example, the sequence of COVID-19 has a length of more than 7000 bp

* Corresponding author.
E-mail addresses: Mamohamedali@eng.zu.edu.eg (M. Issa), Ammar_elsheikh@f-eng.tanta.edu.eg (A.H. Elsheikh).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2021.116063
Received 29 April 2021; Received in revised form 9 October 2021; Accepted 9 October 2021

mailto:Mamohamedali@eng.zu.edu.eg
mailto:Ammar_elsheikh@f-eng.tanta.edu.eg
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2021.116063
https://doi.org/10.1016/j.eswa.2021.116063
https://doi.org/10.1016/j.eswa.2021.116063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.116063&domain=pdf

Expert Systems With Applications 189 (2022) 116063

2

(Shereen, Khan, Kazmi, Bashir, & Siddique, 2020).
The recently presented Fast Local Aligner Technique (FLAT) in (Issa,

Hassanien, Oliva, et al., 2018) can accelerate the process of LCCS
detection. It aims to find a near-exact LCCS in a reasonable time. In
FLAT, the input sequences are divided into short fragments, which can
be (individually) aligned iteratively using SW algorithm. Thus the
operational time of SW algorithm will be highly degraded. Meta-
heuristic Algorithms (MAs) are employed for looking for the best loca-
tions of fragment cut in input sequences. Sequences with huge lengths
still introduce a challenge facing the application of FLAT where the
working MA may get trapped in local optima regions (Issa & Abd Elaziz,
2020; Issa et al., 2018). Early convergence during the search process
results in poor performance of FLAT.

As shown in Fig. 1, a sequence may have many subsequences (which
are represented in yellow-filled rectangles) but the desired one is the
exact LCCS with length (K).

FLAT can be used to find the near-exact LCCS, which is part of the
exact one. As shown in Fig. 1, the blue-filled rectangle with length (W) is
part of the exact LCCS with length (K). Hence, the development of FLAT
aims to two points:

1- To find a common subsequence around the exact LCCS, not around
other common subsequences.

2- Increasing the length of near-exact LCCS with length (W) to cover a
high percentage of the exact LCCS with length (K).

FLAT is categorized as a discrete optimization problem where MA is
used for choosing the positions at which the fragments to be cut. The
positions lie in the range [1,L] where L is the length of the sequence.
Hence, the positions are integer numbers 1, 2, 3,…, L. The discrete na-
ture of FLAT problem requires specific adaptation for the continuous
optimization algorithms such as Particle Swarm Optimization (PSO)
(Kennedy, 1995) and Bat Algorithm (BA) (Yang, 2010) when working in
the problem.

Therefore, this paper is mainly devoted to improving the perfor-
mance of FLAT via more clever MA when applied to recent sequences

such as the protein of COVID-19. The key entry of handling the
entrapment in local optima regions is to apply a more balanced explo-
ration/exploitation search strategy. On the other hand, previous related
studies to FLAT application (Issa & Abd Elaziz, 2020; Issa et al., 2018)
suggested that hybrid MA can be more effective than single optimizers
for such complex problems (e.g., the product of the length of input se-
quences is up to 21,000,000). In this context, the No-Free-Lunch (NFL)
theorem (Wolpert & Macready, 1997) that states that no one MA can
solve all optimization problems with the same efficiency opens a win-
dow for developing new algorithms that can both improve the efficiency
of existing ones and achieve better results for emerging problems.

In this work, a novel hybrid technique is developed based on PSO
(Kennedy, 1995) and BA (Yang, 2010). PSO, which is among the his-
torical MAs is an efficient optimization technique for diverse applica-
tions (Zahid, Hasan, Khan, & Ullah, 2015). As well, the superiority of BA
in processing optimization problems with huge search space has been
proven in many areas such as structure optimization (Hasançebi, Teke,
& Pekcan, 2013), training Artificial Neural Networks (ANNs) (Jaddi,
Abdullah, & Hamdan, 2015), DC wheel motor problem (Bora, Coelho, &
Lebensztajn, 2012), load frequency control (Elsisi, Soliman, Aboelela, &
Mansour, 2016), and other problems in the literature (Yang & He,
2013).

The combination between PSO and BA is taking place in the light of a
novel infection propagation mechanism. The proposed technique,
named BPINF, implements the movement strategy of BA to explore the
input biological sequences to detect the candidate fragments with LCCS,
in the first phase. In the second phase, the movements of the population
are updated based on the operators of PSO to enhance the exploitation of
the search space. The first-best solution in the first phase carries an
infection that may transfer to other solutions during the exploitation
phase. Using distance-based criteria, the first-best solution will infect
nearby ones while far solutions may be infected with some probability.
In the case of non-infection, the agents update their movement based on
PSO’s operators toward the second-best solution. Moreover, the infected
agents can be recovered and get attracted to the second-best solution.

Thus, the proposed technique can generate more diverse solutions

Nomenclature

Acronyms
ALO Ant Lion Optimizer
ANNs Artificial Neural Networks
BA Bat Optimization Algorithm
BFA Bacterial Foraging Algorithm
BPINF BA-PSO hybrid technique with infection mechanism
DE Differential Evolution
CSA Cuckoo Search Algorithm
FLAT Fast Local Aligner Technique
GA Genetic Algorithms
GSA Gravitational Search Algorithm

GWO Grey Wolf Optimization
IMO Ions Motion Optimization
IWO Invasive Weed Optimization
LBBA Leader-Based BA Algorithm
LCCS Longest Common Consecutive Subsequences
MA Meta-heuristic Algorithm
NFL No-Free-Lunch Theorem
PSO Particle Swarm Optimization
SCA Sine Cosine Algorithm
SW Smith-Waterman
TS Tabu search
WOA Whale Optimization Algorithm

Fig. 1. The near-exact LCCS versus the exact LCCS (Issa et al., 2018).

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

3

based on the novel infection mechanism among solutions which hope-
fully can overcome the early entrapment in local optima when handling
biological sequences with huge lengths.

The extensive experimental work in the paper shows that the pro-
posed BPINF can improve the performance of FLAT when applied to
many datasets with the variant product of lengths between 25,000 and
21,000,000. BPINF is impartially compared to other known hybrid
techniques in literature such as integrated PSO with Ions Motion Opti-
mization (IMO-PSO) (Issa & Abd Elaziz, 2020), Adaptive Sine Cosine
Optimization (ASCA-PSO) [9], BA-Cuckoo Search Algorithm (CSA)
(Shehab, Khader, Laouchedi, & Alomari, 2019), BA-Differential Evolu-
tionary (DE) (Yildizdan & Baykan, 2020) and two different versions of
BA-PSO (Ferdowsi, Farzin, Mousavi, & Karami, 2019; Manoj, Ranjitha,
& Suresh, 2016). Moreover, the protein of COVID-19 is investigated
against other five viruses, and the LCCS results are reported for many
hybrid techniques, as well as the standard SW algorithm. Later simula-
tion figures out that BPINF can achieve a near-score to that one of SW
algorithm in most examined datasets. This supports the motivation of
this paper regarding the enhancement of FLAT, in particular for newly
emerged biological sequences with huge length.

The main contributions of this work can be summarized as follows:

1- A novel integrated scheme between BA and PSO algorithms is pre-
sented which is based on an infection mechanism for enhancing the
performance of FLAT.

2- FLAT using the proposed hybrid mechanism was tested on real bio-
logical sequences in impartial comparison with other techniques in
the literature.

3- FLAT performance is examined on biological sequences with a
challenging dimension that is up to 21,000,000 of product length.

4- The findings of this work are directed at detecting the LCCS between
the recent COVID-19 and the other five viruses to verify the perfor-
mance of the proposed technique.

The rest of the paper is organized as follows: Section 2 introduces the
related literature review to current work. Section 3 introduces a brief
explanation of FLAT, besides the basic versions of each of PSO and BA.
Section 4 illustrates the characteristics of the proposed technique
(BPINF) for FLAT. Section 5 presents the results of testing the FLAT
version using BPINF on biological sequences. The proposed technique is
verified to detect the LCCS between the COVID-19 virus and other
known diseases in Section 6. Finally, Section 6 concludes the presented
work and provides future research directions.

2. Literature review

This section sheds light on the related literature work to the devel-
oped MAs and applied techniques in the current paper. First, some
relevant applications of BA in medical and bioinformatics fields are
illustrated, besides different versions and modifications of the algo-
rithm. After that, the trails of accelerating the SW algorithm are dis-
cussed, as well as the previous related studies that implemented FLAT.
Finally, various hybrid MAs are mentioned with a summary of the hy-
bridization methodology and applications.

BA was used in many medical and bioinformatics applications such
as gene selection in a cancer classification (Al-Betar, Alomari, & Abu-
Romman, 2020) where the algorithm was developed based on a new
operator called Triz. It showed notable superiority for gene selection
when tested on a dataset of Ten cancer benchmarks.

BA was applied to optimize the parameters of a least square support
vector machine (SVM) for disease classification in (Jiang, Li, Liao, &
Jiang, 2019). This work developed BA to avoid premature convergence
and avoiding trapping in local optima by calling chaotic functions for
population initialization and using a decreasing weight parameter. The
validation of this algorithm in (J. L. Jiang et al., 2019) was performed on
a Hear disease (Statlog) and Breast cancer dataset. Besides, many other

applications made use of BA, such as MR brain image segmentation
(Alagarsamy, Kamatchi, Govindaraj, Zhang, & Thiyagarajan, 2019),
human diseases prediction (Enireddy et al., 2021), and pathological
brain detection (Lu, Wang, & Zhang, 2020).

In (Shehab et al., 2019), BA was merged with CSA (BA-CSA) to speed
up CSA’s convergence but avoiding early stuck in local optima. For each
search step of an agent of CSA, updating equations of BA algorithm was
applied, and new solutions survive only in case of better fitness. In (Dao
et al., 2019), BA was hybrid with the Ant Lion algorithm (ALA) where
the updating operators of ALA were embedded into the updating
equations of BA. A leader-based BA algorithm (LBBA) was a developed
BA based on using several micro-bats as a leader instead of only one best
solution to influence the other agents (Neto, Pinto, Marcato, da Silva, &
Fernandes, 2019). The best solution or one of the leader’s solutions is
used for influencing other randomly selected agents. This developed
version of the BA was validated on the mobile robot localization
problem.

