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Abstract 

Background:  5q spinal muscular atrophy (SMA) is a disabling and life-limiting neuromuscular disease. In recent 
years, novel therapies have shown to improve clinical outcomes. Yet, the absence of reliable biomarkers renders 
clinical assessment and prognosis of possibly already affected newborns with a positive newborn screening result for 
SMA imprecise and difficult. Therapeutic decisions and stratification of individualized therapies remain challenging, 
especially in symptomatic children. The aim of this proof-of-concept and feasibility study was to explore the value of 
1H-nuclear magnetic resonance (NMR)-based metabolic profiling in identifying non-invasive diagnostic and prognos‑
tic urinary fingerprints in children and adolescents with SMA.

Results:  Urine samples were collected from 29 treatment-naïve SMA patients (5 pre-symptomatic, 9 SMA 1, 8 SMA 2, 
7 SMA 3), 18 patients with Duchenne muscular dystrophy (DMD) and 444 healthy controls. Using machine-learning 
algorithms, we propose a set of prediction models built on urinary fingerprints that showed potential diagnostic 
value in discriminating SMA patients from controls and DMD, as well as predictive properties in separating between 
SMA types, allowing predictions about phenotypic severity. Interestingly, preliminary results of the prediction models 
suggest additional value in determining biochemical onset of disease in pre-symptomatic infants with SMA identified 
by genetic newborn screening and furthermore as potential therapeutic monitoring tool.

Conclusions:  This study provides preliminary evidence for the use of 1H-NMR-based urinary metabolic profiling as 
diagnostic and prognostic biomarker in spinal muscular atrophy.
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Background
5q spinal muscular atrophy (SMA) is an autosomal-
recessive neuromuscular disease caused by homozygous 
deletions or loss-of-function mutations in the survival 
motor neuron 1 gene (SMN1) with retained function of 
at least one copy of the paralogous SMN2 gene, result-
ing in a progressive loss of alpha motor neurons in the 
spinal cord and lower brain stem. Based on age at onset 
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and phenotypic severity, SMA has been divided into 
four clinical subtypes [1, 2]: SMA 1 (“non-sitters”, onset 
0–6  months), SMA 2 (“sitters but non-walkers”, onset 
7–18  months), SMA 3 (“walkers”, onset before (3a) or 
after (3b) 3 years), and SMA 4 (adult onset).

Over the past years, novel treatments, such as the 
SMN2 splicing modifiers Nusinersen [3, 4] and Ris-
diplam ([5, 6]; ClinicalTrials.gov: NCT02913482, 
NCT02908685), as well as Onasemnogene Abeparvo-
vec [7], as first gene replacement therapy, have been 
developed for SMA. These therapies hold the potential 
to significantly improve disease trajectories if adminis-
tered early in the disease course, preferably before first 
symptoms arise [8–11]. To allow early treatment ini-
tiation by pre-symptomatic diagnosis, the feasibility and 
medico-economic impacts of different newborn screen-
ing programs for SMA are currently being evaluated in 
clinical trials [12, 13] (ClinicalTrials.gov: NCT03655223, 
NCT03217578). Yet, not all patients identified by new-
born screening will develop clinical signs shortly after 
birth and many SMA patients show an attenuated dis-
ease course with late onset of disease and only minimal 
muscle weakness. Due to the absence of predictive bio-
markers, treatment decisions are currently based on 
quantification of SMN2 copy numbers, with moderate 
genotype–phenotype correlation [14, 15]. The inabil-
ity of reliably predicting disease severity may result in 
severely affected SMA patients (e.g. with 4 SMN2 copies) 
being denied pre-emptive treatment and at the same time 
mildly affected patients being subject to costly and inva-
sive therapies, many years before first symptoms arise. 
Hence, the need for reliable biomarkers is pressing [15]. 
Interestingly, urinary metabolic profiling has successfully 
been used to identify potential biomarkers in a number 
of central nervous system (CNS) diseases, including neu-
ropsychiatric, demyelinating, metabolic, neurodegenera-
tive, mitochondrial and motor neuron diseases [16–23]. 
Only recently, a first attempt has been made to use 
1H-nuclear magnetic resonance (NMR)-based metabo-
lomics as biomarker in SMA reporting an overall reduc-
tion of metabolites compared to healthy controls without 
evidence for metabolomic changes under Nusinersen 
therapy [24].

The aim of this proof-of-concept study was to use a 
highly standardized and strictly quality controlled NMR-
based metabolomics platform to further explore whether 
urinary metabolic signatures can serve as additional bio-
markers for diagnosis and disease prediction in SMA.

Results
Clinical and demographic characteristics
A total of 29 treatment-naïve SMA patients (5 pre-symp-
tomatic, 9 SMA 1, 8 SMA 2, 7 SMA 3) were included 

in the study. Clinical characteristics are summarized in 
Table 1.

Age significantly differed among our cohort (Kruskal–
Wallis Anova test, P = 0.0069) with median ages of 0.4 
(IQR = 0.48) years for pre-symptomatic, 0.5 (IQR = 7.3) 
years for SMA 1, 11.9 (IQR = 15.8) years for SMA 2 and 
8.3 (IQR = 8.0) years for SMA 3 patients. Gender was 
equally distributed with male-to-female ratios of 0.7:1 in 
the pre-symptomatic, 0.8:1 in the SMA 1 and 1:1 in the 
SMA 2 cohort. The SMA 3 cohort showed a male-to-
female ratio of 0.4:1. Four patients were clinically diag-
nosed as SMA 3a and three as SMA 3b, all SMA 3b and 
one SMA 3a patient (SMA023) were ambulatory at time 
of sample collection. The individual SMN1 mutations and 
SMN2 copy numbers are depicted in Table 1. For disease 
prediction of pre-symptomatic SMA patients only those 
with 4 SMN2 copies were included in the study. Longi-
tudinal collection of therapy-naïve pre-symptomatic 
children with 2-3 SMN2 copies was not feasible, since 
in Europe, these patients were treated with Nusinersen 
rapidly after birth. For pre-symptomatic individuals with 
SMA and 4 SMN2 copies, treatment guidelines in Europe 
during the recruitment period of the study recommended 
a watchful waiting strategy, allowing longitudinal follow-
up and correlation of predicted phenotypes accord-
ing to metabolic signatures with the onset of symptoms 
and natural history of the disease before start of specific 
therapy.

