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Abstract

Domain Adaptation (DA) has the potential to greatly help the generalization of deep learning 

models. However, the current literature usually assumes to transfer the knowledge from the source 

domain to a specific known target domain. Domain Agnostic Learning (DAL) proposes a new 

task of transferring knowledge from the source domain to data from multiple heterogeneous target 

domains. In this work, we propose the Domain-Agnostic Learning framework with Anatomy

Consistent Embedding (DALACE) that works on both domain-transfer and task-transfer to learn 

a disentangled representation, aiming to not only be invariant to different modalities but also 

preserve anatomical structures for the DA and DAL tasks in cross-modality liver segmentation. 

We validated and compared our model with state-of-the-art methods, including CycleGAN, Task 

Driven Generative Adversarial Network (TD-GAN), and Domain Adaptation via Disentangled 

Representations (DADR). For the DA task, our DALACE model outperformed CycleGAN, 

TD-GAN, and DADR with DSC of 0.847 compared to 0.721, 0.793 and 0.806. For the DAL 

task, our model improved the performance with DSC of 0.794 from 0.522, 0.719 and 0.742 

by CycleGAN, TD-GAN, and DADR. Further, we visualized the success of disentanglement, 

which added human interpretability of the learned meaningful representations. Through ablation 

analysis, we specifically showed the concrete benefits of disentanglement for downstream tasks 

and the role of supervision for better disentangled representation with segmentation consistency 

to be invariant to domains with the proposed Domain-Agnostic Module (DAM) and to preserve 

anatomical information with the proposed Anatomy-Preserving Module (APM).

1. Introduction

Domain Adaptation (DA) has emerged as an effective technique to help the generalization 

of deep learning models [23]. Although supervised deep learning models have been very 

successful in a variety of computer vision tasks, such as image classification and semantic 

segmentation, it usually requires lots of labeled data and assumes that training and testing 

data are sampled i.i.d from the same distribution. In practice, it is expensive and time

consuming to collect annotated data for every new task and new domain. At the same time, 
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domain shift is common, which means training and testing data are typically from different 

distributions but related domains.

In medical imaging, domain shift can be caused by different scanners, sites, protocols and 

modalities, adding to the high cost and difficulties of collecting large medical imaging 

datasets annotated by experts. Progress has been achieved to tackle this problem, especially 

for the domain shift caused by different scanners, sites and protocols. Yet, DA between 

different modalities is more challenging and yet to be extensively explored due to the large 

domain shift between different modalities [5]. Once achieved, it will not only solve the 

scarcity of annotated data for medical imaging, but also greatly improve the current clinical 

work-flows and the integration of different modalities. For example, both CT and MR play 

an important role in the diagnosis and follow-up after treatment of hepatocellular carcinoma 

(HCC) and they provide entirely different information. MR provides better specificity and 

multi-parametric tissue characterization along with better soft tissue contrast which helps 

identify fat, diffusion, and enhancement in a much more dynamic way, while CT merely 

measures perfusion and density of tissue. CT is quantitative due to calibration of density 

with Hounsfield unit, while MRI is not [17]. It is desired to achieve domain adaptation from 

CT to MR since CT is cheaper and more available in practice and many tasks such as liver 

segmentation are usually required on each modality.

Most current works on the domain shift problem assume that the target domain is specific 

and known as a prior and try to adapt the source domain into a distinct target domain. 

Domain Agnostic Learning (DAL) [18] proposes a novel task to transfer knowledge from 

a labeled source domain to unlabeled data from arbitrary target domains, a difficult yet 

practical problem. For example, target data could consist of images from different medical 

sites, from different scanners and protocols, or even from different modalities. The main 

challenge is that the target data is highly heterogeneous and from mixed domains.

Mainstream DA methods for semantic segmentation in medical imaging such as CycleGAN 

[26] and its variant TD-GAN [25] work at the pixel level. However, they assume a one

to-one mapping between source and target, and thus are unable to recover the complex 

cross-domain relations in the DAL task [1, 9]. Furthermore, the translation in pixel-level 

information by making the marginal distributions of the two domains as similar as possible 

does not necessarily guarantee semantic consistency [21], This is also the case for methods 

that incorporate feature-level marginal distributions alignment which do not explicitly 

enforce semantic-consistency, such as DADR [24].