Moreover, DE was merged with BA (Yildizdan & Baykan, 2020)
where the updating mechanism of BA was modified to depend not only
on the best solution but also on the other agents in the population. This
helps in decelerating the convergence towards early found local optima
solutions, hence, increasing the population’s diversity. This work tried
to achieve the balance between exploration of BA and exploitation of
DE. In (Alihodzic & Tuba, 2014), another trial of merging BA with DE
was proposed where the crossover and mutation operators of DE were
modified, besides new pulse rate and loudness functions were
embedded. The performance of the developed BA-DE version in (Ali-
hodzic & Tuba, 2014) was validated on five mathematical benchmark
functions.

In (Pravesjit, 2016), the BA algorithm was developed by embedding
the reproduction step of the Genetic Algorithm (GA) to clone each agent
of the BA algorithm. Also, PSO was merged with GA (Garg, 2016) where
the mutation and crossover operators of GA were embedded into the
PSO update procedure. A hybrid algorithm of BA and Invasive Weed
Optimization (IWO) algorithm was introduced in (Yue & Zhang, 2019),
where IWO was applied to enhance the local search. The balance be-
tween exploration and exploitation was suggested based on a novel
inertia weight depending on Lagrange interpolation.

In addition, there were many trials for enhancing the PSO algorithm
(Kennedy, 1995) to make use of its exploitation’s efficiency. In (Şenel,
Gökçe, Yüksel, & Yiğit, 2019), PSO was merged with the Grey Wolf
Optimization (GWO) algorithm to gain the benefit of better exploitation
of PSO and better exploration of GWO. The agents are processed using
the updating mechanism of PSO and for each particle, there is a small
probability to update it using GWO’s updating strategy.

PSO was combined with Gravitational Search Algorithm (GSA)
(Eappen & Shankar, 2020) and the hybridization aims to balance be-
tween exploitation and exploration for the efficient spectrum of energy
sensing in cognitive radio network in 5G heterogeneous network. In
(Trivedi, Jangir, Kumar, Jangir, & Totlani, 2018), PSO was hybrid with
Whale Optimization Algorithm (WOA) to achieve balance between
exploration and exploitation, and the developed algorithm was vali-
dated on some mathematical benchmark functions.

In (Issa et al., 2018), a two-layer ASCA-PSO was presented as a
hybrid adaptive SCA with PSO. The bottom layer divides the agents into
groups which are updated using SCA’s updating strategy and the best
agent of each group is assigned to the top layer where updating strategy
of PSO is working. ASCA-PSO was validated on mathematical bench-
mark functions, then it is applied to enhance the performance of bio-
logical sequence local alignment (Cohen, 2004).

Moreover, PSO was combined with the IMO algorithm (Issa & Abd
Elaziz, 2020) to enhance the performance of locating the longest com-
mon subsequences of biological sequences and it was validated on
COVID-19 datasets. The developed PSO-IMO algorithm consists of the
execution of the two algorithms in a serial manner where the IMO is used
for exploring the search space while PSO is used to intensify the explored

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

4

solution founded.
The cooperation between BA and PSO was considered in some pre-

vious studies. In (Manoj et al., 2016), an improved version of BA using
PSO was proposed to enhance the image registration process for the
diagnosis of medical images.

Also, in (Yadav, Sharma, & Gupta, 2015) a hybrid mechanism of BA
and PSO was proposed for optimization of the location of UPFC in
electrical power systems. In (Manoj et al., 2016) and (Yadav et al.,
2015), BA and PSO were executed in a serial manner where the solutions
were explored by BA for some iterations, and then PSO intensifies the
best solution so far. Besides, BA was integrated with PSO to optimize the
labyrinth spillway (Ferdowsi et al., 2019). The population was divided
into two groups (one group for each algorithm) executed in parallel.
After each specified number of iterations, some search agents with the
worst fitness of each algorithm get replaced by that one with the best
fitness of the other algorithm.

Various research studies have pointed out the superiority of hybrid
MAs over single optimizers to address complex optimization applica-
tions. Table 1 introduces a gentle summary of some hybrid MAs that
involve BA and PSO. It is noticed that the hybridization between BA and
PSO received a notable interest in literature (Ferdowsi et al., 2019;
Manoj et al., 2016; Yadav et al., 2015). PSO has been called, as well, for
integration with other algorithms in different applications such as (Abd-
Elazim & Ali, 2013; Issa & Abd Elaziz, 2020; Issa et al., 2018; S. Jiang, Ji,
& Shen, 2014; Shen, Shi, & Kong, 2008; Yadav et al., 2015) which re-
flects its effective exploitation capabilities.

SW algorithm (Smith & Waterman, 1981) aims to find the accurate
LCCS between pair of biological sequence while Neeldemean-Wunch
global sequence alignment algorithm aims to find the whole alignment
between two sequences (Issa, Hassanien, Helmi, Ziedan, & Alzohairy,
2018; Needleman & Wunsch, 1970). Various trials have been devoted to
accelerate the SW algorithm such as (Zahid et al., 2015), a fast version of
this algorithm was proposed based on dividing the two sequences into
two portions and each portion is again divided into two sub-portions
until reaching the minimum length of sub-portions. Every two sub-
portions of the two sequences were aligned and if the score passed
some certain threshold then the length of sub-portions is increased and
the alignment process is repeated. The limitation of this technique is
ignoring the affine gap penalty when estimating the alignment score
which affects the alignment accuracy. Also, hardware accelerators were

used to accelerate the execution of the SW algorithm in a parallel
manner, such as using a graphical processing unit (GPU) (Ahmed et al.,
2019; Elloumi, Issa, & Mokaddem, 2013; Khajeh-Saeed, Poole, & Perot,
2010; Mohamed Issa, 2017; Zou et al., 2019). Moreover, the field-
programmable gate array (FPGA) was used to speed up the SW algo-
rithm (Benkrid, Liu, & Benkrid, 2009; Di Tucci, O’Brien, Blott, & San-
tambrogio, 2017; Issa, Bakr, Alzohairy, & Zeidan, 2012; Li, Shum, &
Truong, 2007; Yamaguchi, Tsoi, & Luk, 2011). The high cost of needed
hardware accelerators (GPUs and FPGAs) is one drawback in the latter
approach.

FLAT is a so-recent technique for solving the sequence alignment
problem. It was first developed based on ASCA-PSO in (Issa et al., 2018).
ASCA-PSO was developed to enhance the exploitation (performing the
search process in a narrow region in the search space) capabilities of SCA
with the benefit of the efficient search mechanism of PSO. Besides, IMO-
PSO [10] was developed to enhance FLAT’s performance. FLAT-ASCA-
PSO finds the near exact LCCS with a percent of 77% of the length of
the exact LCCS, while FLAT-IMO-PSO produced a percent 81%. The
main limitation of these FLAT methods was their poor performance
when FLAT was executed on biological sequences that have a product of
lengths up to 21,000,000. The reason for this degradation in FLAT’s
performance using ASCA-PSO and IMO-PSO is the extreme length of
sequences which leads the algorithms to be trapped in local optima.

This detailed literature review reveals the gaps of current techniques
to solve the LCCS problem for biological sequences. The exact method of
SW is time inefficient, and its hardware-based implementations seem
expensive in the case of huge length sequences. FLAT is a promising
stochastic technique that can report a near-optimal result in a reason-
able time but may suffer from the premature convergence of applied
optimizers which leads to performance degradation. On the other side,
BA gained popularity in bioinformatics problems, but it was applied for
neither sequence alignment nor FLAT in past research studies.
Furthermore, newly discovered biological sequences such as the protein
of COVID-19 with huge length require that FLAT should be incorporated
by efficient optimization algorithms. For challenging optimization
problems, such as listed in Table 1, hybrid techniques seem to outper-
form single optimizers. According to the aforementioned discussion, the
current paper introduces a hybrid version of BA and PSO using a novel
infection mechanism to improve FLAT performance. Such a combination
aims to enhance the capabilities of both techniques in tackling the

Table 1
Summary of some BA-based and PSO-based hybrid techniques.

Ref. Technique Hybridization methodology Application

(Issa et al., 2018) ASCA-
PSO*

PSO exploits the regions around solutions found by SCA LCCS between biological sequences

(Issa & Abd Elaziz,
2020)

IMO-PSO* IMO starts exploring the search space then PSO refines the found solutions
(exploitation phase)

LCCS between biological sequences

(Shehab et al., 2019) BA-CSA BA update procedure is applied to agents of CSA where new solutions survive
if fitness improves

Global numerical optimization

(Yildizdan &
Baykan, 2020)

BA-DE The population is updated randomly using improved BA or DE mechanism to
improve both exploration and exploitation

Global numerical optimization

(Manoj et al., 2016) BA-PSO PSO operators are applied to BA solutions in the exploitation phase ANN training for Enhancement of image registration process
of the diagnosis of medical images

(Ferdowsi et al.,
2019)

BA-PSO Swap and update mechanism is applied where best solutions of one
algorithm replace worst solutions in the other one

Design of the labyrinth spillway geometry

(Yadav et al., 2015) BA-PSO Non satisfied solutions in the PSO population are updated using BA operators Location of unified power flow controller in power systems
(Abd-Elazim & Ali,

2013)
PSO-BFA PSO is applied as a mutation operator for BFA individuals Design of power systems stabilizers in multimachine power

systems
(Shen et al., 2008) PSO-TS TS works as a local improvement procedure for PSO solutions Tumor classification using gene expression data
(Jiang et al., 2014) PSO-GSA Each updates its position with the contribution of both algorithms (co-

evolutionary technique)
Economic emission load dispatch problems

(Dao et al., 2020) BA-ALO Updating operators of ALO were embedded into the updating equations of
BA

Global numerical optimization

(Neto et al., 2019) BA-LBBA One of many micro-bats is assigned as a leader instead of only one best
solution to influence the other agents of LBBA

The mobile robot localization problem

(Garg, 2016) PSO-GA Balancing exploration and exploitation is achieved via incorporating the
crossover and mutation operators within PSO

Solving constrained optimization problems

*Studies which implement the FLAT technique.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

5

problem search space. The newly developed technique, namely BPINF,
helps FLAT to report better results than previous techniques such as (Issa
& Abd Elaziz, 2020; Issa et al., 2018) for both sequences of standard
biological datasets and the protein of COVID-19.

3. Preliminaries

In this section, the description of the FLAT procedure for the detec-
tion of LCCS between a pair of sequences is presented. As well as, the
procedure of the standard version of each of BA and PSO algorithms is
illustrated.

3.1. Flat

Sequence alignment is considered one of the frequently addressed
problems in bioinformatics. It aims to determine the regions of simi-
larities between genomic sequences like DNA, RNA, and protein. Such
similarity between aligned sequences expresses the corresponding sim-
ilarity in their function, their secondary and tertiary structure [46, 47].
Other operations like DNA fragment assembly [12] and construction of
phylogenetic trees [11] can also make use of sequence alignment.