Median HFSME scores (max. 66) significantly dif-
fered between SMA 2 (median 8.5, IQR = 8.3) and SMA 
3 (median 40.0, IQR = 16.3) (Kruskal–Wallis Anova 
test, P = 0.0062), pleading for relevant differences in the 
execution of complicated motor tasks and lower limb 
function. Similarly, median RULM scores (max. 37), 
reflecting upper limb function, were significantly differ-
ent (Kruskal–Wallis Anova test, P = 0.0493) (SMA2: 15.0 
(IQR = 15.0); SMA 3:21.0 (IQR = 2.3)). Median CHOP-
INTEND scores (max. 64) with 60.5 (IQR = 4.8) for 
pre-symptomatic, 21.0 (IQR = 6.8) for SMA 1 and 44.0 
(IQR = 16.5) for SMA 2 showed differences, however, did 
not reach significance level (Kruskal–Wallis Anova test, 
P = 0.0502).

A representative complete urinary 1H-NMR metabolic 
spectrum of a healthy individual is shown in Fig. 1A. As 
expected, age significantly differed between subgroups 
(P < 0.01) and proved to be an important confounder 
(Fig.  1B and Additional file  1: Fig. S1). Age bias was 
reduced by conducting experiments with age-matched 
subgroups as far as possible. No significant differences 
were observed concerning gender (Fig.  1C). Quantifica-
tion of the urine creatine-to-creatinine quotient showed 
significant differences between SMA subgroups and con-
trols (Fig. 1D), in line with recent reports [25]. However, 
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since creatine/creatinine is foremost a marker of muscle 
activity/immobility and therefore highly unspecific, the 
1H-NMR spectral regions for creatine and creatinine 
were excluded from analysis.

Reference urinary metabolic profiles of healthy indi-
viduals were established by a large control group of 444 
healthy individuals ranging from 2  months to 19  years. 
Median age was 4.9 (IQR = 1.6) years, with a male-to-
female ratio of 1:0.7.

Urinary metabolic profiles can provide recognizable 
fingerprints for SMA
In order to identify non-invasive diagnostic finger-
prints, we used an 1H-NMR-based metabolomics 

approach to analyze urinary samples of 24 SMA 
patients (9 SMA 1, 8 SMA 2 and 7 SMA 3) between 
2  months and 19  years compared to an age-matched 
control group. The accuracy of the predictions for indi-
vidual patients is depicted in Table 2.

PCA/CA/k-NN classification of urinary meta-
bolic profiles showed discrimination between the 
SMA and control group with 81% sensitivity and 98% 
specificity for recognizing SMA (Fig.  2). False assign-
ment occurred in two ambulatory SMA 3b patients 
(SMA027, SMA028), in one SMA 1 (SMA008), one 
SMA 2 (SMA020) and one SMA 2/borderline SMA 3 
(SMA015) patient, respectively.

Table 1  Clinical characteristics of SMA patients

CHOP-INTEND, Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders; Δ/del, deletion; F, female; het, heterozygous; HFSME, Hammersmith 
Functional Motor Scale Expanded; hom, homozygous; M, male; m, months; PRE, pre-symptomatic; RULM, Revised Upper Limb Module; SMA, spinal muscular atrophy; 
y, years

ID Age Gender SMA type SMN1 mutation SMN2 copies Ambula-tory CHOP-
INTEND (max. 
64)

HFSME 
(max. 66)

RULM 
(max. 
37)

SMA001 2 m M PRE Hom. Δ7/8 4 No 59 –

SMA002 4 m M PRE Hom. Δ7/8 4 No 54 – –

SMA003 7 m F PRE Hom. Δ7/8 5 No 64 – –

SMA004 1y 2 m F PRE Hom. Δ7/8 5 No – – –

SMA005 3 m F PRE Hom. Δ7, Het. Δ8 4 No 62 – –

SMA006 2 m F 1 Hom. Δ7/8 2 No 22 – –

SMA007 4 m F 1 Hom. Δ7/8 2 No 22 – –

SMA008 3 m M 1 Hom. Δ7/8 2 No 13 – –

SMA009 5 m M 1 Het. Δ7/8, (c.46delG) 2 No 20 – –

SMA010 5 m M 1 Hom. Δ7 2 No 28 – –

SMA011 9 m M 1 Hom. Δ7/8 3 No 32 – –

SMA012 14y F 1 Hom. Δ7/8 2 No 18 – 1

SMA013 16y 10 m F 1 Hom. Δ7/8 3 No 10 – 5

SMA014 5y 5 m F 1 Hom. Δ7 3 No – – –

SMA015 1y 2 m F 2 Hom. Δ7 3 No – 10 –

SMA016 1y 5 m M 2 Hom. Δ7/8 3 No 44 – –

SMA017 2y 6 m F 2 Hom. Δ7/8 3 No 59 12 –

SMA018 9y M 2 Hom. Δ7/8 3 No 26 – 6

SMA019 14y 8 m M 2 Hom. Δ7 3 No – 7 21

SMA020 17y 8 m F 2 Hom. Δ7/8 3 No – 17 25

SMA021 18y M 2 Hom. Δ7/8 3 No – 0 6

SMA022 18y 11 m F 2 Hom. Δ7/8 3 No – 2 15

SMA023 3y 2 m F 3a Hom. Δ7/8 3 Yes – 36 11

SMA024 8y 3 m F 3a Hom. Δ7/8 3 No – – –

SMA025 8y 9 m F 3a Hom. Δ7/8 3 No – 22 21

SMA026 12y 8 m F 3a Hom. Δ7/8 3 No – 31 23

SMA027 3y 5 m M 3b Hom. Δ7, Het. Δ8 2 Yes – 50 20

SMA028 4y 4 m M 3b Hom. Δ7/8 4 Yes – 44 21

SMA029 14y 1 m F 3b Hom. Δ7/8 4 Yes – 54 33
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To exclude an ascertainment bias by unspecific 
changes in muscle metabolism, we compared the 
SMA group to another childhood-onset neuromus-
cular disease, DMD. Twenty-four urinary samples 
of SMA patients (male-to-female ratio 0.7:1, median 
age 7.4 (IQR = 13.1) years) were compared to 18 uri-
nary samples of DMD patients (all male, median age 
7.5 (IQR = 8.5) years). Metabolic profiles of these two 
diseases showed spatial discrimination correctly clas-
sifying SMA patients with 73% sensitivity and 74% 
specificity (Fig.  3). Exclusion of female patients from 
the SMA group to assure equal gender distribution 
returned comparable results (Additional file 2: Fig. S2).

Thus, urinary metabolic profiling using 1H-NMR spec-
troscopy can provide specific and recognizable spectral 
fingerprints for SMA.

Urinary metabolic profiles can help in predicting SMA 
disease severity
To assess whether urinary metabolic profiles can reflect 
disease severity and to refine our predictions, we divided 
the SMA cohort into subgroups based on clinical classi-
fication and established two prediction models (Table 2).