In this work, we propose an end-to-end trainable model that solves not only the problem 

of unsupervised DA, but also works for DAL. Our DALACE model learns domain

agnostic anatomical embeddings by disentanglement under the supervision of a Domain 

Agnostic Module (DAM) and an Anatomy Preserving Module (APM). It enforces semantic

consistency to ensure the disentangled domain-agnostic feature space to be meaningful 

and interpretable, instead of simply aligning marginal distributions via adversarial training. 

Our model outperforms the state-of-the-art models on DA and generalizes naturally to the 

DAL task. We show the success of disentangling anatomical information and modality 

information by visualization of domain-agnostic images and modality-transferred images. 
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Our model thus improves the interpretability of black-box deep neural network models. 

Through ablation studies, we show that the performance of the downstream task benehts 

from the learned disentangled representations, and the proposed supervision modules DAM 

and APM boost the disentanglement. Furthermore, domain-agnostic images generated by 

our DALACE model have the potential for training a better joint learning model that utilizes 

the annotations from all modalities and works the best on each modality at the same time. 

This initial effort to help the integration of different modalities is valuable, as each modality 

has its unique strengths and plays its unique role in clinical practice. The main contributions 

are summarized below.

First, this work explicitly proposes and tackles the DAL task for medical image 

segmentation. With the supervision of DAM and APM, the proposed end-to-end model 

learns a domain-agnostic anatomical embedding to reduce the domain shift while preserving 

the anatomy. Second, numerous experiments were conducted to show the effectiveness 

of our proposed model for the DA, DAL and joint learning tasks with large CT and 

small MR datasets. Third, We show the designed model by disentanglement to be more 

interpretable through visualization. Ablation studies show the benefit of disentanglement for 

the downstream task and the role of supervision for disentanglement.

2. Related Work

Domain Adaptation has been a popular topic and is the potential solution for generalization 

of deep learning models. There are mainly two categories, feature-level domain adaptation 

that aligns features between domains and pixel-level domain adaptation that performs style

transfer between domains [23]. For medical images, domain adaptation between different 

domains caused by different scanners, medical sites and modalities is quite important, 

considering the high cost of collecting and annotating medical images from different 

domains and the valuable and unique roles of different modalities in clinical practice. 

Most state-of-the-art domain adaptation methods for medical image segmentation reduce the 

domain shift through adversarial learning. For example, CycleGAN [26] and its variants 

TD-GAN [25] and TA-ADA [10] rely on the cycle-consistency loss and have led to 

impressive results. However, they assume a one-to-one mapping, instead of many-to-many, 

between data with complex cross-domain relations. Thus, they fail to capture the true 

structured conditional distribution. Instead, these models learn an arbitrary one-to-one 

mapping and generate translated output lacking in diversity [1, 9]. DADR [24] achieves 

DA by disentangling medical images into content space and style space. However, anatomy

consistency is not always guaranteed without explicitly enforcing semantic consistency 

on content space. As for feature-level adaptation, while it seems effective for tasks like 

classihcation, it is unclear how well it might scale to dense structured domain adaptation [19, 

16].

Domain Agnostic Learning.

Compared to Domain Adaptation, Domain Agnostic Learning aims to learn from a source 

domain and map to arbitrary target domains instead of one specific known target domain 

[18]. In the held of medical imaging, it is an interesting task to explore since it is common 
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to get test data from different domains caused by different scanners, sites, protocols and 

modalities [5]. As for cross-modality liver segmentation, the DAL task is in particular useful 

since images from many different modali ties (e.g. CT, MR with different phases, etc.) are 

routinely acquired for better diagnosis, image guidance during treatment and follow-up after 

treatment [17]. Mainstream DA methods align the source and target domains by adversarial 

training [15, 22], However, with highly entangled representations, these models have limited 

capacity to tackle the DAL task. [18] proposes to solve the DAL task for classification by 

learning disentangled representations.

Disentangled Representation Learning.

Disentangled representation learning aims to model the different factors of data variation 

[7]. A couple of methods have been proposed to learn disentangled representations [2, 8]. 

Some focus on disentangling style from content [9]. In our case, we dehne content as 

anatomy infonnation, i.e., spatial structure, and dehne style as modality infonnation, i.e., 

the rendering of the image. Recent work [14] suggests that future research on disentangled 

representation learning should investigate concrete benehts of enforcing disentanglement of 

the learned representations and be explicit about the role of inductive biases and supervision. 

