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Abstract

For complex biological systems, conventional analysis of fluorescence intensity decay in terms 

of discrete exponential components cannot readily provide a true representation of the underlying 

fluorescence dynamics. We investigate an alternative nonparametric method for the analysis of 

time-resolved fluorescence data from biochemical and biological systems based on the expansion 

of fluorescence decay in a discrete Laguerre basis. We report that a unique Laguerre expansion can 

be found for fluorescence intensity decays of arbitrary form with convergence to a correct solution 

significantly faster than conventional multiexponential approximation methods. The Laguerre 

expansion coefficients are shown to be highly correlated with intrinsic fluorescence lifetimes 

and allow direct characterization of the fluorescence dynamics. A novel method for prediction 

of concentrations in mixtures of biochemical components using these coefficients is developed 

and successfully tested (prediction error <2%) using data from different mixtures of fluorescence 

lifetime standards. These findings suggest that the use of Laguerre expansion coefficients is a fast 

approach for the characterization and discrimination of complex biological systems such as tissues 

and cells, and that the method has potential for applications of fluorescence lifetime techniques to 

tissue diagnostics and imaging microscopy of living cells.
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1 Introduction

Fluorescence spectroscopy is a nondestructive optical method extensively used to probe 

complex biological systems, including cells and tissues for biochemical, functional, 

and morphological changes associated with pathological conditions. Such an approach 

has potential for noninvasive diagnosis in vivo.1–3 Fluorescence measurements can be 

categorized as either static (steady state or time integrated) or dynamic (time-resolved). 

While steady state techniques provide an integrate spectrum over time that gives information 

about fluorescence emission intensity and spectral distribution, time-resolved techniques 

measure the dynamically evolving fluorescence emission, providing additional insight into 

the molecular species of the sample (e.g., the number of fluorescence species and their 

contribution to the overall emission) and/or changes in the local environment.2,3

Two methods for time-resolved fluorescence measurements are widely used: The time

domain and the frequency-domain techniques. For the time-domain method, the sample 

is excited with a short pulse of light (typically nanosecond or shorter), and the emission 

intensity is measured following excitation with a fast photodetector. In the frequency 

domain, an intensity-modulated light induces the sample fluorescence. Due to the 

fluorescence relaxation lifetime of the sample, the emitted wave is delayed in time relative 

to the excitation, inducing a phase-shift, which is used to calculate the decay time.3 The 

analytical approaches described here are applicable for analysis of time-domain data. The 

frequency-domain analysis is not discussed in this paper.

Analysis of time-resolved data from fluorescent systems includes determination of the 

intrinsic fluorescence intensity decay (fluorescence impulse response function, IRF), 

identification of a set of fitting parameters that best describe the characteristics of the 

fluorescence decay, and characterization and discrimination/classification of the fluorescent 

system based on those parameters.2

In the context of time-domain measurements, the fluorescence IRF contains all the temporal 

information of a single fluorescence decay measurement. The IRF is the system response to 

an ideal δ function excitation. In practice, the excitation light pulses are, typically, at least 

several picoseconds wide. Thus, they should be taken as a train of δ functions with different 

amplitudes; each one initiating an IRF from the sample, with an intensity proportional 

to the height of the δ function. The measured intensity decay function is the sum of all 

IRFs starting with different amplitudes and at different times. Mathematically, the measured 

fluorescence intensity decay data is given by the convolution of the IRF with the excitation 

light pulse. Thus, to estimate the fluorescence IRF of a compound, the excitation light pulse 

must be deconvolved from the measured fluorescence intensity pulse.3

When the excitation light pulse is sufficiently short, resembling a δ function excitation, the 

measured fluorescence decay would closely resemble the intrinsic IRF.4 Although very short 

excitation light pulses can currently be generated using femtosecond lasers, due to their 

lack of general availability picosecond light sources are still the most commonly used for 

time-resolved measurements.3 Therefore, in many cases the intrinsic fluorescence IRF of the 

Jo et al. Page 2

J Biomed Opt. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigated compounds will have lifetimes on the order of the excitation light pulse width, 

and subsequently, an accurate deconvolution technique becomes crucial.

Deconvolution methods are usually divided into two groups5: those requiring an assumption 

of the functional form of the IRF, such as the nonlinear least-square iterative reconvolution 

method6,7 and those that directly give the IRF without any assumption, such as the 

Fourier8 and Laplace transform methods,9 the exponential series method,5 and the stretched 

exponential method,10 among others. In addition, an alternative approach known as global 

analysis, in which simultaneous analysis of multiple fluorescence decay experiments are 

performed, has proven useful for both time- and frequency-domain data.11 Among these 

methods, however, the most commonly used deconvolution technique is the nonlinear least

squares iterative reconvolution (LSIR) method.5–7 This technique applies a least-squares 

minimization algorithm to compute the coefficients of a multiexponential expansion of 

the fluorescence decay. In complex biological systems, fluorescence emission typically 

originates from several endogenous fluorophores and is affected by light absorption and 

scattering. From such a complex medium, however, it is not entirely adequate to analyze the 

time-resolved fluorescence decay transient in terms of a multiexponential decay, since the 

parameters of a multiexponential fit cannot readily be interpreted in terms of fluorophore 

content.3,10 Moreover, different multiexponential expressions can reproduce experimental 

fluorescence decay data equally well, suggesting that for complex fluorescent systems there 

is an advantage in avoiding any a priori assumption about the functional form of the IRF 

decay physics.