First, three subgroups of children between 2  months 
and 19  years were selected (9 SMA 1, 8 SMA 2 and 7 
SMA 3) and compared to each other and healthy con-
trols (Fig.  4A). Again, controls were correctly classi-
fied as healthy in almost all cases (98%). The clinically 
severely affected SMA 1 subgroup was correctly rec-
ognized in 66% of cases. Two patients were falsely 
assigned to the SMA 2 group (SMA013) and to controls 
(SMA011), respectively. False assignment of SMA 1 
patients to the SMA 3 group did not occur. The SMA 2 

Fig. 1  Urinary 1H-NMR metabolic spectrum and possible confounders. A Representation of the complete urinary 1H-NMR metabolic spectrum of a 
healthy individual. Exemplary metabolites and close-ups of the aromatic region as well as the creatine and creatinine peaks are shown for illustrative 
purposes. TSP (trimethylsilylpropionic acid-d4 sodium salt) served as reference peak. The spectral regions highlighted in green were used for further 
analysis. B Plotting of different SMA subgroups vs. age-matched controls revealed age as a significant confounder emphasizing the importance 
of age-matched experimental setups. C No differences were observed concerning gender. D Quantification of the creatine-to-creatinine quotient 
showed significant differences between SMA subgroups and controls. To avoid variability due to creatinine metabolism, which was recently shown 
to be impaired in SMA [25], the spectral regions for creatine and creatinine were excluded prior to postprocessing in the following experiments. 
SMA: spinal muscular atrophy. CTRL: control
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group was correctly recognized in 27% of cases with sig-
nificant overlap to the SMA 1 group (SMA016, SMA019, 
SMA020 and SMA021). However, despite overlap among 
one another, the SMA 1 and SMA 2 subgroups showed 
good discrimination from the SMA 3 subgroup (0% and 
16% false assignment, respectively). Inversely, the SMA 
3 group demonstrated good discrimination from SMA 1 
and 2, false assignment occurred in 13% and 3% of cases, 
respectively. Along these lines, almost all SMA 3 patients 
showed a certain degree of overlap with healthy controls 

with a 61% false negative rate. Closer analysis of 1HMR 
spectra revealed multiple regions of the metabolome 
being responsible for the detected differences. The most 
pronounced changes were predominantly driven by pro-
tein background, particularly in the severely affected type 
1 patients (Fig.  4B) and seemed to dynamically change 
under therapy with Nusinersen as demonstrated by lon-
gitudinal analysis of individual SMA013 (Additional 
file 3: Fig. S3). The exact proteins involved are still under 
investigation. Currently, the major discriminants for the 

Table 2  PCA/CA-embedded MCCV classification results for the different models

The healthy control group is not listed since all samples were classified correctly. (*) wrong assignment with CTRL 2 m-19 years only

CTRL, Control; SMA, spinal muscular atrophy; s/p, status post

ID SMA type Correct classification Comments

SMA vs. 
CTRL 
(%)

SMA 1 vs. SMA 
2 vs. SMA 3 vs. 
CTRL

SMA 1/2 vs. SMA 3 vs. CTRL

SMA006 1 100 59% (*) 38% (*)

SMA007 1 100 100% 41% (*)

SMA008 1 4 95% 99%

SMA009 1 100 80% (*) 92% (*)

SMA010 1 100 100% 15% (*)

SMA011 1 100 11% (*) 85% (*) Mild disease course, borderline SMA 2

SMA012 1 100 58% (41% SMA 2) 100%

SMA013 1 100 2% (98% SMA 2) 100% Mild disease course, 3 SMN2 copies, no respiratory involvement, 
possible age bias

SMA014 1 100 90% (*) 99%

SMA015 2 0 0% (*) 0% (*) Mild disease course, borderline SMA 3, good response to 
Nusinersen (standing and first steps) as potential sign for residual 
motor capacity

SMA016 2 100 0% (79% SMA 1) 53% (*)

SMA017 2 100 78% 97%

SMA018 2 100 0% (95% SMA 3) 16% (83% SMA 3) Severe disease course, mild intellectual disability
Multiple comorbidities: pulmonary hypertension due to Ebstein 
anomaly, epileptic seizures
Medication: sildenafil, valproic acid

SMA019 2 100 28% (46% SMA 1) 96% Severe disease course with orthopedic involvement: severe 
neuromyopathic scoliosis, spondylodesis

SMA020 2 34 0% (45% SMA 1) 100% Orthopedic involvement: severe neuromyopathic scoliosis, 
spondylodesis

SMA021 2 100 15% (83% SMA 1) 100% Respiratory involvement: s/p recurrent pneumonias, s/p pleural 
empyema requiring surgical intervention
Orthopedic involvement: severe neuromyopathic scoliosis, spon‑
dylodesis with recurrent bacterial infections requiring 11 surgical 
revisions resulting in extensive scarring of the back

SMA022 2 100 92% 100%

SMA023 3a 100 96% 63% (32% CTRL) Mild disease course

SMA024 3a 100 0% (49% CTRL) 0% (83% SMA 1/2) Mild disease course

SMA025 3a 100 27% (*) 59% (40% CTRL) Mild disease course

SMA026 3a 100 16% (47% CTRL) 0% (85% CTRL) Mild disease course

SMA027 3b 0 0% (*) 0% (*) Mild disease course, ambulatory

SMA028 3b 0 24% (*) 37% (*) Mild disease course, ambulatory

SMA029 3b 99 0% (80% CTRL) 0% (52% CTRL) Mild disease course, ambulatory
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changes in protein background could be localized to the 
aliphatic region of the metabolome, a region contain-
ing molecule classes such as alkanes, alkenes, alkynes 
and their derivates. Some of these key metabolites are 
depicted in Additional file 3: Fig. S3.

Following these observations, and supported by the 
results of muscle function tests (Table 1), we next clus-
tered the SMA 1 and 2 subgroups to form an “early 
symptomatic” group (i.e. children with disease onset 
before 18  months, who never achieved the ability of 

Fig. 2  Discrimination between SMA patients and healthy controls. PCA/CA classification and MCCV showed clear discrimination between the SMA 
group and an age-matched healthy control group. PCA/CA was performed on 1,000 variables from 0.5 to 10 ppm (exclusion: see Materials and 
Methods) with Expl. Variance of 99.9%. The Confusion Matrix is the result of 100 Monte-Carlo-Runs (MC) with 24-fold CrossValidation (CV). Space 
of discrimination is one representation of the modelling samples in 2-dimensions. □ represent the model-set and ○ represent the test-set. SMA: 
spinal muscular atrophy. CTRL: control