In our work, we discuss the performance boost by disentanglement learning and the role 

of supervision from our proposed anatomy preserving module (APM) and domain agnostic 

module (DAM) through ablation studies. Disentanglement learning also plays an important 

role to go from the DA task to DAL task.

Interpretation by Disentanglement

Deep neural networks are generally considered black box models. However, there has 

been lots of recent work on interpretation of deep learning models, particularly in medical 

imaging [13, 4], [6] summarizes these works into three main categories, including emulating 

the processing of the data to draw connections between the inputs and outputs, explaining 

the representation of data inside the network, and designing neural networks to be 

easier to explain. Disentangled representation falls into the last sub-category since these 

networks are designed to explicitly learn meaningful disentangled representations [2, 8]. 

Through visualization of transferred images and domain-agnostic images and experiments 

on downstream tasks, we not only show the success of disentanglement between anatomy 

information and modality information, but also show the representation has the potential for 

task transfer and data reconstruction. Furthermore, experimental results demonstrate that the 

downstream tasks benefit from the learned disentangled representation. These results show 

that our model is designed to learn meaningful, interpretable representations.

3. Method

We propose an end-to-end trainable Domain Agnostic Anatomical Embedding by 

Disentanglement (DALACE) model to tackle the DA and DAL tasks. Of note, the DA 

task is defined as transferring knowledge from a given source labeled dataset belonging to 

domain Ds to a target unlabeled dataset that belongs to a specific known domain Dt. The 

DAL task is defined in a similar way, except that the target unlabeled dataset consists of 

data from multiple domains Dt1, Dt2, …, Dtn  without any domain label for each sample 
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annotating which domain it belongs to. The ultimate goal is to minimize the target risk for 

downstream tasks [18]. In our application to medical images from patients with HCC, CT 

has true segmentation masks while MR does not. CT and MR are unpaired with each other. 

The DA task is to transfer knowledge from CT data to pre-contrast phase MR data, the DAL 

task is to transfer knowledge from CT data to heterogeneous multi-phasic MR data from 

mixed domains, and the downstream task of interest is cross-modality liver segmentation. 

Please see the visualization of DA and DAL in Fig. 1.

3.1. End-to-End Pipeline

Fig. 2 shows the end-to-end DALACE pipeline to learn a domain-agnostic anatomical 

embedding, which is invariant to domains but discriminative of the classes for the 

segmentation task. Input CT and MR images are denoted as XCT and XMR. Inspired by 

the MUNIT [9] model and DADR [24] model, DALACE consists of two anatomy encoders 

Ea
CT  and Ea

MR, two modality encoders Em
MR and Em

CT , two style-based generators with 

multi-layer perceptron (MLP) and adaptive instance normalization (AdaIN) [11] GCT and 

GMR. We propose the Anatomy Preserving Module (APM) and Domain Agnostic Module 

(DAM) to generate domain-agnostic anatomical images for the DA and DAL tasks.

To start the pipeline, both source data xCT and target data xMR are fed into the encoders 

Ea
CT , Em

CT , Ea
MR and Em

MR  and embedded into anatomy codes aCT and aMR (feature 

maps) and modality codes mCT and aMR (vectors). In the next step, anatomy codes and 

modality codes are fed into style-based generators GCT and GMR for self-reconstruction 

via optimizing the Limg term in equation (1). Then modality codes mCT and mMR are 

swapped and together with the original anatomy codes are fed into style-based generators 

for cross-reconstruction/modality-transfer generation, which is contrained by the Llatent loss 

term in equation (1). Please refer to (2) and (3) for details about Limg and Llatent. Expectation 

is taken with respect to xCT ~ XCT and xMR ~ XMR.

Lrecon = αLimg + βLlatent
= α LCT + LMR + β La

CT + Lm
CT + La

MR + Lm
MR (1)

LCT + LMR

= E GCT Ea
CT xCT , Em

CT xCT − xCT 1

+E GMR Ea
MR xMR , Em

MR xMR − xMR 1

(2)
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La
CT + Lm

CT + La
MR + Lm

MR

= Ea
MR xCT MR − aCT 1

+ Em
CT xMR CT − mCT 1

+ Em
MR xCT MR − mMR 1

+ Ea
CT xMR CT − aMR 1

(3)

To generate anatomy-preserving domain-agnostic images, only anatomy codes alone are fed 

into the generators without modality codes. DAM encourages the anatomy embedding to be 

domain-agnostic by adversarial training while APM encourages the anatomy embedding to 

be anatomypreserving by adversarial training [9, 25]. In this way, the model is designed 

to learn meaningful and interpretable disentangled representations, thus helping us to 

understand the learned representations and the model better.

