Table 5.
Model | Accuracy (%) | Precision (%) | Recall (%) | F1 score | AUC | # of features | |
---|---|---|---|---|---|---|---|
| |||||||
HOS data | KNN | 89.7 | 90.0 | 88.5 | 0.892 | 0.897 | 125 |
SVM-L | 82.3 | 81.7 | 81.8 | 0.817 | 0.822 | 200 | |
SVM-P2 | 86.7 | 88.2 | 84.1 | 0.861 | 0.866 | 200 | |
SVM-P3 | 87.8 | 88.2 | 86.5 | 0.872 | 0.878 | 225 | |
SVM-RBF | 92.9 | 92.4 | 93.0 | 0.926 | 0.928 | 150 | |
RF | 85.4 | 87.5 | 81.9 | 0.843 | 0.854 | 175 | |
| |||||||
TS data | KNN | 92.6 | 90.4 | 94.8 | 0.925 | 0.927 | 2518 |
SVM-L | 81.0 | 80.4 | 81.1 | 0.806 | 0.810 | 975 | |
SVM-P2 | 93.1 | 92.1 | 94.0 | 0.930 | 0.931 | 875 | |
SVM-P3 | 93.2 | 92.0 | 94.5 | 0.932 | 0.932 | 950 | |
SVM-RBF | 95.4 | 96.3 | 94.3 | 0.953 | 0.954 | 950 | |
RF | 87,8 | 89.0 | 85.5 | 0.872 | 0.877 | 800 | |
| |||||||
Raw EEG | Proposed CNN (Oh et al., 2018) | 99.2 | 98.9 | 99.4 | 0.992 | 0.992 | - |
95.4 | 95.2 | 95.5 | 0.953 | 0.954 | - |