Fig. 3  Discrimination between SMA and DMD patients. PCA/CA classification and MCCV showed clear discrimination between the SMA group and 
the DMD group. PCA/CA was performed on 1,000 variables from 0.5 to 10 ppm (exclusion: see Materials and Methods) with Expl. Variance of 99.9%. 
The Confusion Matrix is the result of 100 Monte-Carlo-Runs (MC) with 15-fold CrossValidation (CV). Space of discrimination is one representation of 
the modelling samples in 2-dimensions. □ represent the model-set and ○ represent the test-set. SMA: spinal muscular atrophy. DMD: Duchenne 
muscular dystrophy
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independent walking) and compared them to the SMA 
3 subgroup as “late symptomatic” group (i.e. children 
with disease onset between 18  months and 19  years, 
who achieved independent walking) (Fig.  5A). MCCV 
showed correct identification of SMA 1/2 in 72% of 
cases with false assignment to SMA 3 in only 5% of 
cases. Inversely, only 19% of SMA 3 patients were 
falsely assigned to the early symptomatic SMA 1/2 
group. Importantly, 6 of the 8 SMA 1 and 2 patients 

that were falsely classified with the previous model 
were correctly assigned to the respective groups using 
the clustered “early vs. late symptomatic” approach. 
By contrast, three clinically clear SMA 1 patients 
(SMA006, SMA007 and SMA010), who were correctly 
classified with the previously model, were now assigned 
to the control group. Again, significant overlap between 
the SMA 3 group and healthy controls occurred (60%). 
To reduce age bias, we next excluded children under 

Fig. 4  Disease prediction. A PCA/CA classification and MCCV of the SMA 1, 2 and 3 group and an age-matched healthy control group showed 
clear discrimination between the SMA 1 and SMA 3 group with some overlap between the SMA 1 and 2 group as well as the SMA 3 group and 
controls. PCA/CA was performed on 1,000 variables from 0.5 to 10 ppm (exclusion: see Materials and Methods) with Expl. Variance of 99.9%. The 
Confusion Matrix is the result of 100 Monte-Carlo-Runs (MC) with sevenfold CrossValidation (CV). Space of discrimination is one representation of 
the modelling samples in 2-dimensions. B Expansion of 6% of overall 1H NMR spectra. The Kruskal–Wallis test of 1H NMR spectra of the different 
SMA types and controls revealed significant protein backgrounds in the aliphatic region as one of the major discriminants. Colored lines represent 
medians and colored areas correspond to variation (12.5–87.5% quantile) of 1H-NMR spectra. Spectral regions highlighted in black illustrate 
significant differences between the 4 groups (p-value < 0.01). SMA: spinal muscular atrophy. CTRL: control
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2  years of age from the analysis (Fig.  5B). As a result, 
63% of the early symptomatic SMA 1/2 group were 
correctly assigned, while false assignment to the late 
symptomatic SMA 3 group occurred in 10% of cases. 
Importantly, only 2% of the SMA 3 patients were falsely 
assigned to the SMA 1/2 group. Age as confounding 
factor for the separation between early symptomatic 
and late symptomatic patients can, therefore, be widely 
excluded.

To assess, whether the observed changes can dynami-
cally change under therapy, we analyzed longitudinal 
follow-up samples of one SMA1 patient (SMA013) 

under Nusinersen treatment suggesting a dose-depend-
ent effect (Additional file 3: Fig. S3).

Thus, both prediction models, although depicting a 
number of false classifications, were able to assign the 
majority of SMA patients to the correct phenotypic 
subgroups, with a particularly good separation between 
mildly and severely affected patients.

Urinary metabolic profiles of pre‑symptomatic SMA 
patients can potentially predict disease severity
To address whether metabolic profiles can provide pre-
dictions of pre-symptomatically identified SMA patients, 

Fig. 5  Early vs. late symptomatic SMA. A PCA/CA classification and MCCV of early symptomatic (SMA 1/2) vs. late symptomatic (SMA 3) group in 
relation to an age-matched control group of healthy individuals between 2 months and 19 years showed clear discrimination between early and 
late symptomatic SMA. B Similar results were returned after excluding children under 2 years rendering age bias as confounder unlikely. PCA/CA 
was performed on 1,000 variables from 0.5 to 10 ppm (exclusion: see Materials and Methods) with Expl. Variance of 99.5%. The Confusion Matrix is 
the result of 100 Monte-Carlo-Runs (MC) with sixfold CrossValidation (CV). Space of discrimination is one representation of the modelling samples in 
2-dimensions. □ represent the model-set and ○ represent the test-set. SMA: spinal muscular atrophy. CTRL: control
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we investigated the urinary metabolic profiles of 5 pre-
symptomatic children, identified through genetic new-
born screening, compared to symptomatic patients and 
healthy controls (Fig. 6).

PCA/CA/k-NN classification of pre-symptomatic 
individuals compared to all SMA patients and healthy 

controls from 2 months to 19 years (Fig. 6A) as well as to 
early symptomatic SMA 1/2 and late symptomatic SMA 
3 patients from 2 to 19 years (Fig. 6B) assigned 100% of 
the pre-symptomatic group to controls, in agreement 
with the absence of clinical signs. However, since the 
pre-symptomatic group consisted of very young children 

Fig. 6  Prediction of disease severity in pre-symptomatic SMA. A Spectroscopic fingerprints of five pre-symptomatic SMA samples (determined as 
1-1, 2-1, 3-1, 4-1, and 5-1) in comparison to SMA 1, SMA 2, SMA 3 and controls between 2 months and 19 years were consistent with the control 
group. B Comparison of pre-symptomatic SMA vs. early symptomatic SMA (SMA 1/2), late symptomatic SMA (SMA 3) and controls between 2 and 
19 years returned similar results. C Age-matched comparison with SMA 1 and healthy controls between 2 and 18 months reveals a borderline 
fingerprint of patient SMA001 (1-1) showing some similarities to the SMA 1 profile. D Interestingly, follow-up urine samples from patient SMA001 
after 6 months (1-2) and after 8 months (1-3), as well as a follow-up urine sample of patient SMA003 (3-1) after 4 months (3-2) confirm high 
similarities with the SMA 1 group. No changes were observed on a follow-up urinary sample of patient SMA002 (2-1) after 2.5 months (2-2). SMA: 
spinal muscular atrophy. CTRL: control
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only, we next conducted an age-matched experiment 
including only pre-symptomatic patients, SMA 1 and 
controls from 2 to 18 months (Fig. 6C). As a result, one of 
the pre-symptomatic patients (SMA001) was classified as 
borderline SMA 1. The changes observed involved sub-
tle alterations in large parts of the metabolic profile with 
emphasis on protein background. Follow-up urinary pro-
files of SMA001 after 6 and 8 months of age progressively 
converged with the SMA 1 group (Fig. 6D). Interestingly, 
this patient, after being able to sit with 9  months and 
walk with 13 months, developed signs of mild proximal 
weakness prompting initiation of Nusinersen treatment 
with 16 months of age. To a lesser degree, a follow-up uri-
nary profile of SMA003 after 4 months changed towards 
borderline SMA 1. The patient is currently 27  months 
old and shows age-expected motor development with-
out treatment. No changes were seen on a follow-up uri-
nary sample of SMA002 after 2.5 months. SMA002 was 
started on pre-symptomatic Nusinersen treatment with 
6  months of age and on last follow-up with 13  months 
showed age-expected motor development. No follow-up 
urine samples were available for patients SMA004 and 
SMA005 who were asymptomatic on last clinical follow-
up with 21 and 15  months of age respectively without 
Nusinersen treatment.