In particular, local pairwise alignment between two sequences de-
pends on gap insertion incorrect places to achieve high scores [48]. The
famous SW technique [14] can solve the problem deterministically. It
follows a dynamic programming approach where, after filling a scores
matrix, the optimal solution can be found. For large sequences, the later
technique is expected to exhaust huge computational time rather than
memory. Fragmentation was employed to two huge length sequences to
extract many shorter length fragments, then applying the SW algorithm
becomes more time-efficient.

Let A and B denote two sequences of length L, each of them is divided
into several fragments with a length Lf . Applying the SW algorithm can
perform the alignment over the fragments and report the LCCS with
length W. Fig. 2 shows a simplified example of the fragmentation of two
sequences into shorter-length ones, where Seq1 and Seq2 are the input
two strings. After fragmentation into three fragments (i.e., substrings)
with Lf fragment length, the LCCS is found with length W.

Using stochastic optimization such as MAs involves pointing search
agents toward the position of the discovered LCCS. The defined fitness
function in Eq. (1) (Issa et al., 2018) is called to evaluate the determined
alignments during the search process.

fitness =
∑L

i=1

{
penalize(+ 1)scoreif Ai = Bi

penalizezerootherwise

}

(1)

where A and B are the aligned sequences, L denotes the length of aligned
sequences, and idenotes the index. According to implementing the SW
algorithm, the FLAT time complexity is O(TNL3

f) where T and N repre-
sent the maximum number of iterations and population size of the

applied optimizer, resp. Algorithm 1 presents a pseudo-code of FLAT.
Algorithm 1: The procedure of FLAT

1: Input: two sequences with length Seq1 and Seq2.
2: Output: LCCS between Seq1 and Seq2
3: Set the parameters: fragment length Lf , search agent size N, and number of

iterationsT
4: Initialize a random population where each agent marks two positions, one in

each sequence, in the range (1, length (Seq1 or Seq2) − Lf)
5: While T hasn’t been reached yet
6: Apply the SW algorithm to every two fragments pointed out by each agent.
7: Evaluate solutions using Eq. (1)
8: Move positions of search agents using the update procedure of applied optimizer

toward the location of fragments where LCCS is found.
9: End While

3.2. BA algorithm

The main characteristics of the echolocation process of micro-bats
motivated Yang (Yang, 2010) to design the basic version of BA. Dur-
ing flying to search for prey, bats tend to change position and velocity.
The emitted echolocation pulses, which is their tool to detect barriers
and preys, have a varying frequency (or varying wavelength) and
loudness value. Also, the pulse emission rate can be adapted according
to the proximity of the prey. Bat position represents the problem under
study solution while remaining properties are called for search and
update operations. In a population of BA, the i − th individual updates its
position xi using Eq. (2) (Yang, 2010):

x(t+1)
i = x(t)i + v(t+1)

i (2)

where vi is bat velocity, and t is the current iteration index. Bat velocity
is evolving during the search process according to the distance between
the current solution and the global best one xbest and the frequency fi as
given by Eq. (3) and Eq. (4) (Yang, 2010):

v(t+1)
i = v(t)i +(xbest − x(t)i)∙fi (3)

fi = fmin +(fmax − fmin)∙R (4)

where fmin and fmax determine the band of allowable frequencies, while
R ∈ [0, 1] is a randomly generated number. To improve exploitation
capabilities, BA involves applying a random walk to generate a local
solution around each individual using Eq. (5) (Yang, 2010).

xnew
i = xold

i + ∊∙A(t+1)
m (5)

where ε ∈ [− 1, 1] is a random value and A(t+1)
m represents the mean

loudness factor of all individuals in the current population. The loudness
factor is updated using Eq. (6) (Yang, 2010).

A(t+1)
i = α∙A(t)

i (6)

where 0 < α < 1 is a predetermined parameter, as well as an initial
value A0. The pulse emission rate, shown in Eq. (7), is employed to

Fig. 2. A simplified example of FLAT (Issa et al., 2018).

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

6

control the convergence of solutions. The initial value of pulse emission
is r0

i ∈ [0,1].

r(t+1)
i = r0

i ∙(1 − e− γt) (7)

where γ > 0 is a constant. Thus, as the search proceeds, the best bat
becomes closer to the prey, and it is supposed to stop emitting any sound
when catching it, i.e., At

i→0 and rt
i →r0

i as t→∞. The main procedure of
the BA appears in Fig. 3.

3.3. PSO algorithm

The social behavior of particle swarms such as birds and fish schools
was the basis of the applied mechanism in PSO. In the swarm, every
individual has its position and velocity, which are dynamically updated.
The distances between the current individual position and each of the
best position along search history and the global best position are used to
update the velocity. Then, according to changing velocity, the new po-
sition is determined.

Let x(t)
i and v(t)i denote the i − th particle position and velocity in the

current population, resp. Then the update mechanism of PSO is given by
Eq. (8) (Kennedy, 1995).

x(t+1)
i = x(t)i + v(t+1)

i (8)

The velocity update is commonly adjusted by an inertia factor ω as
shown in Eq. (9) (Kennedy, 1995):

v(t+1)
i = ω∙v(t)

i + c1∙R1∙(x(t)
g − x(t)

i)+ c2∙R2∙(x(t)
p − x(t)

i) (9)

where ω ∈ [0, 1], c1, and c2 are two constants that control particle

acceleration, R1and R2 are two randomly generated numbers in [0,1],
x(t)

g denotes the global best position so far and x(t)
p is the best historical

position of the particle. Moreover, the inertia factor is decreased using
Eq. (10) for convergence purposes.

ω(t) = ωo − (t/T)(ωo − ωf) (10)

where t and T denote current iteration and the total number of itera-
tions, resp., while ωo and ωf are the initial and final values of inertia,
resp. Fig. 4 introduces the main procedure of PSO.

4. The proposed hybrid method between BA and PSO based on
infection technique (BPINF) for FLAT

The proposed method, named BPINF, integrates BA and PSO algo-
rithms so that search agents can be updated using BA’s operators for
efficient exploration of the search space, whilst PSO’s update mecha-
nism can improve the exploitation task of the search space. Hence, this
integration tends to enhance both capabilities, the exploitation of BA
and the exploration of PSO algorithms. The main problem when
implementing FLAT based on this integration is that the agents are early
trapped into local optima during applying PSO algorithm (due to the
huge length of sequences). So that, an infection mechanism is proposed
to avoid this drawback. In the next subsections, the inspiration of the
developed BPINF technique besides its mathematical model is intro-
duced in Section 3.1, then the framework of BPINF for implementing
FLAT is discussed in Section 3.2.

Fig. 3. Main procedure of BA algorithm (Yang, 2010).

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

7

4.1. Inspiration and mathematical model

The infection is defined as the infestation of body tissues by disease-
causing agents which cause an illness due to infection and is called
infection disease (Aljamali, Jawad, & Alsabri, 2020). The infection can
be transferred with a high probability from one organism to other if two
organisms being nearby in the distance. Based on this concept, the
entrapment in local optima when updating the search agents using PSO
operators can hopefully be avoided. The agents simulate the organisms,
and the search space is the distances between organisms. Changing the

way of movement of an agent simulates the infection. The infection
mechanism simulates the infection process where the first best solution
(α) is considered as an infection carrier. This infection can spread out
through some/all agents; thus the infected agents are moved toward (α)
based on PSO’s updating strategy instead of moving toward the second-
best agent (β).

The agents get infected from (α) will be moved toward it based on the
following conditions:

- If the agent has a position that lies within a specified neighborhood
(D) around α (i.e., in the range from (α − D) to (α + D)).

- Otherwise, the agent will be infected based on a random criterion
(generating a random value bigger than a user-specified infection
parameter (Inf_rate)).

If the previous conditions cannot be achieved, then the agent can be
updated by moving toward the second-best solution (β), and in this case,
the agent is considered as non-infected.

For clarifying these concepts, Fig. 5 describes the operation of the
infection mechanism. Five agents are represented in blue-empty circles
(numbered as 1, 2, 3, 4, and 5), and β is represented in the blue-filled
circle, while α is represented in a red-filled circle. As seen in the
figure, the circle which lies in the boundary of 2D around α, gets
infected, and thus it has to update its position toward the red-filled circle
α. Whereas the solutions which are represented in circle 3 and circle 4 lie
out of the range of infection distance from (α). Hence, they may be get
infected too, according to the stochastic criteria (rand > Inf_rate), where
rand is a randomly generated number in [0,1]. Circle 2 and circle 5 are
not infected hence the movement of each of them will be updated to-
ward the best solution (β).

The infection can be propagated through the agents where the user-
specified parameter (Spread Rate) controls the propagation intensive-
ness. The parameter (Spread Rate) also follows stochastic criteria in
order to determine carrying the infection to another agent. While the
(Inf_Rate) controls the chance of an agent if being infected or not based
on stochastic criteria, in case of the agent is not located in the infection
boundary around the agent (α). The propagation of infection is simu-
lated by transferring the infection from an infected agent i to other three
non-infected agents (are chosen randomly from the population) to up-
date their movements toward the infection carrier xi. The number of
three agents is chosen experimentally as a tradeoff between enhancing
the quality of solutions and keeping the execution time reasonable.

The infected agents can be recovered (then moving toward β) ac-
cording to another stochastic criterion controlled by the parameter
(Recovery Rate). The recovery increases the possibility of producing
more diverse solutions. This mechanism of integration aims to release

Fig. 4. Main procedure of the PSO algorithm (Kennedy, 1995).

Fig. 5. An explanation of updating agents based on the proposed infection mechanism in BPINF.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

8

more diversification of solutions due to the infection mechanism for
updating agents toward two agents (the α and β best solutions). Besides,
spreading the infection between the agents also increases the avoidance
of local optima and convergence to the optimal solutions.