Expansion on the discrete time Laguerre basis as means of deconvolving the intrinsic 

properties of a dynamic system from experimental input-output data was initially proposed 

by Marmarelis12 and was applied to linear and nonlinear modeling of different physiological 

systems including renal autoregulation and autonomic control of heart rate.13,14 A Laguerre 

based deconvolution technique was recently reported as a variant of the LSIR technique, in 

which the fluorescence IRF is expressed as an expansion on the discrete time Laguerre basis 

instead of a weighted sum of exponential functions.15 The Laguerre deconvolution technique 

has been previously applied to optical spectroscopy of tissues with promising results to 

the analysis of time-resolved fluorescence emission data from artherosclerotic lesions,1,2 

and temporal spread functions of transmitted ultrafast laser pulses through different types 

of human breast tissue.16 However, a formal evaluation of this technique, as it applies to 

fluorescence measurements, has not been reported. In this paper, the performance of the 

Laguerre deconvolution technique is analyzed in terms of accuracy and speed for retrieving 

the fluorescence IRF and compared to that of the multiexponential LSIR deconvolution 

technique.

Although the main objective of a deconvolution technique is to retrieve accurately the 

intrinsic fluorescence intensity decay characteristics of a compound, it is also very important 

that such a technique provides a unique representation of the intrinsic temporal fluorescence 

dynamics that allow further characterization of the investigated biological system. The study 

of Zacharakis et al.16 on the analysis of the temporal spread of transmitted ultrafast laser 

pulses through tissue represents the only attempt to directly use the Laguerre expansion 

coefficients to characterize biological systems, yielding promising but very preliminary 
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results.16 Although the Laguerre deconvolution technique was used for the analysis of 

time-resolved fluorescence data from fluorescent constituents in tissues as well as tissue 

samples,1,2,15 the potential of Laguerre expansion coefficients for direct characterization and 

discrimination of fluorescence from biological systems has not been reported. Because these 

coefficients inherently contain information about the amplitude (intensity) and the relaxation 

time of a dynamic system, this paper investigates properties of Laguerre expansion 

coefficients that allow direct characterization of fluorescent system.

In summary, the goals of this paper were (1) to assess the performance of the 

Laguerre deconvolution technique in terms of its accuracy and speed for retrieving the 

intrinsic fluorescence decay from simulated and lifetime fluorescence standards data; (2) 

to investigate the analytical properties of the Laguerre expansion coefficients and to 

demonstrate their potential to directly characterize biochemical systems in terms of their 

fluorescence intensity decays; (3) to determine the potential use of Laguerre coefficients 

for quantitative interpretation of fluorescence data; and (4) to introduce a new method for 

prediction of concentration of mixtures of biochemical components that take advantage of 

the Laguerre coefficients information content.

2 Theoretical Approach

2.1 Laguerre Deconvolution Technique

The Laguerre deconvolution technique, in the context of time-domain time-resolved 

fluorescence emission data, is reviewed here. This nonparametric method expands the 

fluorescence IRF on the discrete time Laguerre basis.15 The Laguerre functions (LFs) have 

been suggested as an appropriate orthonormal basis owing to their built-in exponential term 

that makes them suitable for physical systems with asymptotically exponential relaxation 

dynamics.12 Because the Laguerre basis is a complete orthonormal set of functions, a unique 

characteristic of this approach is that it can reconstruct a fluorescence response of arbitrary 

form. Thus, the Laguerre basis provides a unique and complete expansion of the decay 

function.

The measured fluorescence intensity decay data y(t) is given by the convolution of the IRF 

h(t) with the excitation light pulse x(t):

y(t) = ∫
0

t
ℎ(τ)x(t − τ)dτ . (1)

The time-domain time-resolved fluorescence measurements, however, are often obtained 

in discrete time, as in the case of pulse sampling and gated detection technique3 (direct 

recording of fluorescence pulse with a fast digitizer). In the discrete-time case, the 

relationship between the observed fluorescence intensity decay pulse and the excitation laser 

pulse is expressed by the convolution equation:
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y(n) = T ∑
m = 0

K − 1
ℎ(m)x(n − m)     n = 0, …, K − 1. (2)

The parameter K in Eq. (2) determines the extent of the system memory, T is the sampling 

interval, and h(m) is the intrinsic fluorescence IRF. The Laguerre deconvolution technique 

uses the orthonormal set of discrete time LF bj
α(n) to discretize and expand the fluorescence 

IRF:

ℎ(n) = ∑
j = 0

L − 1
cjbj

α(n) . (3)

In Eq. (3), cj are the unknown Laguerre expansion coefficients (LECs), which are to be 

estimated from the input-output data; bj
α(n) denotes the j’th order orthonormal discrete time 

LF; and L is the number of LFs used to model the IRF. The LF basis is defined as

bj
α(n) = α(n − j)/2(1 − α)1/2 ∑

k = 0

j
( − 1)k n

k
j
k αj − k(1 − α)kn ⩾ 0. (4)

The order j of each LF is equal to its number of zero-crossing (roots). The Laguerre 

parameter (0 < α < 1) determines the rate of exponential decline of the LF. The higher the 

order j and/or the larger the Laguerre parameter α, the longer the spread over time of a LF 

and the larger the time separation between zero-crossing. Note that the Laguerre parameter 

α defines the time scale for which the Laguerre expansion of the system impulse response is 

most efficient in terms of convergence. Thus, fluorescence IRF with longer lifetime (longer 

memory) may require a larger α for efficient representation. Commonly, the parameter α is 

selected based on the kernel memory length K and the number of Laguerre functions L used 

for the expansion, so that all the functions decline sufficiently close to zero by the end of the 

impulse response.12 This approach was applied in this work.