Thus, urinary metabolic profiles of pre-sympto-
matic SMA patients show mild changes which might 
announce biochemical onset of disease preceding clinical 
deterioration.

Discussion
SMA is a disabling and life-limiting neuromuscular dis-
ease. Novel therapies have shown to improve clinical 
outcomes. Yet, the absence of reliable diagnostic and 
prognostic biomarkers renders the determination of clin-
ical disease onset challenging, especially after a positive 
newborn screening result. Current treatment recommen-
dations do not adequately reflect the complex pathogen-
esis of SMA. This will lead to both delayed treatment 
initiation in clinically severely affected individuals (e.g. 
in children with 4 SMN2 copies), limiting therapeu-
tic effects, as well as unnecessary early administration 
of costly and invasive, potentially harmful therapies in 
mildly affected patients. Thus, the need for reliable diag-
nostic and prognostic biomarkers remains very relevant. 
Another problem in daily practice is that a large number 
of newborns with 2 SMN2 copies and a positive SMA 
newborn screening result are already symptomatic at 
time of treatment initiation, exact predictions about their 
potential motor development are still imprecise. Many 
studies have investigated the value of electrophysiologi-
cal, radiologic and laboratory measurements [26–30]. 
Particularly, plasma phosphorylated neurofilament heavy 

chain (pNF-H), SMN protein and serum creatinine levels 
have been proposed as promising biomarkers for disease 
activity and treatment response in SMA [6, 11, 25, 31, 
32]. Indeed, spot urine creatine-to-creatinine quotients 
differed significantly in our cohort with SMA 1/2 patients 
showing highly elevated ratios, while SMA 3 patients 
showed moderately elevated ratios (Fig. 1D). Yet, none of 
the proposed substrates alone showed sufficient sensitiv-
ity and specificity to guide clinical decisions. Considering 
the complexity of different, partly unknown, modifiers 
involved in determining SMA phenotypes, the evaluation 
of the entire metabolome, rather than individual metab-
olites, might provide a more comprehensive outcome 
measure for disease severity as foundation for therapeu-
tic decisions.

Metabolic profiling describes the large scale quanti-
tative and qualitative analysis of low molecular weight 
chemicals (< 1  kDa) present in biological samples [33]. 
Metabolic profiles can be considered as an organism’s 
ultimate biochemical output integrating genetic and 
environmental modifiers, showing high correlation to 
clinical phenotypes [17]. NMR-based metabolomics 
offers many advantages in biomarker development. 
NMR is a high-throughput method requiring minimal 
sample preparation, allowing quantitative analysis with 
excellent reproducibility and unlike commonly used 
techniques, such as mass spectrometry, simultaneously 
measures all of the more abundant compounds within 
a biological sample [34, 35]. Urine has been proposed 
as the preferred medium for biomarker development in 
neurological diseases including SMA, since it is readily 
available and easily obtained in a non-invasive manner 
and more importantly, unlike blood and cerebrospinal 
fluid, lacks homeostatic mechanisms that might attenu-
ate systemic fluctuations, thus more adequately reflect-
ing disease-specific changes [18, 24]. Along these lines, 
urinary biomarkers have been identified in a number of 
CNS diseases, including neuropsychiatric, demyelinating, 
neurodegenerative and motor neuron diseases [19].

In this study, we conducted a proof-of-concept and fea-
sibility approach using a highly standardized and strictly 
quality controlled 1H-NMR-based metabolic profiling 
platform along with sophisticated machine learning algo-
rithms to explore the value of urinary metabolic profiles 
in identifying disease-specific and predictive signatures 
in urine samples of 29 treatment-naïve SMA patients. 
Our results suggest that 1H-NMR spectra might provide 
recognizable metabolic fingerprints for SMA, allowing 
discrimination from healthy controls and the neuro-
muscular disease DMD. Importantly, profiles of affected 
SMA patients, in the majority of cases, displayed some 
correlation to phenotypic severity and might be able to 
reflect dynamic changes under therapy. Close analysis 
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of metabolic spectra revealed multiple regions of the 
metabolome (most importantly protein background and 
in particular the aliphatic region) being responsible for 
the separation between SMA subgroups and controls, 
emphasizing the concept of complex and multifacto-
rial biochemical changes driving SMA phenotypes, as 
opposed to a single-biomarker based approach to pre-
dict disease severity. The exact proteins involved are still 
under investigation.

Based on our findings, two prediction models were 
established, with moderate sensitivity. Yet, sensitivity 
proved to be good in separating the extreme ends of the 
spectrum (early-onset SMA 1 vs. late SMA 3 with rela-
tively long preserved ambulation). A few patients were 
assigned to the wrong groups. For instance, SMA015, a 
one-year-old girl with mild SMA 2/borderline SMA 3, 
who on clinical follow-up under Nusinersen treatment is 
currently able to stand and walk first steps, was constantly 
assigned to the healthy control group, potentially reflect-
ing residual motor capacity after relatively early initiation 
of therapy. By contrast, SMA018, a severely affected SMA 
2 patient with mild intellectual disability and multiple 
comorbidities, including pulmonary hypertension due to 
Ebstein anomaly and epileptic seizures requiring treat-
ment with sildenafil and valproic acid, respectively, was 
classified as SMA 3. We are currently unable to confirm 
whether these comorbidities or co-medications caused 
false classification. Further, significant overlap between 
the SMA 3 group and controls occurred (SMA024, 
SMA026, SMN027, SMA028 and SM029). This observa-
tion was likely caused by mild disease, including partly 
preserved ability to walk. Motor performance/capacity 
on time of sample collection seemed to play a role for 
biochemical classification, since patients with mild phe-
notypes (SMA 3, particularly with preserved ambula-
tion) were recognized as healthy in the majority of cases, 
while SMA 2 patients with ongoing alpha motor neuron 
degeneration for many years, showed some overlap with 
the SMA 1 group (SMA019, SMA020, SMA021). These 
results support the notion of a more nuanced classifica-
tion of the SMA disease spectrum along a phenotypic 
continuum, rather than the rigid traditional division into 
four clinical phenotypes, as has in a similar fashion been 
proposed for other neuromuscular diseases [36].