Regarding the mathematical model of BPINF, during the exploration
phase (i.e., BA execution), the agents are updated based on Eq. (2) to Eq.
(7). In the exploitation phase (i.e., execution of PSO), the infected agents
follow Eq. (11) and Eq. (12)

vi
(t+1) = w*vi

(t) + c1rand
(
xlbest

i − xi
(t))+ c2rand

(
α − xi

(t)) (11)

xi
(t+1) = xi

(t) + vi
(t+1) (12)

where xi
(t) is the current position of agent i, α is the first best solution,

xlbest
i is the best solution achieved by agent i, vi is the speed of agent i and

w, c1 and c2 are predetermined constants.
For propagation of infection through agents, Eq. (13) and Eq. (14)

are used assuming the chosen agent is j then it will move toward the
infection carrier agent i if a stochastic criterion is satisfied.

vj
(t+1) = w*vj

(t) + c1rand
(
xj

lbest − xj
(t))+ c2rand

(
xi

(t) − xj
(t)) (13)

xj
(t+1) = xj

(t) + vj
(t+1) (14)

where xi
(t) is the position of the current agent who carries infection to

agent j, vi and vj are the speed of the infection carrier and the infected
agents, respectively.

For the non-infected agents, Eq. (15) and Eq. (16) can be used for
updating their positions:

vi
(t+1) = w*vi

(t) + c1rand
(
xlbest

i − xi
(t))+ c2rand

(
β − xi

(t)) (15)

xi
(t+1) = xi

(t) + vi
(t+1) (16)

where xi
(t) is the current position of agent i, β is the second-best so-

lution, xlbest
i is the best solution achieved by agent i, vi is the speed of

agent i, and w, c1, and c2are predetermined constants.

4.2. FLAT based on the developed BPINF technique

The proposed BPINF technique is applied to enhance FLAT to align
huge sequences. In the previous studies (Issa & Abd Elaziz, 2020; Issa
et al., 2018), employing FLAT has achieved a score of 77% of the exact
LCCS which gives a strong motivation to present the current work. Al-
gorithm (2) describes the details of the BPINF algorithm for imple-
menting FLAT. It accepts two biological sequences (SeqA and SeqB) as
inputs and the required output is the near-exact LCCS between the two
sequences. The solution of each search agent points to two positions (one
in SeqA and the other in SeqB) where these positions represent the cut
starting location of a fragment with length (LF).

In line 2, N agents (xi, i = 1 : N) are initialized with two random
positions, one in SeqA and the other in SeqB. The positions lie in the
range from 1 to (Length (SeqA or SeqB) - LF), where LF represents the
length of the cut fragments. Each agent cuts two fragments (one in each
sequence) starting from the positions (xi) such as indicated in line 3.

Each pair of fragments is aligned using the SW algorithm (Smith &
Waterman, 1981), as in line 4. Then, the fitness of each solution is
computed based on Eq. (1), and the first-best (α) and the second-best (β)
solutions can be determined by sorting the fitness descendingly as in line
5.

In lines 7–8, if the exploration phase is performed during the first half
of iterations (t <= T/2), the agents are updated based on the strategy of
BA using Eq. (2) to Eq. (7). For exploitation (i.e., t > T/2), the search
agents are updated based on the PSO’s updating strategy and the
infection mechanism. For each agent, the infection conditions are
checked as stated in line 11 based on the following conditions :

- If the agent has a position that lies within a specified neighborhood
(D) around α (i.e., in the range from (α − D) to (α + D)), see line 12.

- Otherwise, the agent still has some chance to get infected based on a
stochastic criterion as described in line 14.

To mark infected agents, an infection array that has a size of popu-
lation size (Infection (i), i = 1 : N) is used. The array Infection is binary-
valued 1/0 to refer to infected/non-infected agents, resp. Then, all
agents are updated according to their status (infected or non-infected),
where the infected agents are updated based on Eq. (11) and Eq. (12)
by moving toward the first best solution (α) as described in line 21. If the
agent is infected, there is a possibility of infecting the other three agents
that have been chosen randomly (line 24) based on stochastic criteria
(rand () > Spread_Rate). The parameter Spread_Rate is tuned practically
in order to achieve the highest performance. Line 25 shows the updating
of agents during infection propagation through population using Eq.
(13) and Eq. (14). For infected agents, the recovery conditions (rand ()
> Recovery_Rate) can be applied, which recover the infected agents to
the non-infected status as described in line 28.

In line 33, the non-infected agents are updated based on Eq. (15) and
Eq. (16) by moving toward the best solution (β). Once search termina-
tion, each agent points to two positions in the aligned sequences; hence
fragments are cut to be aligned using the SW algorithm. The length of
near-exact LCCS for each agent can be computed as in line 37. In line 40,
the near-exact LCCS pointed by the first best solution (α), and its length
are reported as the best-found solution. For more clarification, Fig. 6
shows the procedure of implementing the FLAT based on the proposed
BPINF.

Algorithm 2: The proposed BPINF algorithm for implementing FLAT

1: Input SeqA and SeqB; initialize the parameters: t, T, Inf_Rate, Spreed_Rate,
Recovery_Rate

2: Initialize the population (X) with (N) search agents, each (xi), i∊(1,N), locates two
positions one in SeqA and the other in SeqB such that xi∊ (Length (SeqA or SeqB) - LF)

3: Cut two fragments starting from the positions of (xi) in the two sequences (SeqA and
SeqB)
4: Apply SW algorithm on each pair of fragments of each search agent (xi), i∊(1,N).
5: Compute the alignment score (length of near-exact LCCS found) for each search

agent based on Eq. (1).
6: While (t ≤ T)
7: Update the first (α) and second (β) best solutions from the population (X) based on

the alignment score.

8: If (t ≤
1
2

T)

9: Update each solution (xi) based on BA’s operator using Eqs. (2) - (6).
10: Else
11: Check the infection conditions for each solution (xi):
12: IF ((α − D) < xi < (α+ D))
13: Infection (i) = 1
14: Else IF (rand () > Inf_Rate)
15: Infection (i) = 1
16: Else
17: Infection (i) = 0
18: End IF
19: For i = 1 : N
20: IF Infection (i) = 1
21: Update the solution (xi) toward (α) based on Eqs. (11) - (12).
22: For p = 1 : 3 (propagate the infection through three agents)
23: Select randomly one solution (xj) , j∊(1 : N)

24: IF (rand () > Spread_Rate):
25: Update the solution (xj) toward (xi) according to Eqs. (13) - (14).
26: Infection (j) = 1
27: End IF
28: IF (rand () > Recovery_Rate): Infection (j) = 0 End IF
30: End For
31: IF (rand () > Recovery_Rate): Infection (i) = 0 End IF
32: Else
33: Update the solution (xi) toward (β) based on Eq. (15) - (16)
34: End IF
35: End For
36: End IF

(continued on next page)

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

9

(continued)

Algorithm 2: The proposed BPINF algorithm for implementing FLAT

37: Cut two fragments starting from the positions of (xi) in the two sequences (SeqA
and SeqB)

Compute the alignment score for the search agents based on Eq. (1).
38: t = t + 1;
39: End While
40: Output the near-exact LCCS pointed by the first best solution (α) and its length.

FLAT based on BPINF has a time complexity O((T/2)*N*(CBA + CPSO))*
L3

F)) where T is the total number of iterations, LF represents the length of
the cut fragment, Nis the population size of the working algorithm, and

CBA is the execution time for updating one agent of BA population, and
CPSO is the execution time for updating one agent of PSO population, as
well as the updating the movement of three other agents of PSO in case
of spreading out the infection.

5. Experimental results and discussion

This section presents the performance evaluation of FLAT based on
the proposed technique (BPINF) against the standard BA (Yang, 2010)
and other techniques in the literature such as ASCA-PSO (Issa et al.,
2018), SCA (Mirjalili, 2016), IMO-PSO (Issa & Abd Elaziz, 2020), BA-DE
(Yildizdan & Baykan, 2020) and BA-CSA (Shehab et al., 2019). The

Fig. 6. The flow charts of BPINF for FLAT.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

10

integrated versions of BA and PSO algorithms in (Manoj et al., 2016) and
(Ferdowsi et al., 2019), namely BA-PSO-1 and BA-PSO-2, resp., are
reimplemented for purposes of comparison. BPINF performance is
evaluated using a set of pairs of real viruses protein sequences datasets
gathered from the National Center for Biotechnology Information
(NCBI). The pairs of sequences have a product length ranges from
250,000 to 21,000,000.

In this application, it is more meaningful to refer to the product of the
sequence’s length as a distinguished parameter instead of each indi-
vidual sequence length (the sequences don’t have the same length). In
this work, the range of sequence’s length gets increased compared to the
previous versions of FLAT (ASCA-PSO (Issa et al., 2018) and IMO-PSO
(Issa & Abd Elaziz, 2020)) where the product of sequence’s length
reached 9,000,000. The exact LCCS of each pair of sequences over
different product lengths are determined by SW algorithm (Smith &
Waterman, 1981), and it is used as a reference in the experimental tests.

The evaluation metrics that are applied for characterizing the per-
formance of examined algorithms through the experimental tests are
illustrated as follows:

1- The percentage of similarity (%) between the reported near-exact
LCCS’ length (W) and the exact LCCS’ length (K), see Fig. 1.

2- The standard deviation of the numerical results.
3- The statistical analysis using the Wilcoxon test (Gehan, 1965).
4- The execution time.

The implementations of FLAT based on various MAs are coded under
MATLAB environment using a computer machine with a multiprocessor
CORE-I3 (2.14 GHz per processor) and 4 GB RAM. The length of a
fragment being cut at each position is 50 residues for FLAT versions.
Table 2 shows the settings of various parameters of all implemented Mas
in the tests. These parameters are tuned practically where certain ad-
justments are held in order to find the most useful value for each
parameter. The population size is tuned experimentally to produce the
best performance according to the product of sequences’ length (m*n),
where m and n represent the length of the aligned sequences, as shown in
Table 3. The maximum number of iterations is set to 30.

Table 3 shows the percentage of similarity (%) using FLAT based on
BPINF (30 independent runs) against the relevant algorithms in the
literature. The first column shows the product of lengths of sequences
that ranges from 250,000 to 21000000. In Table 3, the first column
shows the product of aligned sequences (m*n), and the second column
shows the corresponding agent size required to align the two sequences
using FLAT. The population size differs across the lengths as the
sequence length increases. Search space becomes more complicated as
sequence length gets longer; thus population size should be increased in
order to efficiently seek such emerging search space. The suitable pop-
ulation size with respect to the length of sequences is chosen practically
after trying many values for BPINF-based FLAT. Notice that the choice of
population size bears a tradeoff between the execution time and the
quality of results. For each sequence length, there is a limit for
increasing the number of agents to keep execution time below the cor-
responding one taken by the SW algorithm. As shown in Table 3, BPINF-
based FLAT achieves the highest percentage over the whole range of the
product of sequences length (especially for huge-length sequences), and
the average percentage reaches 88% for all examined sequences.