By inserting Eq. (3) into Eq. (2), the convolution Eq. (2) becomes

y(n) = ∑
j = 0

L − 1
cjvj(n),

vj(n) = T ∑
m = 0

K − 1
bj

α(m)x(n − m), (5)

where vj(n) are the discrete time convolutions of the excitation input with the LF and are 

denoted as the “key variables.” The computation of the vj(n) can be accelerated significantly 

by use of the recursive relation:

vj(n) = αvj(n − 1) + αvj − 1(n) − vj − 1(n − 1), (6)
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which is due to the particular form of the discrete-time LF.12 Computation of this recursive 

relation must be initialized by the following recursive equation that yields v0(n) for a given 

stimulus x(n):

v0(n) = αv0(n − 1) + T (1 − α)1/2x(n) . (7)

This computation can be performed fast, for n=0,1,…,N and j=0,1,…,L − 1, where N is 

the number of samples in the data sets and L is the total number of LFs used in the IRF 

expansion. Finally, the unknown expansion coefficients can be estimated by generalized 

linear least-squares fitting of Eq. (5) using the discrete signals y(n) and vj(n).

The optimal number of LFs and the value of the parameter α to be used in the model were 

determined by minimizing the weighted sum of the residuals:

S = ∑
n = 0

N − 1
wn[y(n) − y(n)]2, (8)

where y(n) is the real fluorescence decay, y(n) is the estimated decay, and wn is the 

weighting factor. The weight wn is proportional to the inverse of the experimental variance 

σn2 for the measurements17 at time n. For time-correlated single-photon counting, which is 

the most common technique for time-domain measurements, it is straightforward to compute 

the experimental variance, since this is assumed to follow Poisson statistics, where the 

variance is known to be proportional to the number of photon counts.3 For other methods 

of time-domain measurements such as the direct recording of fluorescence pulse with a 

fast digitizer3 used in this paper, however, the experimental variance must be estimated 

from a representative set of experimental data. To estimate the experimental variance as a 

function of the amplitude of the fluorescence decay, repeated measurements of the sample 

fluorescence decay are taken, and the variance and the average intensity at each time point 

n of the decay signals are computed. The slope of the straight-line fit through a log-log plot 

of the variance as a function of the average intensity would indicate the relation between the 

experimental variance and the fluorescence intensity decay amplitude.17

In this study, the experimental variance was estimated from 55 repeated fluorescence 

decay measurements of 6 different fluorescence standard dyes at their peak wavelengths. 

The variance was represented in log-log scale as a function of the average of the 55 

measurements. The average slope of the straight-line fits through the log-log plots for the six 

data sets was 0.99 (range: 0.91 to 1.09), suggesting that the experimental variance increased 

almost proportionally with the fluorescence signal. Thus, weigh wn was estimated by 1/y(n). 

For the case of the multiexponential LSIR technique, also applied to the data presented 

in this study, the weighted sum of the residuals of Eq. (8) was minimized to determine 

the coefficients of a multiexponential expansion of the fluorescence decay. For purpose of 

clarification, the multiexponential model is defined by the following equation:

ℎ(n) = ∑
j = 1

P
aj exp −n/τj , (9)
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where P is the number of exponentials chosen to represent the IRF h(n), aj are the 

preexponential factors, and τj are the time constants of the exponential terms.

2.2 Prediction of Concentration in Mixtures with the Laguerre Expansion Coefficients

Since the Laguerre expansion coefficients contain inherent information about the 

fluorescence amplitude (Intensity) and the temporal decay characteristics, these coefficients 

can be directly used for quantitative analysis of the biochemical systems. To address this, a 

method for the prediction of concentrations in a mixture of biochemical components based 

on the analysis of the Laguerre expansion coefficients of the fluorescence IRF is introduced 

in this section and described as follows.

Let us assume that the sample fluorescence IRF S(n) can be expanded on N Laguerre 

functions bj
α(n):

S(n) = ∑
j = 0

N − 1
cjbj

α(n) . (10)

In Eq. (10), cj are the expansion coefficients of the sample decay model. It is also assumed 

that the sample is composed of M biochemical components, each of them producing 

fluorescence IRF Ck(n) that can also be expanded on the same N Laguerre functions:

Ck(n) = ∑
j = 0

N − 1
ak, jbj

α(n),     k = 1, …, M . (11)

In Eq. (11), ak,j are the expansion coefficients of the k’th biochemical component IRF. 