Interestingly, age-matched analysis of pre-symptomatic 
SMA children, identified by genetic newborn screening, 
revealed heterogeneous results with most patients being 
assigned to the control group, as expected due to the 
absence of clinical signs, however classifying one patient 
as borderline SMA 1. Follow-up urinary metabolic sig-
natures of this patient with 6 and 8 months progressively 
converged with the SMA 1 group, preceding signs of 
mild proximal muscle weakness becoming apparent after 

13  months of age. A second patient, showing very mild 
changes of the metabolic signature drifting towards bor-
derline SMA 1 is currently developing normally.

Our results demonstrate that 1H-NMR-based meta-
bolic profiling of urinary samples is feasible and might 
hold the potential to complement current treatment 
algorithms in SMA, providing an additional tool for diag-
nosis, disease prediction, therapeutic decision-making, 
and follow-up under treatment. Clinical applications of 
this method might be broad, if proven to be reliable in 
larger studies. Despite promising newborn screening 
programs all over the world, accurate and early predic-
tions of disease severity remain a challenging issue. Our 
results suggest that urinary metabolic profiling of pre-
symptomatic children might depict biochemical onset 
of disease before clinical signs become visible, providing 
potentially quantifiable measurements for clinical deci-
sions and prognosis with respect to disease onset and 
initiation of specific therapy and opening new avenues in 
patient stratification. Moreover, since preliminary results 
suggest that urinary signatures dynamically change under 
Nusinersen therapy, the value of 1H-NMR based metab-
olomics as therapeutic monitoring tool might be worth 
further exploring in follow-up studies. Comparing differ-
ent therapies and quantifying therapeutic effects, espe-
cially given the multiple existing treatment regimens for 
SMA, including Nusinersen, Risdiplam and gene therapy, 
will be an important future task and could be of relevance 
for evaluating treatment response, comparing therapies 
with respect to their long-term efficacy, additive effects 
and potential side effects and might thus help to develop 
personalized therapeutic concepts. Along these lines, 
integrating changes of the metabolome under therapy 
with motor function scores and additional outcome 
measures might additionally identify individual profiles 
for responders and non-responders for specific therapies. 
The baseline metabolic profiles provided in this study 
might help as comparator in future clinical trials. Finally, 
the identification of the exact metabolites responsible 
for the disease-specific pathophysiological fingerprints, 
through future research, possibly by combining differ-
ent metabolomic technologies including further high-
resolution techniques such as mass spectrometry, could 
potentially allow targeted analysis of the responsible 
metabolites with diagnostic metabolic panels.

This study depicts several limitations. The small num-
ber of treatment-naïve SMA patients enrolled in this 
study limits the significance of our findings, both in the 
symptomatic and the pre-symptomatic group which is in 
great parts attributed to the fact that most patients are 
nowadays under therapy. Both prediction models pro-
posed in this study, despite showing good sensitivity in 
separating the mildly from the severely affected patients, 
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lacked sufficient sensitivity in correctly classifying SMA 2 
patients and discriminating mildly affected patients from 
controls. Additional (potentially more accurate) predic-
tion models, for instance classifying patients by motor 
function at time of sample collection (“non-sitter” vs. “sit-
ter” vs. “walker”), were not feasible due to the small sam-
ple size within the subgroups. Due to these limitations, 
our preliminary results, although encouraging, have to be 
interpreted with caution and need confirmation in larger 
studies. Furthermore, potential sources for bias were the 
age differences between SMA subgroups, which seemed 
to dominate the discrimination between subgroup-spe-
cific spectral fingerprints rendering direct comparison 
of the different SMA types difficult (Fig.  1B and Addi-
tional file 1: Fig. S1). Age-bias was reduced as far as pos-
sible by conducting different analyses with age-matched 
subgroups. Despite showing that age-matched spectral 
profiles of SMA patients differed from DMD as another 
neuromuscular disease, we acknowledge that DMD, an 
X-linked muscular dystrophy only affecting males, might 
not be the ideal choice since it differs from SMA in terms 
of pathophysiology and mode of inheritance. We cur-
rently cannot confirm whether metabolic profiles can 
reliably differentiate SMA from clinically important dif-
ferential diagnoses, such as other motor neuron diseases, 
congenital myopathies, congenital muscular dystrophies, 
birth trauma or structural malformations of the CNS.

In order to refine the prediction models proposed in 
this study and to develop additional and potentially more 
accurate prediction models, further studies including 
longitudinal samples of newly diagnosed SMA patients 
before and under therapy as well as newborn children 
with SMA, preferably pre-symptomatic individuals iden-
tified by newborn screening, along with a broad range of 
differential diagnoses will be needed. Continuous feed-
ing of the database with additional samples will train 
the machine learning algorithms and render prediction 
models increasingly robust and diagnostically conclu-
sive. Standardized collection, preparation and analysis of 
metabolic spectra and correlation of longitudinal changes 
in metabolic profiles to clinical performance and to cur-
rently proposed biomarkers such as pNF-H, serum creati-
nine and SMN protein will further validate the potential 
of this method and might help quantifying clinical effects 
in study settings and clinical practice.

In conclusion, with this study we carefully explored 
the value of 1H-NMR-based urinary metabolic profiling 
in biomarker development for SMA. By delineating pos-
sible confounders and discussing potential applications 
and limitations we believe that this proof-of-concept and 
hypothesis generating study justifies subsequent clinical 
trials, preferably in a multicenter national or international 
setting, to evaluate the use of our preliminary findings in 

clinical practice. Ultimately, and if proven to hold true in 
future clinical studies with larger patient cohorts involv-
ing a sufficiently high number of pre-symptomatic chil-
dren with SMA, 1H-NMR-based urinary metabolic 
profiling in combination with sophisticated machine 
learning based prediction algorithms could potentially 
provide a valuable prognostic tool and outcome measure 
serving as objective quantifier in comparative therapeutic 
trials and provide an additional non-invasive method for 
diagnosis, disease prediction, and therapeutic monitor-
ing, hence aiding in clinical decision-making and design 
of personalized therapies in the rapidly evolving field of 
SMA.