While FLAT based on each of IMO-PSO and ASCA-PSO achieves an
average percentage of 82% and 78%, resp. Using BA-PSO-1 and BA-PSO-
2, FLAT can achieve 60% and 63%, resp., and using BA-CSA and BA-DE,
the percentage only reaches 57% and 61%, resp. FLAT based on stan-
dard algorithms such as IMO, SCA and BA achieve an average percent-
age of 43%, 45%, and 34%, resp. These results reflect the efficiency of
BPINF for finding near-exact LCCS using FLAT by avoiding early trap-
ping in local optima for a sequence with a huge length.

Table 4 shows the standard deviation of 30 individual runs of the
FLAT based on various algorithms over various sequences length. As

shown, FLAT based on BPINF has the lowest standard deviation in
comparison to the other versions (see Fig. 7). The highest standard de-
viation is reported by IMO, SCA, and BA, while other algorithms have
less standard deviations but are still higher than that one of BPINF.
Moreover, the standard deviation of BPINF is < 1 for all examined
datasets that gives a positive indicator of the robustness and precision of
such a developed version of FLAT.

Table 5 shows the results (p-value) of the Wilcoxon test (Gehan,
1965) for evaluating the quality of solutions produced by BPINF-based
FLAT compared to other related MAs. FLAT based on BPINF runs for
30 trials, and these results were compared with each other algorithm
using the Wilcoxon test. As shown in Table 5, the p-value of all com-
parisons is below 0.05, which indicates there is a significant superiority
of the performance of BPINF.

Fig. 8 shows the convergence curve of BPINF versus BA-PSO-1 and
BA-PSO-2. As shown in Fig. 8, BPINF is able to avoid entrapment in local
optima in the time that the other two algorithms converged early. The
speedup of FLAT using BPINF is measured and compared against that of
the standard SW algorithm (Smith & Waterman, 1981) as in Fig. 9. There
is a notable speedup of performing the local alignment process between
a pair of sequences using BPINF-based FLAT over that one of SW. Fig. 10
shows the comparison of the execution time of PBINF versus that of
other algorithms over various sequence lengths.

5.1. Sensitivity analysis of BPINF parameters

This subsection demonstrates the impact of different BPINF param-
eters on its performance. BPINF’s main parameters are loudness factor
(A), pulse emission rate (ro), weight inertia (w), infection rate (Inf Rate),
infection propagation rate (Spread Rate), recovery rate (Recovery Rate),
population size and the maximum number of iterations. The sensitivity
analysis tests are performed by trying different values for each param-
eter over a reasonable range for a subset of the datasets. Each parameter
under test is assigned three values while the best settings for other pa-
rameters are fixed.

Loudness factor is an important parameter of BA (see Eq. (6)). It
controls the search process where it decreases by increasing the itera-
tions until reaching approximately zero by search termination. A0 rep-
resents the initial loudness in Eq. (6) and has a great influence on the
value of loudness through the rest of the iterations. Table 6 shows the
influence of A0on the performance of BPINF for a set of sequences that

Table 2
The settings of parameters of various examined MAs.

Algorithm Parameter Value

SW alignment Match +1.0
ge − 0.5
go − 1.0

FLAT SCA A 2.2
ASCA-PSO W 0.25

C1, C2 0.5
A 2.0

BA A0 0.8
F_min 5.0
F_max 20
А 0.95
Γ 2

BPINF, BA-PSO-1, BA-PSO-2, BA-CSA and BA-DE A0 0.8
F_min 5.0
F_max 20
А 0.95
Γ 2
W 0.25
C1, C2 0.5
Inf_Rate 0.30
Spread_Rate 0.70
Recovery_Rate 0.30
D 25

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

11

have a product that ranges from 3,000,000 to 8000000. Three values
(0.1, 0.6, and 0.8) are examined for this parameter. The performance is
worst at (A0 = 0.1) while it increases as increasing A0 (which may be
justified by improving search space exploration), until reaching the best
performance at (A0 = 0.8).

The pulse emission rate (r) which is described in Eq. (7), decays as
the search proceeds. r0 represents the initial pulse emission rate and
three values of r0 (0.1, 0.5, and 0.8) are used to test its influence on the
performance of BPINF. In Table 6 (r0 = 0.1) delivers the best perfor-
mance while the performance was decreasing when increasing r0.

The weight inertia (w) mentioned in Eq. (9) is used in updating the
movement of the agents according to the PSO strategy. It controls the
influence of the velocity of the previous iteration on the new velocity in
the current iteration. The allowable range of w is from 0.2 to 0.9 (Ken-
nedy, 1995). Three values of w (0.25, 0.5, and 0.9) are examined to test
the influence of w on performance. Table 6 shows the results of changing
w,where small values lead to better performance over large values. The
best performance is reported at (w = 0.2) using experimental tunning.

The infection rate (Inf Rate) BPINF is employed for controlling the

Table 3
Average LCCS similarity percentage (%) measured by FLAT for compared optimizers.

m*n N PSO IMO IMO-PSO SCA ASCA-PSO BA BA-PSO-1 BA-PSO-2 BA-DE BA-CSA BPINF

250,000 40 53 50 87 56 89 39 73 71 81 78 92
350,000 40 52 53 87 55 89 36 75 73 78 75 92
550,000 100 54 58 88 58 85 37 71 70 79 76 90
750,000 120 51 56 91 55 86 34 69 72 77 74 91
1,000,000 150 52 51 88 56 82 34 68 74 76 73 90
1,400,000 180 48 48 85 50 78 36 70 69 70 65 92
1,800,000 200 45 52 84 48 80 35 62 68 67 65 89
2,200,000 240 46 47 81 49 78 34 63 67 69 64 91
2,600,000 400 39 43 84 44 76 33 58 62 61 56 90
3,000,000 400 38 41 87 41 80 32 55 60 62 59 90
4,000,000 450 42 44 86 44 75 33 52 61 58 54 91
5,000,000 450 43 45 84 45 78 34 53 59 59 56 90
6,000,000 450 45 39 89 46 74 34 63 60 60 58 88
7,000,000 500 40 38 81 43 75 35 65 62 56 52 87
8,000,000 700 39 39 84 40 73 33 64 61 52 47 84
9,000,000 900 36 37 75 38 74 34 60 57 50 43 85
11,000,000 1000 36 33 80 39 71 36 50 56 51 46 81
13,000,000 1300 32 30 70 36 70 31 53 57 47 41 81
15,000,000 1600 27 31 71 32 71 28 45 50 42 38 78
18,000,000 1900 31 29 68 34 69 29 42 47 44 38 79
21,000,000 2200 29 28 65 30 70 26 38 48 39 33 80

Table 4
Standard deviation of LCCS similarity percentage measured by FLAT for compared optimizers.

m*n PSO IMO IMO-PSO SCA ASCA-PSO BA BA-PSO-1 BA-PSO-2 BA-DE BA-CSA BPINF

250,000 2.24 2.28 1.28 3.52 0.90 3.64 0.64 0.37 0.89 0.89 0.56
350,000 1.52 1.79 1.00 1.96 0.75 2.08 1.65 0.33 2.31 2.31 0.75
550,000 2.57 2.64 1.28 1.76 1.01 1.88 0.85 0.66 1.19 1.19 0.32
750,000 2.27 2.41 0.77 2.70 0.94 2.82 0.95 1.13 1.33 1.33 0.19
1,000,000 2.93 3.12 1.11 4.48 1.15 4.60 2.49 0.92 3.73 3.73 0.75
1,400,000 1.58 1.59 0.85 3.92 0.69 4.04 0.77 0.14 1.15 1.15 0.39
1,800,000 2.09 2.41 1.12 2.05 0.94 2.17 1.29 1.46 1.93 1.93 0.50
2,200,000 1.77 2.22 0.79 2.26 0.88 2.38 1.43 1.08 2.14 2.14 0.58
2,600,000 1.89 2.32 1.47 1.58 0.91 1.70 1.11 0.95 1.80 1.80 0.35
3,000,000 1.59 1.91 0.96 2.90 0.79 3.02 0.96 0.87 1.56 1.56 0.69
4,000,000 4.31 4.45 1.31 9.22 1.55 9.34 2.73 2.49 4.44 4.44 0.86
5,000,000 2.07 2.32 1.49 3.12 0.91 3.24 4.12 0.79 6.71 6.71 0.18
6,000,000 2.53 2.67 1.10 1.18 1.01 1.30 1.01 1.56 1.64 1.64 0.35
7,000,000 3.55 3.72 1.27 1.35 1.33 1.47 0.84 0.44 1.36 1.36 0.43
8,000,000 0.75 1.02 0.92 2.35 0.52 2.47 1.65 0.09 2.68 2.68 0.67
9,000,000 5.51 5.91 2.35 2.83 1.99 2.95 1.38 4.11 2.24 2.24 0.79
11,000,000 1.4 1.79 1.00 1.79 0.75 1.91 0.48 0.49 2.75 2.75 0.90
13,000,000 1.61 1.95 1.13 1.91 0.8 2.03 1.62 0.52 2.30 2.30 0.61
15,000,000 1.2 1.35 1.50 1.35 0.62 1.47 1.02 0.98 2.33 2.33 0.31
18,000,000 2.08 2.20 1.31 3.39 0.88 3.51 1.92 1.06 2.70 2.70 0.56
21,000,000 2.14 2.47 1.51 2.59 0.43 2.71 0.64 0.92 1.70 1.70 0.23

Fig. 7. Average standard deviation of BPINF-based FLAT versus other exam-
ined versions.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

12

degree of infection through population conditioned to a boundary of
(2D) around the first best solution (α). Table 6 presents the impact of this
parameter on BPINF performance. A small value of Inf Rate leads to
better performance than higher ones. Inf Rate which is located in the
range from 0.25 to 0.35, can produce acceptable performance; however,
based on the experimental tuning, the best performance is registered at
(Inf Rate = 0.3).

The spread rate (Spread Rate) controls the propagation of the infec-
tion through the agents where three randomly chosen agents can be
additionally infected. Three values of Spread Rate (0.3, 0.7, and 0.9) are
examined. In Table 6, the best choice of Spread Rate is 0.7 using the
experimental tunning, where the range from 0.6 to 0.8 produces
acceptable performance. Raising the value of Spread Rate up to 0.9
negatively impacts the performance due to the small probability of
generating a random number that exceeds 0.9.