Finally, we assume that the sample fluorescence IRF S(n) can also be modeled as the linear 

combination of their M individual biochemical component fluorescence IRF Ck(n):

S(n) = ∑
k = 1

M
AkCk(n), (12)

where Ak are the relative contributions of the individual biochemical component 

fluorescence IRFs to the sample fluorescence IRF. Inserting Eq. (11) into Eq. (12), it can be 

followed that

S(n) = ∑
k = 1

M
AkCk(n) = ∑

k = 1

M
Ak ∑

j = 0

N − 1
ak, jbj

α(n) = ∑
j = 0

N − 1
∑

k = 1

M
Akak, j bj

α(n) . (13)

Finally, from Eqs. (10) and (13), we can relate the expansion coefficients cj of the sample 

IRF to the expansion coefficients ak,j of the biochemical component IRF as follows:

cj = ∑
k = 1

M
Akak, j,     j = 1, …, N . (14)
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In practice, the expansion coefficients cj and ak,j can be estimated from the sample 

fluorescence intensity decay and the individual biochemical fluorescence intensity decay 

measurements. Therefore, it is possible to retrieve the relative contributions Ak of the 

individual biochemical components fluorescence IRF to the sample fluorescence IRF, by 

solving the system of linear equations defined in Eq. (14). Notice that to solve this system, 

the number of equations should be greater than or equal to the number of unknowns (N⩾M); 

therefore, the number of LFs (N) used to expand the decay modeling should be greater than 

or equal to the number of the individual biochemical components (M).

The performances of the Laguerre deconvolution technique and the proposed method for the 

prediction of concentrations in a mixture of biochemical components based on the Laguerre 

expansion coefficients were assessed with simulated and experimental data. The radiative 

lifetime value τf of a given IRF was calculated by interpolating the time point at which the 

IRF becomes 1/e of its maximum value. A brief description of the simulated data generation, 

and of the fluorescence measurements on lifetime fluorescence standards is presented in the 

next section.

3 Generation of Time-Resolved Fluorescence Data

3.1 Simulated Data

The synthetic data was generated by means of a four-exponential model, with fixed decay 

constants and random values for the fractional contribution of each exponential component. 

A total of 600 data sets were generated, yielding average lifetime values between 0.3 and 

12 ns. White noise of zero mean and three different variance levels was added to the data, 

yielding three different groups of 600 data sets, with approximately 80, 60, and 50 dB 

SNRs (low-noise-, medium-noise-, and high-noise-level groups, respectively). A laser pulse 

(700-ps pulse width) measured from a sample of 9-cyanoanthracene (see next section) was 

used as the excitation signal for our simulation. Therefore, all the data sets were convolved 

with the laser signal, yielding the “measured” decay data for our simulation. The Laguerre 

deconvolution technique was applied to this data, using different model orders ranging from 

three to six Laguerre functions. Similarly, the multiexponential deconvolution technique was 

also applied to the data, using different model orders ranging from one to four exponential 

components.

3.2 Experimental Data: Lifetime Fluorescence Standards

Data were collected from standard dyes for fluorescence lifetime measurements. The 

dyes were selected to cover a broad range of radiative lifetimes (0.54 to 12 ns) that are 

most relevant for biological applications, such as fluorescent emission from tissue. The 

fluorophores chosen included rose bengal (33,000, Sigma-Aldrich), rhodamin B (25,242, 

Sigma-Aldrich), and 9-cyanoanthracene (15,276, Sigma-Aldrich). The fluorescence dyes 

used in the measurements were diluted into 10−6 M solutions. The fluorescence standard 

samples were excited with a subnanosecond pulsed nitrogen laser with an emission 

wavelength of 337.1 nm (700 ps FWHM). The fluorescence response was measured 

using a time-resolved time-domain fluorescence apparatus, enabling direct recording of 

the fluorescent pulse (fast digitizer and gated detection). The fluorescence pulse was 
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collected by a fiber optic bundle (bifurcated probe) and directed to a monochromator 

connected to a multichannel plate photomultiplier tube with a rise time of 180 ps. The entire 

fluorescence pulse from a single excitation pulse was recorded with a 1-GHz bandwidth 

digital oscilloscope.18 For each sample solution, the time-resolved fluorescence spectra were 

measured for a 250-nm spectral range from 400 to 650 nm at 5-nm increments. After 

each measurement sequence, the laser pulse temporal profile was measured at a wavelength 

slightly below the excitation laser line. Background spectra were taken for the solvents 

(ethanol or methanol) using the same cuvette.

The method for prediction of concentrations in a mixture of biochemical components 

based on the analysis of the Laguerre expansion coefficients was tested on mixtures 

of rose bengal (RB) and rhodamin B (RdmB) of distinct relative concentrations. Three 

types of mixture solutions were prepared with [RdmB]/[RB] concentration values equal to 

0.25/0.75, 0.5/0.5, and 0.75/0.25 μM, respectively. The 10−6 M RB and RdmB solutions 

were also measured representing [RdmB]/[RB] concentrations of 0/1.0 and 1.0/0 μM, 

respectively. Time-resolved fluorescence measurements at wavelengths between 550 and 

600 nm (corresponding to the range of wavelengths around the spectral peak at 575 nm) 

were recorded from the five solutions and used for the analysis.