Methods
Study design and protocol
In this multicenter observational study urine samples were 
collected from 29 treatment-naïve pediatric and adolescent 
patients with genetically proven 5q SMA from three Ger-
man neuromuscular centers, 18 children and adolescents 
with DMD from Heidelberg University Hospital and 444 
healthy pediatric and adolescent controls from two pedi-
atric practices in Reutlingen and Mannheim, Germany. 
We additionally collected three follow-up urinary samples 
form one patient under Nusinersen therapy. The clinical 
protocol was conducted in accordance with the current 
versions of the Declaration of Helsinki and the Medi-
cal Association’s professional code of conduct in Baden-
Württemberg, Germany, and was approved by the ethics 
committees of the Universities of Heidelberg (S-554/2018), 
Hamburg (MC-265/19) and Munich (18-269) for sam-
ple collection of SMA and DMD patients, and the ethics 
committee of the State Medical Council of Baden Würt-
temberg for sample collection of healthy controls (F-2013-
006#A). All patients and their legal guardians enrolled in 
this study provided signed informed consent.

Since the study started approximately one year after 
approval of Nusinersen in Europe, newly diagnosed 
SMA patients before specific treatment could only be 
recruited consecutively. Patient characteristics of the 
SMA cohort are summarized in Table 1. SMA type was 
clinically determined based on age at symptom onset 
and achievement of highest motor milestones [1]. SMN2 
copy numbers were determined by Multiplex Ligation-
dependent Probe Amplification (MLPA) analysis in 
accredited quality-controlled laboratories. Detailed 
medical histories and comprehensive neurologic exami-
nations were taken by experienced child neurologists and 
neurologists with special expertise in the field of SMA. 
Motor function tests including the Children’s Hospital 
of Philadelphia Infant Test of Neuromuscular Disorders 
(CHOP-INTEND), an established motor function test 
for SMA patients with very limited motor abilities [37], 
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the Hammersmith Functional Motor Scale Expanded 
(HFSME), a commonly used motor function test for 
non-ambulant SMA patients [38] and the Revised Upper 
Limb Module (RULM), a standardized test for the assess-
ment of upper limb performance [39], were conducted by 
experienced physiotherapists. Since the CHOP-INTEND 
score shows a "ceiling effect" in the attainment of motor 
functions, notably a maximum score of 64 points corre-
sponding to the ability of turning from supine to prone 
position, HFMSE and RULM scores were collected from 
those children who achieved a higher CHOP INTEND 
score than 60/64. Therefore, alternatively HFMSE and 
RULM scores were collected from children above 2 years 
of age who were able to sit and from children with a 
CHOP INTEND score ≥ 60/64 points.

Sample collection
After comparing urine, serum and cerebrospinal fluid 
(CSF), and since a robust pediatric control cohort for 
urine already existed, urine was chosen as preferred 
biofluid for this study (Additional file 4: Fig. S4), in line 
with previous reports [18, 24]. A single treatment-naïve 
urine sample was collected from each participant, usu-
ally as a fasting morning urine, unless not possible due 
to very young age and inability of prolonged fasting peri-
ods. Effects of diet or medication e.g. anesthetics such as 
N-acetyltyrosine in case of severely affected patients were 
identified in the spectra and the corresponding regions 
were excluded for statistical analysis. Sample collection, 
sample preparation and NMR analysis were conducted 
according to published protocols and following strict 
quality control criteria, such as limitation of freeze–thaw 
cycles, ring tests, etc. [40–42]. Additionally, random sam-
ples were measured multiple times (up to 50 times on 
different time points during a one-year period) to ensure 
robustness and reproducibility of the method (Additional 
file 5: Fig. S5). Samples were processed and stored to the 
NCT Liquidbank Heidelberg, a part of a local network of 
quality-ensured biobanks, according to approved stand-
ards. Samples were centrifuged at 2500 × gmax for 5 min 
at 4 °C. The supernatant was aliquoted into 2 mL cryovial 
each and stored at − 80 °C prior to measurement.

Sample preparation
Urine samples were prepared according to standard pro-
cedures as previously described [43]. Frozen urine sam-
ples were thawed at 4  °C and shaken before use. 0.9 mL 
of urine was added to 0.1  mL of potassium phosphate 
buffer (pH 7.4) containing trimethylsilylpropionic acid-
d4 sodium salt (TSP) and sodium azide. The mixture was 
homogenized, and 0.6  mL were transferred to a 5  mm 
NMR tube for analysis and placed in a cooled sample 
changer for analysis.

1H‑NMR spectroscopy analysis
Samples were analyzed in full automation according to 
standard procedures on a Bruker IVDr System, as pre-
viously described [43] using a 600  MHz Bruker Avance 
III HD NMR spectrometer equipped with an automated 
sample changer SampleJet with sample cooling and pre-
heating station, 5 mm inverse probe with z-gradient and 
automated tuning and matching and cooling unit BCU-
I. TopSpin 3.6 in combination with Bruker’s body fluid 
NMR methods package B.I. Methods 1.0 was used for 
fully automated acquisition and processing controlled by 
ICON NMR.

Prior to measurement, samples were kept for 5  min 
inside the NMR probehead for temperature equilibra-
tion at 27  °C. Tuning and matching, locking, shimming, 
optimization of the lock phase and calibration of the hard 
pulse at 90  °C were done automatically for optimization 
of the NMR experimental conditions. Next, one-dimen-
sional 1H-NMR spectra were acquired applying a stand-
ard pulse sequence with suppression of the water peak 
(Bruker pulse program library noesygppr1d). Fourier 
transformation and fully automated phasing and baseline 
correction was done via the Bruker standard automation 
program APK0.NOE. Spectra were quantitatively cali-
brated via the PULCON principle [44].

The standardized NMR metabolic profiling platform 
(Avance IVDr system), including SOPs for body fluid 
sample preparation, NMR measurements and spectra 
analysis is available from Bruker BioSpin GmbH. The 
machine learning methodology applied is described by 
Assfalg et al. [45] and Bernini et al. [46]. Uniform spec-
trometer specifications ensured reproducibility of spec-
tral fingerprints allowing researchers who work with an 
identical NMR metabolic profiling platform and follow 
the provided SOPs to obtain the same results.

Statistical analysis
Data analysis was done with MatLab R2018b using in-
house developed methods. Distributions of age and 
motor function scores (CHOP-INTEND, HFMSE, 
RULM) were reported as median and interquartile range 
(IQR). Analysis of metabolic spectra was conducted 
with age-matched subgroups. Significance levels were 
reported using the Kruskal–Wallis Anova test, P val-
ues ≤ 0.05 were considered significant.