The recovery rate parameter (Recovery Rate) controls the recovery
operation of infected agents so that it can be updated conventionally
toward the second-best solution (β). In Table 6, for small values such as
(Recovery Rate = 0.1), it can produce better performance than for
higher value (Recovery Rate = 0.8). Conversely, the small value of

Recovery Rate as the probability of recovery may lead to a weak explo-
ration phase, and hence falling into local optima. So that, choosing the
value of Recovery Rate at (0.3) provides a balanced compromise for the
sake of achieving a satisfying quality of solutions.

For the population size, different values such as (100, 400, and 800)
are used in order to test the influence on the performance of BPINF. In
Table 6, the population size (100) produced a lower performance than
that one reported by larger size, which is an obvious result. However, for
relatively small-length sequences, increasing population size over 100 is
not suggested in order to keep the execution time of FLAT at reasonable
limits. Furthermore, the number of exhausted search iterations is
examined at the values (10, 30, and 60). For a value of (10) BPINF
performance is the lowest. However, as the number of iterations is
increased, the performance is increased as well but gets saturated at
some limit. In Table 6, increasing the total number of iterations from
(30) to (60) does not improve the BPINF perfomance.

6. BPINF-based FLAT for COVID-19

The promising numerical results of BPINF, when applied to operate
FLAT for some conventional datasets, pave the way to examine such a

Table 5
Wilcoxon test results for the numerical results of various FLAT versions against BPINF.

m*n PSO IMO IMO-PSO SCA ASCA-PSO BA BA-DE BA-CSA BA-PSO-1 BA-PSO-2

250,000 4.0E-06 2.5E-05 2.8E-07 7.7E-06 3.9E-07 2.1E-06 2.0E-06 1.3E-05 2.5E-06 3.5E-05
350,000 1.4E-06 3.2E-06 1.8E-06 4.7E-06 2.3E-06 2.6E-06 1.6E-07 1.5E-06 2.9E-07 1.9E-06
550,000 8.5E-07 4.6E-05 1.0E-06 5.8E-06 8.0E-08 2.2E-06 3.2E-07 3.1E-05 2.5E-06 3.4E-05
750,000 5.5E-06 2.9E-06 5.5E-07 1.1E-05 3.8E-08 1.7E-06 3.5E-05 2.0E-05 7.7E-05 6.6E-05
1,000,000 1.2E-05 4.1E-07 2.6E-07 2.3E-05 2.4E-07 1.5E-06 5.1E-06 3.9E-07 7.0E-06 4.1E-07
1,400,000 6.2E-06 3.2E-06 5.9E-06 1.3E-05 2.4E-06 9.5E-06 1.6E-06 2.2E-05 3.5 E-06 2.3E-05
1,800,000 9.1E-07 4.5E-06 8.1E-07 1.5E-06 3.5E-07 1.2E-06 2.2E-07 4.5E-05 4.2E-07 5.6E-05
2,200,000 1.3E-06 1.0E-05 1.0E-08 1.9E-06 1.3E-07 1.2E-06 1.7E-04 2.8E-06 3.3E-04 4.6E-06
2,600,000 4.7E-06 3.8E-05 2.5E-06 2.8E-05 1.2E-06 2.9E-06 4.8E-05 2.6E-04 7.1E-05 6.2E-04
3,000,000 5.2E-07 1.4E-06 1.4E-07 1.4E-06 1.5E-07 1.2E-06 2.5E-05 2.0E-07 7.0E-05 5.0E-07
4,000,000 1.0E-05 1.5E-06 1.2E-06 1.4E-05 3.3E-07 1.3E-06 2.2E-07 6.9E-05 7.0E-06 7.1E-05
5,000,000 1.1E-06 9.5E-06 1.8E-06 2.4E-06 9.7E-07 1.9E-06 3.0E-04 2.3E-07 3.5E-04 6.3E-07
6,000,000 6.3E-05 7.7E-05 3.4E-07 8.0E-05 1.8E-08 5.1E-07 2.9E-05 3.9E-05 7.0E-05 4.5E-05
7,000,000 9.1E-07 1.8E-06 1.3E-07 1.2E-06 4.9E-07 1.2E-06 3.2E-06 5.0E-07 7.0E-06 5.3E-07
8,000,000 6.0E-07 5.6E-07 3.4E-07 2.3E-06 2.1E-08 4.5E-07 1.2E-05 4.4E-04 6.0E-05 5.3E-04
9,000,000 6.5E-06 5.9E-06 4.0E-08 8.4E-05 4.7E-07 1.4E-06 7.3E-07 1.4E-05 3.7E-06 4.3E-05
11,000,000 6.9E-07 3.5 E-06 8.5E-06 2.2E-06 5.1E-06 1.3E-05 9.5E-07 2.2E-06 2.1E-06 2.4E-06
13,000,000 2.3E-07 4.0E-07 2.8E-07 2.7E-07 4.0E-07 2.5E-06 1.8E-08 1.7E-05 3.5E-06 3.2E-05
15,000,000 6.2E-06 3.3E-04 3.8E-07 1.5E-05 8.9E-08 3.9E-07 3.5E-07 4.9E-04 4.3E-06 5.3E-04
18,000,000 6.0E-07 1.6E-06 9.8E-06 1.4E-06 5.3E-06 2.8E-05 2.8E-06 1.8E-05 5.3E-06 4.3E-05
21,000,000 3.2E-06 1.8E-06 1.0E-07 1.7E-05 4.5E-08 1.4E-07 9.3E-07 1.3E-04 1.6E-06 2.3E-04

Fig. 8. Convergence curve of BPINF.
Fig. 9. The execution time of FLAT using BPINF technique against SW for
variable lengths.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

13

procedure for investigating the newly discovered sequences like the
protein of COVID-19 virus. BPINF-based FLAT is evaluated to detect the
LCCS between the protein of COVID-19 virus, and a set of diseases were
gathered from NCBI such as (1) Middle East respiratory syndrome
coronavirus (MERS-CoV), (2) Hepatitis B, (3) Severe acute respiratory
syndrome coronavirus (SARS-CoV), (4) Dengue virus and (5) Cowbox
virus. Table 7 shows the results of FLAT based on BPINF when looking
for LCCS in comparison of SW algorithm (Smith & Waterman, 1981) and
the other relevant FLAT versions. The column score presents the length
of the detected near-exact LCCS for each technique besides the exact
LCCS that can be found by the exact SW algorithm.

In Table 7, FLAT using BPINF can achieve a high percentage of the
exact LCCS found by the SW algorithm while other algorithms report
lower-percentage solutions. The sequences may have many common
subsequences with different lengths; however, the objective is to find the
longest one (LCCS) or as high a percentage of it as possible. The 1st
disease (MERS-CoV), 4th disease (Dengue virus), and 5th disease
(Cowbox virus) have many LCCS with 5 residues, and BPINF is able to
find one of such LCCS. ASCA-PSO and IMO-PSO achieve a percentage of
exact LCCS but with a lower length, while the rest of the algorithms of
comparison fail to find a portion of the exact LCCS. For the 3rd disease
(SARS-CoV), the exact LCCS has a length of 280 residues, and BPINF
succeeded in achieving the highest portion of it (30 residues), where the
fragment size used in the experimental tests is 50 residues. Besides, it is
noticed from Table 6 that the length of found near-exact LCCS has
different lengths. Such results are sensitive to the positions of the frag-
ments cut, such as in cases (1) and (2) illustrated in Figs. 10 and 11.

For case (1) in Fig. 10, the agent points to the start of the exact LCCS
(the blue-filled rectangle) with positions (PA) in sequence (A) and po-
sition (PB) in sequence (B). The two fragments are cut with length (LF)
which is equal to the length of the exact LCCS. Hence when the two cut
fragments are aligned the maximum possible LCCS with length (W) can
be found using FLAT (Fig. 12).

This case is rarely occurred due to the following reasons:

• It is impossible to guess the length of exact LCCS from the very
beginning, and thus one user could assign it as the length of the cut

0

20

40

60

80

100

120

Ti
m

e
(S

ec
)

m x n

IMO-PSO

ASCA-PSO

BA-DE

BA-CSA

BA-PSO-1

BA-PSO-2

BPINF

Fig. 10. The execution time of FLAT using BPINF technique versus other algorithms.

Table 6
Results of conducted sensitivity analysis of the BPINF parameters.

m*n Performance of Parameters

Loudness (Ao) Pulse Rate Emission (ro)

Ao ¼ 0.1 Ao ¼ 0.6 Ao ¼ 0.8 ro ¼ 0.1 ro ¼ 0.5 ro ¼ 0.8

3,000,000 65 85 90 90 82 78
4,000,000 73 82 91 91 79 76
5,000,000 68 84 90 90 78 78
6,000,000 63 80 88 88 81 72
7,000,000 60 83 87 87 76 74
8,000,000 61 81 84 84 78 73

m*n Weight Inertia (w) Inf_rate

w ¼ 0.2 w ¼ 0.5 w ¼ 0.9 0.1 0.3 0.9

3,000,000 90 75 60 79 90 60
4,000,000 91 73 65 77 91 59
5,000,000 90 69 63 74 90 57
6,000,000 88 63 61 71 88 61
7,000,000 87 68 59 65 87 62
8,000,000 84 72 60 62 84 58

m*n Spread_rate Recovery_rate

0.3 0.7 0.9 0.1 0.3 0.8

3,000,000 89 90 72 82 90 68
4,000,000 90 91 81 75 91 72
5,000,000 87 90 73 77 90 66
6,000,000 83 88 79 79 88 69
7,000,000 86 87 74 76 87 71
8,000,000 83 84 72 73 84 67

m*n Population Size Iteration

100 400 800 10 30 60

3,000,000 43 90 91 62 90 90
4,000,000 39 86 90 69 91 91
5,000,000 41 84 89 65 90 90
6,000,000 37 85 91 69 88 88
7,000,000 34 74 88 59 87 87
8,000,000 32 69 86 63 84 84

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

14

Table 7
Detecting the LCCS between COVID-19 virus with other viruses with FLAT using BPINF and other versions.