3.2. Feedback Supervision Modules

3.2.1 Domain Agnostic Module—This module encourages the embedding to be 

domain-agnostic in an adversarial training way. It consists of two discriminators DCT and 

DMR which try to discriminate between real CT XCT and fake CT transferred from MR 

XMR→CT and real XMR MR and fake MR transferred from CT XCT→MR respectively. 

The discriminators compete with encoders and style-based generators to encourage the 

disentanglement of modality and anatomical information by driving modality information 

into the modality codes, thus forcing the anatomy embedding to be domain-agnostic. Please 

see Equation (4) (5) (6) for details.

Ladv
crosss = Ladv

CT MR + Ladv
MR CT (4)

Ladv
CT MR = E[log(1 − DMR(xCT MR))]

+ E[log(DMR(xMR))]
(5)

Ladv
MR CT = E[log(1 − DCT(xMR CT))

+ E[log(DCT(xCT))]
(6)

3.2.2 Anatomy Preserving Module (APM)—The Anatomy Preserving Module helps 

the embedding to preserve and align high-level semantic information for different 

modalities. It consists of two steps. In the first step, both anatomical images from CT and 

MR, Xa
CT  and Xa

MR, are fed into a segmentation module S, i.e. a U-Net based model, to 

generate segmentation masks for both Ma
CT  and Ma

MR for both Xa
CT  and Xa

MR. For Ma
CT , 

we compute the pixel-wise cross entropy loss (Equation (7)) between Ma
CT  and the ground 

truth mask of original CT image Ma
CT  to encourage the encoders and style-based generators 
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to keep the anatomy information. For Ma
MR, we train a conditional GAN to differentiate 

between the pair of Xa
MR and Ma

MR and the pair of Xa
CT  and Ma

CT  (Equation (8)), thus 

encouraging the pair of anatomical images and prediction masks originally from CT and MR 

to be nondifferentiable so that the anatomical images from MR will be anatomy preserving 

in an adversarial way.

LCE = − Σytruelog(ypred) (7)

Ladv
pair = E[log(1 − D(xaMR, Ma

MR))]
+ E[log(D(xaCT , Ma

CT))]
(8)

3.3. Implementations Details

Anatomy encoders consist of 1 convolutional layer of stride 1 with 64 filters, 2 convolutional 

layers of stride 2 with 128, 256 filters respectively and 4 residual layers with 256 filters 

followed by batch normalization, while modality encoders are composed of 1 convolutional 

layer of stride 1 with 64 filters, 4 convolutional layers of stride 2 with 128, 256, 256, and 

256 filters, a global average pooling layer, and a fully-connected layer with 8 filters without 

any batch normalization. Style-based generators with MLP take the anatomy codes (feature 

maps of size 64x64x256) and modality codes (vector of length 8) as inputs, which consist 

of 4 residual layers with 256 filters, 2 upsampling layers of 2x, and 1 convolutional layer of 

stride 1. The modality codes are used as inputs to the MLP to generate affine transformation 

parameters. Residual blocks in the style-based generators are equipped with an Adaptive 

Instance Normalization (AdaIN) layer to take the affine transformation parameters from the 

modality codes via the MLP. Discriminators are convolutional neural networks for binary 

classification. As for the DAM and APM modules, the segmentation network is a standard 

U-Net [20] architecture and the discriminators are also convolutional binary classifiers. The 

Adam optimizer [12] is used for optimization. To update the parameters in the DALACE 

model, First, alpha and β are set as 2.5 and 0.01 for minimization of the loss function in 

equation (1): minEa,Em,G Lrecon = αLimg + αLlatent. Second, adversarial training is applied 

for the loss function in equation (4): minEa, Em, GmaxDLadv
cross. Thhird, loss functions in 

equation (7) and (8) are optimized as minSLCE, minEa, GmaxDLadv
pair where S denotes the 

segmentation module in APM.