4 Technique Evaluation and Validation

4.1 Simulated Data

A simulated time-resolved fluorescence intensity decay (τ4.1 ns at a medium noise level), 

its corresponding estimation by the Laguerre deconvolution method (L=5), and the laser 

pulse (solid black) are shown in Fig. 1. The residuals are <2% of the peak fluorescence 

amplitude and they appear randomly distributed around zero. The autocorrelation function 

of the residuals does not contain low-frequency oscillations characteristic of nonrandom 

residuals, and is mostly contained within the 95% confidence interval centered around 

zero. These observations indicate an excellent fit between the synthetic and estimated 

fluorescence decays, showing that the fluorescence IRF was properly estimated with the 

deconvolution algorithm based on the Laguerre expansion technique. The results for the 

same sample fluorescence decay using the multiexponential approach (P = 3), presented in 

Fig. 1, showed similar results. One important detail depicted in Fig. 1 is that the residuals 

and autocorrelation functions corresponding to both the Laguerre and multiexponential fits 

look very much alike. This is explained by the fact that both techniques were able to 

accurately fit the true synthetic time-resolved decay data, leaving out just the additive white 

noise component of the artificial data.

The performance of Laguerre and multiexponential deconvolution techniques along the 

lifetime range of 0.3 to 12 ns was assessed by means of the relative error between the real 

and the estimated lifetime (RLE) values, and the normalized mean square error (NMSE). 

Similar performances were obtained for both techniques: the RLE values were found below 

1, 2, and 4%, whereas the NMSE values were smaller than 0.04, 0.3, and 0.9% for the low-, 

medium-, and high-noise-level groups, respectively.
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To investigate the effect of the number of LF (chosen to expand the fluorescence IRF) 

on the estimation of the intrinsic fluorescence decay, the synthetic data was deconvolved 

using Laguerre expansions of different orders (three to six LFs). For decays with lifetimes 

ranging from 1 to 8 ns, the IRF expansion with five LF yielded the best estimation of the 

fluorescence emission decay (RLE<2%). The best estimate for fast decays (τf<1 ns) and 

for slow decays (τf>8 ns) were obtained using an expansion of six LFs and three to four 

LFs, respectively. For the multiexponential deconvolution method, a good estimation of the 

IRF (RLE<2%) was yielded by biexponential expansion for slow decays and triexponential 

expansion for fast decays.

As stated, it is important that a deconvolution technique provides a representation of the 

intrinsic temporal fluorescence dynamics to be used for further characterization of the 

investigated compound. Both the multiexponential and Laguerre deconvolution techniques 

summarize the temporal fluorescence intensity decay information in terms of the parameters 

of the model they use to represent the fluorescence IRF: (1) the preexponential factors 

(ai) and the decay constants (τi) for the case of the multiexponential approach and (2) the 

Laguerre α parameter and the cj expansion coefficients for the case of Laguerre approach. 

Therefore, a natural attempt to characterize a compound in terms of its fluorescence lifetime 

information is to utilize either the multiexponential or the Laguerre model parameters.

To investigate whether these model parameters reflect by themselves the fluorescence 

temporal information of the investigated compound, the correlation coefficients between the 

actual lifetime values of the simulated data and the model parameters (first two exponential 

parameters and first three Laguerre expansion coefficients) were computed. For a bivariate 

case, the correlation coefficient (−1 < r < 1) is defined as the covariance between the two 

variables normalized by the variances of each variable, and measures the strength of the 

linear relationship between the two variables. A correlation coefficient r=−1 indicates a 

perfect negative (inverse) linear dependence, r=0 indicates no linear dependence, and r=1 

indicates a perfect positive linear dependence.4

The first three Laguerre expansion coefficients as a function of the radiative lifetime 

between 4 and 5 ns and the correlation coefficients are shown in Fig. 2. We can clearly 

observe the first and third expansion coefficients were positively correlated with the intrinsic 

decay lifetime, whereas the second expansion coefficient was negatively correlated with 

the intrinsic lifetimes. All three Laguerre expansion coefficients (LEC-1 to LEC-3) were 

highly correlated to the real lifetime values (r > 0.95). This result indicates that each of the 

Laguerre expansion coefficients capture and reflect the temporal relaxation of the IRF, and 

thus can be further used for the characterization of the investigated compound.

Plots of the biexponential fast (τ1) and slow (τ2) decay constants and of the relative 

contribution of the fast exponential [a1/(a1+a2)] as a function of the radiative lifetime 

between 4 and 5 ns are also shown in Fig. 2. For this particular lifetime range, only 

one of the time-decay constants, the slow decay constant (τ2), was positively correlated 

(r=0.82±0.01) with the lifetime values. The remaining time decay constant and the 

normalized preexponential factors were not correlated with the lifetime values (r=0.55±0.02 

and r=0.54±0.03, respectively).
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4.2 Experimental Data

To investigate the accuracy of the Laguerre deconvolution method for retrieving 

fluorescence decays from experimental data, a number of lifetime fluorescence standards 

with a broad range of relaxation lifetimes were measured in solutions. The lifetimes 

retrieved using both the Laguerre and the multiexponential deconvolution methods were 

compared with values from the literature.3 The results of this analysis are presented 

in Table 1 [mean±standard error (SE)]. Short-lived fluorophores, such as rose bengal, 

with lifetimes ranging in the hundreds of picoseconds could be reliably retrieved by the 