Virus Protein Name Technique Score LCCS

1 MERS-CoV SW 5 CVYSV
SCA 3 LAT
ASCA-PSO 3 QVL
IMO 2 NR
IMO-PSO 3 LSA
BA 2 HT
BA-DE 3 YSV
BA-CSA 4 LEGN
BA-PSO-1 3 NRA
BA-PSO-2 4 LPTG
BPINF 5 QVLSA

2 Hepatitis B SW 5 SIFSR
SCA 5 SIFSR
ASCA-PSO 5 SILSP
IMO-PSO 3 LSP
IMO 3 ILS
BA 3 IGD
BA-DE 4 SIFS
BA-CSA 4 IGD
BA-PSO-1 3 FSR
BA-PSO-2 4 IGDA
BPINF 5 SIFSR

3 SARS-CoV SW 280 SGFRKMAFPSGKVEGCMVQVTCGTT
TLNGLWLDDVVYCPRHVICTSEDML
NPNYEDLLIRKSNHNFLVQAGNVQL
RVIGHSMQNCVLKLKVDTANPKTPK
YKFVRIQPGQTFSVLACYNGSPSGVY
QCAMRPNFTIKGSFLNGSCGSVGFNID
YDCVSFCYMHHMELPTGVHAGTDLE
GNFYGPFVDRQTAQAAGTDTTITVNV
LAWLYAAVINGDRWFLNRFTTTLNDFN
LVAMKYNYEPLTQDHVDILGPLSAQTG
IAVLDMCASLKELLQNGMNGRTILGSA
LLEDEFTPFDVVRQCSGVTFQ

SCA 12 TIKGSFLNGSCG
ASCA-PSO 30 YNYEPLTQDHVDILGPLSAQTGIAVLDMCA
IMO-PSO 23 SALLEDEFTPFDVVRQCSGVTFQ
IMO 18 EGCMVQVTCGTTTLNGLW
BA 11 TIKGSFLNGSC
BA-DE 15 EDMLNPNYEDLLIRK
BA-CSA 16 GTTTLNGLWLDDTVYC
BA-PSO-1 14 SGFRKMAFPSGKVE
BA-PSO-2 16 FTPFDVVRQCSGVTFQ
BPINF 30 SGFRKMAFPSGKVEGCMVQVTCGTTTLNGL

4 Dengue virus SW 5 IVTCA
SCA 4 LTGY
ASCA-PSO 5 SGNLL
IMO 3 VLV
IMO-PSO 4 FLNG
BA 4 FDGS
BA-DE 4 FDGS
BA-CSA 4 TLVT
BA-PSO-1 3 TLV
BA-PSO-2 4 SGNL
BPINF 5 ETLVT

5 Cowbox virus SW 5 QAIAS
SCA 4 IKRS
ASCA-PSO 5 SVRVV
IMO-PSO 4 IKRS
IMO 3 VDS
BA 2 VN
BA-DE 3 RVV
BA-CSA 4 VDSA
BA-PSO-1 3 QVT
BA-PSO-2 4 VNAS
BPINF 5 SVRVV

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

15

fragment (LF). Besides, the length of LCCS is variable for different
sequences.

• In case of much increasing LF, the execution time of FLAT will
enormously increase which affects the main advantage of using FLAT
that is processing a reasonable execution time. Hence, the LF
parameter setting represents a tradeoff between the quality of found
near-exact LCCS and the execution time.

• Pointing to the start of the exact LCCs by search agents is quite
difficult where the positions of agents are updated based on random
criteria. That means that if (PA) points to the start of exact LCCS in
sequence (A), there is still a high probability that (PB) does not point
to the start of exact LCCS in sequence (B).

In case (2), the positions (PA) and (PB) point to some positions that
differ from the start of the exact LCCS but are still close to it. Hence, the
percentage of cutting part of one exact LCCS by the cut fragments (de-
pends on LF starting from the cutting positions) will determine the
length of the reported near-exact LCCS by an optimizer. Moreover, the
length of the near-exact LCCS (W) is shorter than that one in the case (1).
The main reason for such issue is the stochastic nature of MAs when
updating the positions of search agents, as well as the predetermined
length of cut fragments which is a critical parameter for FLAT.

The main merits of BPINF-based FLAT can be summarized as follows:

1- Detecting near-exact LCCS with an average similarity percentage of
88% with the exact LCCS that can be found by SW for a product of

sequence length up to 21,000,000. While the rates of FLAT using
ASCA-PSO and IMO-PSO are 78% and 82%, resp.

2- The proposed infection propagation mechanism is able to reduce the
chances of trapping in local optima, which is reflected in the
behavior of BPINF when applied for FLAT in comparison of both
conventional MAs and recent related hybrid techniques to the same
problem.

However, the proposed approach still suffer from the following listed
limitations:

1- Despite, BPINF-based FLAT is able to achieve high performance by
finding 88% (on average) of the exact LCCS for tested sequences with
a product of the length of 21,000,000, but the performance is ex-
pected to degrade for longer sequences.

2- The fragment length (LF) was tuned practically to be (50) residues in
order to keep the balance between the execution time and the quality
of solutions. Such length value may be considered limited when
compared to the real length of existing LCCS. Hence, the fragment
length needs to be tuned in a more clever way so that a satisfying
performance can be reached in a reasonable time.

3- The developed infection mechanism of BPINF propagates infection
through agents, which adds execution time overhead. As the popu-
lation grows, which is a need to face extreme sequence length, then
the number of infected agents needs to be increased too in order to
maximize the benefit of such mechanism. In other words, the number
of infected agents is better to get increased as population size in-
creases. But this modification for the proposed BPINF will be stuck
with the aim of reducing the execution time as possible to meet the
goals of operating FLAT.

7. Conclusions and future research directions

This work presents an enhancement for FLAT based on a novel
integration mechanism between BA and PSO algorithms. The integra-
tion mechanism is based on updating the positions of search agents using
BA operators to first explore the input sequences to find the best region
that may have the longest common subsequences. After exploration, the
first and second-best solutions are reported and the exploitation phase
starts to move the agents using PSO operator. In the proposed mecha-
nism (BPINF), during the exploitation, some agents are infected toward
the first best solution, while the non-infected agents are moved toward
the second-best solution. The infection is transferred according to the
current distance of the position of an agent to the first-best solution.
Besides, each infected agent can transfer the infection to the other three
agents in order to propagate the infection through the population. The
main merit of the BPINF is increasing the diversity of generated solu-
tions which maximizing the chance to avoid early trapping in local
optima during the search. The infected agents can be recovered based on
some stochastic criteria, which also helps to increase the diversity of
generated solutions. The performance of FLAT based on BPINF is eval-
uated on a real protein sequence that has a various range of sequence
lengths (have a product of lengths from 250,000 to 21,000,000). The
BPINF shows outstanding performance for detecting near-exact LCCS in
comparison to other versions of FLAT based on ASCA-PSO, IMO-PSO,
BA-PSO-1, BA-PSO-2, BA-DE, BA-CSA, and SCA. Besides, the small
standard deviation, relative to other versions of FLAT, shows the high
robustness and precision of the proposed technique. The developed
technique shows usefulness for investigating newly discovered biolog-
ical sequences such as the protein of COVID-19. Results of LCCS detec-
tion between COVID-19 and the other five viruses are available using
BPINF-based FLAT.

The findings of current research give a great motivation to continue
investigating the recently discovered genetic strains of COVID-19.
Moreover, it is interesting to implement a faster version of BPINF-
based FLAT using a GPU accelerator. In the later environment, the

Fig. 11. Case of finding the exact LCCS.

Fig. 12. Case of finding portions of the exact LCCS.

M. Issa et al.

Expert Systems With Applications 189 (2022) 116063

16

critical parameters such as population size, fragment length, and
infection rate can be adapted in the more wider window to efficiently
seek search space of huge sequences without losing the advantage of
limited execution time (i.e., reasonable execution time in comparison of
the time taken by the standard SW algorithm).

Funding

The authors declare that there is no funding associated with this
project.

CRediT authorship contribution statement

Mohamed Issa: Conceptualization, Methodology, Data curation,
Software, Validation, Writing – original draft. Ahmed M. Helmi: Soft-
ware, Validation, Writing – review & editing, Writing – original draft.
Ammar H. Elsheikh: Data curation, Software, Validation. Mohamed
Abd Elaziz: Conceptualization, Methodology, Writing – original draft.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Abd-Elazim, S. M., & Ali, E. S. (2013). A hybrid particle swarm optimization and
bacterial foraging for optimal power system stabilizers design. International Journal
of Electrical Power & Energy Systems, 46, 334–341.

Ahmed, N., Lévy, J., Ren, S., Mushtaq, H., Bertels, K., & Al-Ars, Z. (2019). GASAL2: A
GPU accelerated sequence alignment library for high-throughput NGS data. BMC
bioinformatics, 20(1), 520.

Al-Betar, M. A., Alomari, O. A., & Abu-Romman, S. M. (2020). A TRIZ-inspired bat
algorithm for gene selection in cancer classification. Genomics, 112(1), 114–126.

Alagarsamy, S., Kamatchi, K., Govindaraj, V., Zhang, Y.-D., & Thiyagarajan, A. (2019).
Multi-channeled MR brain image segmentation: A new automated approach
combining BAT and clustering technique for better identification of heterogeneous
tumors. Biocybernetics and Biomedical Engineering, 39(4), 1005–1035.

Alihodzic, A., & Tuba, M. (2014). Improved hybridized bat algorithm for global
numerical optimization. Paper presented at the 2014 UKSim-AMSS 16th International
Conference on Computer Modelling and Simulation.

Aljamali, N. M., Jawad, A. M., & Alsabri, I. K. A. (2020). Public Health in Hospitals. 1
First Edition, 2020, Eliva Press, ISBN: 9798636352129.

Benkrid, K., Liu, Y., & Benkrid, A. (2009). A highly parameterized and efficient FPGA-
based skeleton for pairwise biological sequence alignment. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 17(4), 561–570.

Bora, T. C., Coelho, L.d. S., & Lebensztajn, L. (2012). Bat-inspired optimization approach
for the brushless DC wheel motor problem. IEEE Transactions on magnetics, 48(2),
947–950.

Cohen, J. (2004). Bioinformatics—an introduction for computer scientists. ACM
Computing Surveys (CSUR), 36(2), 122–158.

Cormen, T. H. (2009). Introduction to algorithms. MIT press.
Dao, T.-K., Chu, S.-C., Pan, J.-S., Ngo, T.-G., Nguyen, T.-D., & Tran, H.-T. (2019). An

Improved Bat Algorithm Based on Hybrid with Ant Lion Optimizer. Paper presented at
the International Conference on Genetic and Evolutionary Computing.

Dao, T.-K., Chu, S.-C., Pan, J.-S., Nguyen, T., Ngo, T., Nguyen, T., & Tran, H. (2020). An
Improved Bat Algorithm Based on Hybrid with Ant Lion Optimizer. Advances in
Intelligent Systems and Computing, 1107, 50–60.

Di Tucci, L., O’Brien, K., Blott, M., & Santambrogio, M. D. (2017). Architectural
optimizations for high performance and energy efficient Smith-Waterman implementation
on FPGAs using OpenCL. Paper presented at the Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017.