Spectral binning
Prior to any further postprocessing, spectral intensity 
was scaled to a mmol/L concentration scale. Then, each 
spectrum was segmented from 0.4 to 10  ppm into con-
secutive bins of fixed size, 0.0096 ppm, and the pertain-
ing regional integrals (bin intensities) excluding the 
following regions: (0.840–0.920) ppm, (0.990–1.090) 
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ppm, (1.160–1.220) ppm, (1.375–1.542) ppm, (2.560–
2.650) ppm, (2.772–2.900) ppm, (3.030–3.060) ppm, 
(3.390–3.913) ppm, (3.920–3.950) ppm, (4.040–4.080) 
ppm, (4.150–4.260) ppm, (4.335–5.680) ppm. Exclusion 
was necessary to avoid influences from irrelevant vari-
ability, i.e. residual water intensity, medication-related 
metabolites, and to exclude the influence of creatine 
metabolism which is known to be impaired in SMA but 
non-specific [25]. As result of the spectral binning pro-
cedure a so-called bucket table was generated where col-
umns represented bin numbers and rows represented 
NMR sample numbers.

Principal component analysis (PCA)
PCA is a standard unsupervised multivariate technique 
performing a coordinate transformation on an initial 
table in order to try to separate relevant from residual 
ones, e.g. noise. It ideally projects correlated variance dis-
tributed over several variables onto single new variables, 
the Principal Components, thus simplifying visualization 
and interpretation. In the context of this study, PCA was 
used for visualization and as a dimension reduction tech-
nique for preparation of data tables for further multivari-
ate statistical analyses.

PCA/CA/k‑NN classification
A classification approach different from soft independ-
ent modelling by class analogy (SIMCA) is needed if a 
sample needs to be classified with respect to multiple co-
existing classes. Starting from a bucket table of a model 
set of samples, PCA is applied for dimension reduc-
tion first. Then, canonical analysis (CA) in combination 
with MANOVA is applied to determine the subspace 
for maximum class separation and its respective dimen-
sion. Finally, a classification rule is introduced, e.g. via 
the k-nearest neighbor (k-NN) concept. This gives the 
PCA/CA/k-NN classification procedure: For classifica-
tion of a new test sample, it is projected into the PCA-
CA subspace first and k-NN is used to assign its class 
membership.

Monte‑Carlo embedded cross‑validation (MCCV)
PCA/CA/k-NN classification is a supervised method. 
Related models are established in a supervised manner, 
where class membership is known for each object during 
the training phase. In order not to overfit any data, exten-
sive validation is needed. In the context of this study, the 
MCCV approach has been taken and the objective of the 
modeling procedure is to maximize the rate of correct 
classification by optimizing related model parameters. In 
PCA/CA/k-NN one needs to optimize for example the 
explained variance of the selected PCA subspace or the 

segmentation scheme used for sub-model generation as 
output of the MCCV.

The result of the MCCV provides a so-called confusion 
matrix with n × n fields (n equals the number of classes 
to be discriminated), where diagonal fields represent the 
probability of true classification and off-diagonal fields 
relate to probabilities of misclassification, e.g. samples 
of a class A being falsely assigned to a different class B. 
PCA/CA/k-NN classification and MCCV are further 
described by Assfalg et al. [45] and Bernini et al. [46].
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Additional file 1: Fig. S1. Age Differences in healthy controls. PCA/CA 
classification and MCCV showed clear discrimination between different 
age subgroups within the healthy control group. Since age was dramati‑
cally affecting spectroscopic fingerprints we conducted all experiments 
with age-matched healthy controls. PCA/CA was performed on 1000 vari‑
ables from 0.5 to 10 ppm (exclusion: see Materials and Methods) with Expl. 
Variance of 99.9%. The Confusion Matrix is the result of 100 Monte-Carlo-
Runs (MC) with 30-fold CrossValidation (CV). Space of discrimination is 
one representation of the modelling samples in 2-dimensions. CTRL<2m: 
control aged < 2 months, CTRL2-12m: control aged between 2 and 12 
months, CTRL1-19y: control aged between 1 and 19 years.

Additional file 2: Fig. S2. Discrimination between sex-matched SMA and 
DMD patients. PCA/CA classification and MCCV showed discrimination 
between age- and sex-matched SMA and DMD patients. PCA/CA was per‑
formed on 1000 variables from 0.5 to 10 ppm (exclusion: see Materials and 
Methods) with Expl. Variance of 99.9%. The Confusion Matrix is the result 
of 100 Monte-Carlo-Runs (MC) with 75-fold CrossValidation (CV). Space of 
discrimination is one representation of the modelling samples in 2-dimen‑
sions. DMD: Duchenne muscular dystrophy, SMA: spinal muscular atrophy.

Additional file 3: Fig. S3. Major changes located in the aliphatic region 
and longitudinal analysis of one SMA1 patient. 1H-NMR urinary spectra 
of patient SMA013 (SMA 1, 16y 10m, female) compared to age-matched 
healthy controls, depict a strong protein background and an elevation 
of a number of small molecules (e.g. glutamine, 3-Hydroxybutyric acid) 
in the aliphatic region driving the observed difference between SMA 
and healthy cohorts. Interestingly, the 1H-NMR metabolic fingerprint of 
patient SMA013 dynamically evolved during Nusinersen therapy reach‑
ing a signature comparable to the healthy control cohort after the 3rd 
Nusinersen injection. The grey area corresponds to 1H-NMR spectra varia‑
tion (12.5%–87.5% quantile) in the healthy control cohort (CTRL 2m-19y, 
n = 444). The 4 different colored lines represent 1H-NMR spectra from 
the same patient (SMA013) at 4 different time points before (black line: 
treatment naïve) under therapy with Nusinersen (blue line: before 2nd 
Nusinersen injection, red line: before 3rd Nusinersen injection, green line: 
before 4th Nusinersen injection). CTRL: control, T: timepoint.

Additional file 4: Fig. S4. Standardized 1H-NMR spectra of urine, plasma 
and CSF. Overview of standardized 1H-NMR spectra of urine, plasma and 
CSF obtained for all SMA patients included in the study. Colored lines in 
each plot represent 1H-NMR spectra from different patients (blue: SMA 1, 
cyan: SMA 2, orange: SMA 3). Urine appeared to be the most complex and 
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most informative biofluids with more than 1000 visible compounds. SMA: 
spinal muscular atrophy.

Additional file 5: Fig. S5. Long-term reproducibility of urinary NMR 
spectra. Quality Control (QC) urine samples have been prepared using the 
same protocols as the patient samples and measured at different time 
points during the entire study period (over 1 year) in order to monitor the 
short- and long-term reproducibility of the complete NMR based urinary 
metabolic profiling workflow. 2 QC urine samples have been prepared, 
measured and analyzed prior to measuring SMA urine samples. In total, 50 
QC urine samples have been measured and the concentrations of differ‑
ent endogeneous metabolites have been determined automatically. Root 
mean square error (RMSE) and coefficient of variation (CV) showed excel‑
lent reproducibility of 1H-NMR spectra allowing to detect subtle changes 
in the disease course.
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