Laguerre deconvolution technique. This is shown in Fig. 3 for a fluorescence intensity 

decay measurement from RB in methanol at 580 nm. The fluorophore intensity decay data 

was best fitted to Laguerre models of L=3 or L=4 and to a single-exponential decay. Both 

methods yielded very good fits, although in this particular example, the Laguerre approach 

performed better than the multiexponential method, as indicated by the smaller Laguerre 

residuals (top insets). Both the Laguerre and the exponential methods yielded similar 

intrinsic fluorescence decays (IRF) with lifetime values of 0.456±0.004 and 0.4±0.006 ns, 

respectively, which were in good agreement with previously reported data.3

Similarly, measurements of RdmB in ethanol and methanol demonstrated the ability of 

the Laguerre method to accurately resolve nanosecond and subnanosecond fluorescence 

lifetimes (Fig. 4), which is of especial importance since a number of biologically relevant 

fluorophores such as elastin and collagen are known to emit at these time scales.2,15 The 

RdmB fluorophore intensity decay data was best fitted to Laguerre models of L=4 and to a 

single exponential decay. Both methods yielded very good fits as it can be seen in Fig. 4.

Finally, to assess the ability of the Laguerre technique to retrieve long fluorescence lifetimes, 

the fluorescence decay of 9-cyanoanthracene (9CA) in ethanol were also deconvolved (Fig. 

5). Both the Laguerre and the exponential methods yielded similar intrinsic fluorescence 

decays with lifetime values (Table 1) also in agreement with previous reports.3 The 9CA 

fluorophore intensity decay data was best fitted to Laguerre models of L=2 and to a single 

exponential decay, and very good fits were attained by the two methods as observed in 

Fig. 5. Similar to the results on the simulation data, it was observed that deconvolution of 

long-lived fluorophores (e.g., 9CA) require fewer LFs for expansions when compared with 

the short-lived compounds (e.g., RB and RdmB).

To compare the computational time of both the Laguerre and the multiexponential 

deconvolution techniques, 250 sets of 9CA time-resolved fluorescence data at several 

wavelengths (400 to 650 nm) were deconvolved using both techniques, and the 

deconvolution time was measured for each set of data. The average computational time was 

33.1±0.86 ms for the Laguerre deconvolution with five LFs, and 101.4±1.6 ms for the LSIR 

deconvolution with a single exponential. Both methods were implemented in Matlab-6.5 

(The MathWorks, Natick, MA) and executed on an IBM-compatible workstation (Intel Xeon 

processor, 2.0 GHz).
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4.3 Concentration Prediction with Laguerre Coefficients

To test the proposed method for the prediction of concentrations in a mixture of biochemical 

components, fluorescence decays of five mixtures of RdmB and RB were expanded using 

five LFs with discrete-time Laguerre parameter α=0.81. The relative contributions (Ak) 

of the individual biochemical component decays to the mixture fluorescence decays were 

predicted by solving Eq. (14). To compare the proposed approach with more traditional 

methods for concentration prediction based on spectral analysis, the relative concentration 

of RdmB was also determined by applying19–21 principal component regression (PCR) 

and partial least squares (PLS) to the spectral data of the mixtures. The results of the 

three methods are shown in Table 2. All methods give a close estimation of the RdmB 

concentration in the three solutions. However, the Laguerre model of intrinsic fluorescence 

decays yielded a better estimation of the fluorophore concentrations (error<2%), compared 

to the spectral methods (PCR: error<7%; PLS: error<10%).

5 Discussion

Although a multiexponential deconvolution has the potential to accurately retrieve the 

fluorescence IRF of complex biomolecular systems, the parameters of a multiexponential 

fit cannot readily be interpreted in terms of number of fluorophore content.3,5 Changes 

of a fluorophore environment, proteins conformations or cross-links, also would result in 

different intensity decay for a single fluorophore,3,5 thus it is not practical to consider 

individual decay times. Moreover, very different multiexponential expressions can reproduce 

the same experimental fluorescence intensity decay data equally well as demonstrated 

with the simulation results presented here, in which synthetic decay data generated by a 

four-exponential model was accurately deconvolved by multiexponential models of different 

orders from two to four exponential components. This and previous reported evidence3,5,10 

support the conclusion that for complex fluorescence systems, there is an advantage in 

avoiding any assumption about the functional form of the fluorescence decay law. Further, 

this suggests that the Laguerre deconvolution technique is a suitable approach for the 

analysis of time-domain fluorescence data of complex systems, since this technique has the 

ability to expand intrinsic fluorescence intensity decays of any form, without any a priori 
assumption of its functional form.

While the results from both simulation and lifetime fluorescence standard support the 

conclusion that the Laguerre method performs similarly to the multiexponential method 

in terms of accuracy for retrieving the fluorescence IRF, one advantage of the Laguerre 

method is that for any value of the Laguerre parameter α, the corresponding basis of LF 

is a complete orthonormal basis. Thus, it is certain that an expansion of the fluorescence 

IRF on the LF basis can always be found, and even more important, the set of expansion 

coefficients are unique for a defined Laguerre basis. Our results showed that three to six 

LFs are sufficient to expand fluorescence decays with lifetime values ranging from 0.3 

to 12 ns, which are times relevant for the emission of tissue endogenous fluorophores. 