Learning rate is set as 0.001 except 0.0001 for minEa, GmaxDLadv
pair. In total, 2600 epochs 

are trained for each fold. In the first 600 epochs, Ladv
pair is not optimized. Experiments were 

conducted on two Nvidia 1080ti GPUs. The training time each fold is ~ 2.5 h. The testing 

tune each fold is within a minute.
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4. Experimental Results

4.1. Data and Preprocessing

We tested our DALACE model on slices from unpaired CT and MR scans: 130 CT scans 

from the LiTS challenge at ISBI and MICCAI 2017 [3] and multi-phasic MR scans from 20 

patients at a local medical center, including pre-contrast phase MR, 20s post-contrast phase 

(arterial phase) MR and 70s post-contrast phase (venous phase) MR. Please see Fig. 5 for 

image examples. Not only is the huge domain shift from CT to MR observed, the domain 

shifts between multi-phasic MR images can not be neglected. The multi-phasic MR dataset 

of 20 patients was collected with Institutional Review Board (IRB) approval and manual 

liver segmentation masks were created by a radiology expert. Both MR and CT data are 

normalized and resliced to be isotropic in three dimensions. Bias field correction is applied 

on MR data. For all the experiments, both CT and MR datasets are partitioned into 5-folds 

for cross-validation purposes.

4.2. Domain Adaptation

For the DA task, to transfer knowledge from CT to pre-contrast phase MR, competing 

models are trained with labeled CT images and unlabeled pre-contrast phase MR images. 

Model perfonnance was assessed using the dice similarity coefficient (DSC) between true 

and predicted liver segmentations.

To have a better sense of understanding of the data and the DA task, we have a supervised 

U-Net trained and tested on the small pre-contrast phase MR dataset to serve as the 

upperbound. Another supervised U-Net is trained on CT and tested on pre-phase MR to 

serve as the lowerbound for each task. Please see Table 2 for details. The upperbound might 

be lower than the actual upperbound since the training MR data for 5-fold cross-validation 

is small and noisy. Compared to the MR data, CT data is much more available and robust to 

artifacts.

Settings—For each cross-validation split, four folds of CT data with segmentation masks 

and pre-contrast MR data without segmentation masks are used to train, and one fold of 

pre-contrast MR data without segmentation masks is used to test. The state-of-the-art models 

CycleGAN [26], TD-GAN [25], and DADR [24] are trained with the same partition of data 

for the DA task. DALACE finds a shared space to embed both CT and MR and transfers 

both modalities into anatomical images while CycleGAN and TD-GAN tries to transfer 

directly between CT and MR.

Results—As shown in Table 1, our DALACE model outperforms the current state-of-the

art models with DSC of 0.847 compared to DSC of 0.721 for CycleGAN, 0.793 for TD

GAN, and 0.806 for DADR. Please see Fig. 6 for visual comparison of qualitative results 

from different models on cross-modality liver segmentation with DA.

4.3. Domain Agnostic Learning

For the DAL task, to transfer knowledge from CT to multi-phasic MR, competing models 

are trained with labeled CT images and unlabeled MR images in three different phases.
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To better assess perfonnance on the DAL task, we have a supervised U-Net trained and 

tested on MR from each phase separately to serve as the upperbound. Another supervised 

U-Net is trained on CT and tested on MR from all phases to serve as the lowerbound. Please 

see Table 2 for details. The upperbound might be lower than the actual upperbound given 

the noisy and small MR dataset for training with 5-fold cross-validation. Among different 

phases, liver in the arterial phase MR is more visually inhomogeneous than liver in other 

MR phases, which might lead to downgraded performance.

Settings—For each cross-validation split, four folds of CT data with segmentation masks 

and multi-phasic MR data including pre-contrast phase, 20s post-contrast phase and 70s 

post-contrast phase without segmentation masks are used to train, and one fold of the 

multi-phasic MR data is used to test. The state-of-the-art models CycleGAN [26], TD-GAN 

[25] and DADR [24] are trained with the same partition of data for the DAL task.

Results—As shown in Table 2, our DALACE model outperforms the current state-of-art 

models with DSC of 0.794 compared to DSC of 0.522 for CycleGAN, 0.719 for TD-GAN, 

and 0.742 for DADR. The shared embedding space from our DALACE model is modality

invariant to CT and multi-phasic MR, thus it is effective on the DAL task where target 

data is from heterogenous mixed domains. CycleGAN and TD-GAN perfonned badly in 

transferring between CT and multi-phasic MR since they are assuming multi-phasic MR 

to be from the same domain. DADR assumes mixed domains, but does not enforce anatomy

consistent representations, which results in lower performance compared to our DALACE 

model.