Eappen, G., & Shankar, T. (2020). Hybrid PSO-GSA for energy efficient spectrum sensing
in cognitive radio network. Physical Communication, 40, 101091. https://doi.org/
10.1016/j.phycom.2020.101091

Elloumi, M., Issa, M. A. S., & Mokaddem, A. (2013). A. Accelerating Pairwise Alignment
Algorithms by Using Graphics Processor Units. In M. Elloumi, & A. Y. Zomaya (Eds.),
Biological Knowledge Discovery Handbook (pp. 969–980). Hoboken, New Jersey: John
Wiley & Sons, Inc.. https://doi.org/10.1002/9781118617151.ch42

Elsisi, M., Soliman, M., Aboelela, M. A. S., & Mansour, W. (2016). Bat inspired algorithm
based optimal design of model predictive load frequency control. International
Journal of Electrical Power & Energy Systems, 83, 426–433.

Enireddy, V., Anitha, R., Vallinayagam, S., Maridurai, T., Sathish, T., & Balakrishnan, E.
(2021). Prediction of human diseases using optimized clustering techniques.
Materials Today: Proceedings.

Feng, D.-F., & Doolittle, R. F. (1990). [23] Progressive alignment and phylogenetic tree
construction of protein sequences. Methods in enzymology, 183, 375–387.

Ferdowsi, A., Farzin, S., Mousavi, S.-F., & Karami, H. (2019). Hybrid Bat & Particle
Swarm Algorithm for optimization of labyrinth spillway based on half & quarter
round crest shapes. Flow Measurement and Instrumentation, 66, 209–217.

Garg, H. (2016). A hybrid PSO-GA algorithm for constrained optimization problems.
Applied Mathematics and Computation, 274, 292–305.

Gehan, E. A. (1965). A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52(1-2), 203–224.

Hasançebi, O., Teke, T., & Pekcan, O. (2013). A bat-inspired algorithm for structural
optimization. Computers & Structures, 128, 77–90.

Issa, M., & Elaziz, M. A. (2020). Analyzing COVID-19 virus based on enhanced
fragmented biological Local Aligner using improved Ions Motion Optimization
algorithm. Applied Soft Computing, 96, 106683. https://doi.org/10.1016/j.
asoc.2020.106683

Issa, M., Abo Bakr, H., Mansour Alzohairy, A., & Zeidan, I. (2012). Gene-Tracer:
Algorithm tracing genes modification from ancestors through offsprings.
International Journal of Computer Applications, 52(19), 11–14.

Issa, M., Hassanien, A. E., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). Pairwise Global
Sequence Alignment Using Sine-Cosine Optimization Algorithm. Paper presented at
the International Conference on Advanced Machine Learning Technologies and
Applications.

Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). ASCA-
PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for
pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70.

Jaddi, N. S., Abdullah, S., & Hamdan, A. R. (2015). Optimization of neural network
model using modified bat-inspired algorithm. Applied Soft Computing, 37, 71–86.

Jiang, J. L., Li, S. Y., Liao, M. L., & Jiang, Y. (2019). Application in Disease Classification
based on KPCA-IBA-LSSVM. Procedia Computer Science, 154, 109–116.

Jiang, S., Ji, Z., & Shen, Y. (2014). A novel hybrid particle swarm optimization and
gravitational search algorithm for solving economic emission load dispatch problems
with various practical constraints. International Journal of Electrical Power & Energy
Systems, 55, 628–644.

Kennedy. (1995). Particle swarm optimization. Neural Networks.
Khajeh-Saeed, A., Poole, S., & Blair Perot, J. (2010). Acceleration of the Smith-Waterman

algorithm using single and multiple graphics processors. Journal of Computational
Physics, 229(11), 4247–4258.

Li, I. T., Shum, W., & Truong, K. (2007). 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC bioinformatics, 8(1),
185.

Li, L., & Khuri, S. (2004). A Comparison of DNA Fragment Assembly Algorithms. Paper
presented at the METMBS.

Lu, S.-Y., Wang, S.-H., & Zhang, Y.-D. (2020). A classification method for brain MRI via
MobileNet and feedforward network with random weights. Pattern Recognition
Letters, 140, 252–260.

Manoj, S., Ranjitha, S., & Suresh, H. (2016). Hybrid BAT-PSO optimization techniques for
image registration. Paper presented at the 2016 International Conference on Electrical,
Electronics, and Optimization Techniques (ICEEOT).

Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems.
Knowledge-Based Systems, 96, 120–133.

Mohamed Issa, A. H., Ziedan, I., & Alzohairy, A. (2017). Maximizing Occupancy of GPU
for Fast Scanning Biological Database Using Sequence Alignment. Journal OF Applied
Sciences Research, 13(6).

Morshedian, A., Razmara, J., & Lotfi, S. (2019). A novel approach for protein structure
prediction based on an estimation of distribution algorithm. Soft Computing, 23(13),
4777–4788.

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology,
48(3), 443–453.

Neto, W. A., Pinto, M. F., Marcato, A. L., da Silva, I. C., & Fernandes, D.d. A. (2019).
Mobile robot localization based on the novel leader-based bat algorithm. Journal of
Control, Automation and Electrical Systems, 30(3), 337–346.

Pravesjit, S. (2016). A hybrid bat algorithm with natural-inspired algorithms for
continuous optimization problem. Artificial Life and Robotics, 21(1), 112–119.

Şenel, F. A., Gökçe, F., Yüksel, A. S., & Yiğit, T. (2019). A novel hybrid PSO–GWO
algorithm for optimization problems. Engineering with Computers, 35(4), 1359–1373.

Shehab, M., Khader, A. T., Laouchedi, M., & Alomari, O. A. (2019). Hybridizing cuckoo
search algorithm with bat algorithm for global numerical optimization. The Journal
of Supercomputing, 75(5), 2395–2422.

Shen, Q., Shi, W.-M., & Kong, W. (2008). Hybrid particle swarm optimization and tabu
search approach for selecting genes for tumor classification using gene expression
data. Computational Biology and Chemistry, 32(1), 53–60.

Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19
infection: Origin, transmission, and characteristics of human coronaviruses. Journal
of advanced research, 24, 91–98.

Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of molecular biology, 147(1), 195–197.

Trivedi, I. N., Jangir, P., Kumar, A., Jangir, N., & Totlani, R. (2018). A novel hybrid
PSO–WOA algorithm for global numerical functions optimization Advances in computer
and computational sciences (pp. 53–60). Springer.

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1), 67–82.

Xiong, J. (2006). Essential bioinformatics. Cambridge University Press.
Yadav, P., Sharma, P. R., & Gupta, S. K. (2015). Bat search algorithm based hybrid PSO

approaches to optimize the location of UPFC in power system. International Journal
on Electrical Engineering and Informatics, 7(3), 475–488.

M. Issa et al.

http://refhub.elsevier.com/S0957-4174(21)01403-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0005
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0010
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0015
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0015
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0020
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0025
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0035
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0040
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0045
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0050
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0055
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0060
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0060
https://doi.org/10.1016/j.phycom.2020.101091
https://doi.org/10.1016/j.phycom.2020.101091
https://doi.org/10.1002/9781118617151.ch42
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0080
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0085
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0090
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0095
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0100
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0105
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0110
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0110
https://doi.org/10.1016/j.asoc.2020.106683
https://doi.org/10.1016/j.asoc.2020.106683
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0120
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0125
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0130
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0135
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0140
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0145
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0150
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0155
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0155
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0155
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0160
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0160
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0160
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0165
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0165
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0170
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0170
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0170
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0175
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0175
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0175
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0180
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0180
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0185
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0185
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0185
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0190
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0190
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0190
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0195
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0195
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0195
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0200
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0200
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0200
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0205
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0205
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0210
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0210
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0215
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0215
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0215
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0220
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0220
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0220
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0225
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0225
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0225
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0230
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0230
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0235
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0235
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0235
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0240
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0240
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0245
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0250
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0250
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0250

Expert Systems With Applications 189 (2022) 116063

17

Yamaguchi, Y., Tsoi, H. K., & Luk, W. (2011). Fpga-based smith-waterman algorithm:
Analysis and novel design. Paper presented at the International Symposium on Applied
Reconfigurable Computing.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm Nature inspired
cooperative strategies for optimization (NICSO 2010) (pp. 65-74): Springer.

Yang, X.-S., & He, X. (2013). Bat algorithm: Literature review and applications.
International Journal of Bio-Inspired Computation, 5(3), 141–149.

Yildizdan, G., & Baykan, Ö. K. (2020). A novel modified bat algorithm hybridizing by
differential evolution algorithm. Expert Systems with Applications, 141, 112949.
https://doi.org/10.1016/j.eswa.2019.112949

Yue, X., & Zhang, H. (2019). Improved hybrid bat algorithm with invasive weed and its
application in image segmentation. Arabian Journal for Science and Engineering, 44
(11), 9221–9234.

Zahid, S. K., Hasan, L., Khan, A. A., & Ullah, S. (2015). A novel structure of the Smith-
Waterman Algorithm for efficient sequence alignment. Paper presented at the 2015
Third International Conference on Digital Information, Networking, and Wireless
Communications (DINWC).

Zou, H., Tang, S., Yu, C., Fu, H., Li, Y., & Tang, W. (2019). Asw: Accelerating Smith-
Waterman algorithm on coupled CPU–GPU architecture. International Journal of
Parallel Programming, 47(3), 388–402.

Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020).
(COVID-19): A perspective from China. Radiology, 296(2), E15–E25.

M. Issa et al.

http://refhub.elsevier.com/S0957-4174(21)01403-2/h0255
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0255
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0255
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0265
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0265
https://doi.org/10.1016/j.eswa.2019.112949
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0275
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0275
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0275
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0280
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0280
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0280
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0280
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0285
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0285
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0285
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0290
http://refhub.elsevier.com/S0957-4174(21)01403-2/h0290

	A biological sub-sequences detection using integrated BA-PSO based on infection propagation mechanism: Case study COVID-19
	1 Introduction
	2 Literature review
	3 Preliminaries
	3.1 Flat
	3.2 BA algorithm
	3.3 PSO algorithm

	4 The proposed hybrid method between BA and PSO based on infection technique (BPINF) for FLAT
	4.1 Inspiration and mathematical model
	4.2 FLAT based on the developed BPINF technique

	5 Experimental results and discussion
	5.1 Sensitivity analysis of BPINF parameters

	6 BPINF-based FLAT for COVID-19
	7 Conclusions and future research directions
	Funding
	CRediT authorship contribution statement

	Declaration of Competing Interest
	References