Generally, an accurate estimation of slow decays requires fewer LFs for expansion (less 

than three) than for the fast decays (larger than five). In contrast, deconvolution with the 

multiexponential approach may yield more than one solution, even when the number of 
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exponential or the values of the decay constants are prefixed. The span of possible solutions 

of a multiexponential expansion can be significantly reduced by fixing a priori the values 

of the decay constants, as was proposed in the exponential series method proposed by Ware 

et al.5 Note, however, that deconvolution with the exponential series method is successful 

only when the prefixed decay constants are commensurate with the investigated fluorescence 

decay.

Another advantage of the Laguerre deconvolution over the multiexponential LSIR 

results from the different methods required to estimate the expansion parameters. The 

Laguerre expansion technique uses a least-squares optimization procedure to determine the 

coefficients of the Laguerre expansion of the system dynamics.12 For a defined Laguerre 

basis, i.e., given values of the parameter α and the number of the LFs, the problem of 

finding the expansion coefficients is reduced to solving an overdetermined system of linear 

equations [given in Eq. (5)], which represents a linear least-squares minimization problem. 

The same property holds even for the estimation of nonlinear dynamics that can also be 

formulated in terms of linear equations using the Laguerre expansion technique.12–14 In 

contrast, traditional multiexponential LSIR techniques require the estimation of intrinsic 

nonlinear parameters (the decay constants), which represents a nonlinear least squares 

problem. Although very robust and efficient nonlinear least square algorithms are currently 

available, such as the Gauss-Newton and Levenberg-Marquardt methods,22 solving a linear 

least-squares problem (Laguerre technique) is a much simpler and less computationally 

expensive problem than finding a nonlinear least square solution (through a multiexponential 

technique). This was clearly supported by the results described here on the speed of 

computational analysis, showing that the Laguerre deconvolution technique convergences to 

a correct solution approximately three times faster than the monoexponential deconvolution. 

The convergence speed would become more significant when a biexponential or higher 

order multiexponential expansion is used. This specific advantage of the Laguerre method 

becomes even more important in the context of application of lifetime fluorescence 

spectroscopy to clinical research of tissue diagnosis, where the speed of data analysis is 

of crucial importance.

Analysis of correlations coefficients (r) demonstrated that each Laguerre expansion 

coefficient is highly correlated with the intrinsic lifetime value, suggesting that the use 

of these coefficients has potential, as a new approach, for the direct characterization 

of biochemical compounds in terms of their fluorescence emission temporal properties. 

For the case of the multiexponential deconvolution, although the estimated (computed) 

average lifetime is always correlated with the intrinsic radiative lifetime, the individual 

multiexponential parameters (decay constants and preexponential coefficients) may not 

necessarily be correlated to the intrinsic lifetimes. This was shown in the simulations results, 

where only one of the decay constants was correlated with the lifetime. This lack of 

correlation between individual multiexponential parameters and the lifetime occurs because 

the multiexponential model does not represent an orthogonal expansion of the fluorescence 

IRF; therefore, the estimated fitting parameters are not independent from each other.3,23 This 

condition implies that the value of one specific parameter is determined not only by the 

data to be fitted, but also by the value of the other fitting parameters; thus, reducing the 

correlation between the actual lifetimes and the estimated values of the multiexponential 
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parameters. In contrast, since the Laguerre basis provides an orthogonal expansion of the 

IRF, the value of each expansion coefficient depends exclusively on the data to be fitted, 

making them highly correlated to the actual lifetime values.

This paper also demonstrated that the Laguerre expansion coefficients have potential for 

quantitative interpretation of fluorescence decay. A new method for the prediction of 

concentrations in a mixture was introduced here and successfully tested on fluorescence 

standards components (RdmB and RB). Moreover, using only fluorescence decay 

information from a narrow spectral range, this method yielded improved prediction of the 

fluorophore concentrations when compared to that obtained using traditional methods of 

spectral analysis (PCR and PLS). One possible explanation for this result is that spectral 

methods use the information derived from spectral distribution of fluorescence intensity, 

while the proposed Laguerre method uses both the amplitude and temporal information 

of the fluorescence emission from a predefined narrow spectral range. Emission spectra 

of RdmB and RB are highly overlapped,3 thus spectral emission alone would provide 

limited information for the prediction of their relative concentration. However, RdmB and 

RB present different fluorescence decay characteristics, which were taken into account 

together with the amplitude information when the Laguerre coefficients were applied for 

concentration prediction. Although in this paper, the proposed Laguerre method analyzes 

only the amplitude and temporal information of the fluorescence emission from a predefined 

narrow spectral range, the Laguerre expansion coefficients corresponding to fluorescence 

IRF taken at multiple emission wavelengths also reflect the spectral information of the 

fluorescence emission. This spectral information could also be integrated into a more 

advanced method for characterization and discrimination of a biological system.

It is also noteworthy that an analogous method for the prediction of concentrations in 

a mixture of biochemical components based on the multiexponential model of intrinsic 

fluorescence decay could also be implemented. Since such a method would also use both 

the amplitude and temporal information contained by fluorescence data, it would most 

likely yield a performance similar to that of the Laguerre method presented in this paper. 

However, a method based on the multiexponential expansion would require that the decay 

constants be chosen a priori. Therefore, one disadvantage of this approach would represent 

the necessity for a good guess of the decay constants (these must be commensurate with 

the investigated fluorescence decays) to ensure an acceptable prediction of the investigated 

concentrations.5 A further requirement for such a technique would be that the number 

of exponential terms used should be equal to or greater than the number of biochemical 

concentrations to be retrieved. Therefore, the larger the number of component assumed to 

be present in the investigated biological system, the more exponential terms are required, 

and a large number of decay constants must be guessed, making its application difficult. 

The Laguerre-model-based method for concentration estimation requires only predefining 

the Laguerre parameter α, which can be chosen from the observed decay data.12

All these findings taken together suggest that the application of the Laguerre expansion 

method (and specifically, of the expansion coefficients) represent a promising approach 

for the quantification of relative concentrations of different biochemical compounds in 

biological systems, and their subsequent characterization and discrimination. Application of 

Jo et al. Page 14

J Biomed Opt. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Laguerre deconvolution techniques can result not only in accurate analysis of fluorescent 

systems without a priori knowledge of underlying fluorescence dynamics but also facilitates 

reduction of data processing time. This method can be easily adapted for the analysis of 

time-resolved fluorescence data from tissues, and thus it has potential impact on applications 

of fluorescence lifetime to in vivo spectroscopic diagnostics of diseased tissues (e.g., arterial 

plaques and tumors) and functional imaging microscopy of living cells.

In conclusion, this work demonstrated that numerical deconvolution of fluorescence IRF 

using a nonparametric expansion in a discrete-time Laguerre basis enables accurate 

estimation of the intrinsic fluorescence intensity decays for a broad range of lifetime 

values. Although the main objective of a reliable deconvolution technique is to accurately 

retrieve the intrinsic fluorescence decay of a compound, it would also be very important 

for such technique to provide a unique representation of the intrinsic fluorescence dynamics 

that can be used for further characterization of the investigated biological system. Taking 

into account this consideration, our results demonstrated that the Laguerre deconvolution 

method includes a number of interesting properties and potential advantages over the 

classical multiexponential LSIR. These include faster convergence to a correct solution, 

high correlation between the expansion coefficients and the intrinsic lifetime values, and 

the potential for directly quantifying the relative concentrations of different biochemical 

compounds in biological systems. These characteristics suggest that the use of the 

Laguerre expansion coefficients represents a new reliable and powerful approach for the 

characterization and discrimination of biological systems, in terms of their fluorescence 

emission intensity amplitude and temporal or lifetime characteristics. Future work will 

investigate the application of this approach to analysis of time-resolved fluorescence data 

obtained from in vivo measurements in diseased tissue including atherosclerotic lesions and 

brain tumors.
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Fig. 1. 
Laguerre and multiexponential deconvolution of the excitation laser pulse (solid black) 

from a simulated fluorescence decay (solid gray, τ=4.1 ns). The extimated fluoresccence 

decays (dotted black) overlap the simulated fluorescence decay. The residuals and their 

autocorrelation function indicate excellent fit between the synthetic and the estimated 

fluorescence decays.
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Fig. 2. 
Correlation between the actual lifetime values of the simulated data with the Laguerre 

expansion coefficients (LEC-1 to LEC-3, left panels) and the multiexponential LSIR 

parameters (right panels).
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Fig. 3. 
Laguerre and multiexponential deconvolution of the excitation laser pulse (solid black) from 

a measured fluorescence decay from RB in methanol at 580 nm (solid gray). The estimated 

fluorescence decays (dotted black) overlap the measured fluorescence decay. The residuals 

indicate excellent fit between the measured and the estimated flourescence decays. The 

estimated IRF using both methods present very similar decay characteristics.
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Fig. 4. 
Laguerre and multiexponential deconvolution of the excitation laser pulse (solid black) from 

a measured fluorescence decay from RdmB in ethanol at 590 nm (solid gray). The estimated 

fluorescence decays (dotted black) overlap the measured fluorescence decay. The residuals 

indicate excellent fit between the measured and the estimated fluorescence decays. The 

estimated IRF using both methods present very similar decay characterics.
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Fig. 5. 
Laguerre and multiexponential deconvolution of the excitation laser pulse (solid black) from 

a measured fluorescence decay from 9/CA in ethanol at 445 nm (solid gray). The estimated 

fluorescence decays (dotted black) overlap the measured fluorescence decay. The residuals 

indicate excellent fit between the measured and the estimated fluorescence decays. The 

estimated IRF using both methods present very similar decay characteristics.
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Table 2

Predicted RdmB concentrations from the three solutions estimated by the three methods applied.

Method

Relative Concentration of RdmB

25% 50% 75%

PCR 22.8±1.25 48.79±1.77 68.66±1.57

PLS 21.98±1.63 47.31±1.99 67.04±1.69

Laguerre 25.23±0.48 51.16±0.83 73.86±1.66
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