4.4. Joint Learning

For joint learning, instead of transferring knowledge from CT to MR, knowledge from CT 

and MR are jointly learned to get a better model on both CT and MR. Specifically, not only 

do CT images have ground truth masks, but also MR images have ground truth masks for 

training.

Settings—CT and pre-contrast phase MR are used in this experiment. For each cross

validation split, four folds of CT with segmentation masks and four folds of MR with 

segmentation masks are used to train the DALACE model, and the other one fold of CT 

and MR is used to test the model. U-Net trained on four folds of CT with segmentation 

masks and tested on the other one fold of CT and U-Net trained on four folds of MR with 

segmentation masks and tested on the other one fold of MR were used for comparison.

Results—As shown in Table 3, the DALACE model for joint learning simultaneously 

outperforms the fully-supervised U-Net models separately trained and tested on each 

modality, with DSC of 0.911 tested on CT and 0.907 tested on MR compared to 0.901 on 

CT and 0.869 on MR using fully-supervised U-Net. Of note, 0.869 (0.044) is the estimated 

upperbound for DA tasks from Table 1. Overall, our DALACE model outperformed other 

methods for the joint learning task, especially in terms of MR tested DSC, which is of most 

interest. Only two methods DADR and DALACE in joint learning exceeded the upperbound 

for DA and showed synergy from effectively intergrating information from both CT and 
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MR. Since our DALACE model for joint learning uses the domain-agnostic images of CT 

and MR as the inputs for the segmentation module, it shows that the DALACE model 

successfully disentangles the anatomy information from modality information. To achieve 

the task of liver segmentation, it does not necessarily require information from modality 

codes, but only anatomical information is relevant to the segmentation task.

5. Analysis

5.1. Results Analysis

We tested our DALACE model on unpaired CT and MR data in three experiments and 

showed that DALACE is superior to the current state-of-the-art models in the literature 

such as CycleGAN, TD-GAN and DADR. The DALACE model, which works on both 

domain-transfer and task-transfer to learn a disentangled representation, not only aims to 

be invariant to different modalities but also preserves anatomical structures. In the DAL 

experiment, the main challenge is that target data come from multiple target domains, which 

violates the assumptions made by CycleGAN and TD-GAN. Features in CycleGAN and 

TD-GAN are highly entangled so that it is hard to learn a domain-invariant representation 

given multiple domains. However, the DALACE model generalizes easily to the DAL 

experimental settings and demonstrates superior performance in terms of DSC score due 

to disentanglement learning. Compared to DADR, the DALACE model achieved improved 

performance for the downstream tasks through explicitly enforcing semantic consistency. In 

the Joint-Learning experiment, we show the potential of our DALACE model to integrate 

different modalities, which shows the meaningful disentangled representations from each 

domain are domain-agnostic and aligned to preserve the anatomy structures.

5.2. Visualization of Disentanglement

Through the above experiments, we have shown that our DALACE model outperforms the 

current state-of-the-art models on both DA and DAL tasks. In this section, we will show 

that anatomy information and modality information are disentangled by the DALACE model 

through visualization of domain-agnostic images and modality-transferred images.

Domain-Agnostic Images—To generate domain-agnostic images, CT and MR images 

are embedded by encoders into anatomy codes and modality codes. Then only anatomy 

codes are fed into style-based generators without modality codes to get the outputs 

as domain-agnostic images. Please see Fig. 7 for domain-agnostic anatomical images 

generated by anatomy codes from different domains including CT and multi-phasic MR. 

As demonstrated in the figure, the modality information is erased while the anatomical 

structures are preserved in the domain-agnostic images. In other words, the anatomy 

information is extracted and preserved in the domain-agnostic anatomical embeddings.

Modality-Transferred Images—To perform modality transfer, both input images and 

reference images are embedded by encoders into anatomy codes and modality codes. 

Then we maintain the anatomy codes from input images and modality codes from 

reference images and feed them into the style-based generators to get modality-transferred 

images. The generated modality-transferred images will inherit the anatomy structure from 
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input images and modality rendering from reference images. Please see Fig. 8 for CT 

images transferred to multi-phasic MR images in three phases. It shows the successful 

disentanglement of modality information into modality code.

5.3. Interpretation

According to the categories for deep learning model explanation methods in [6], the 

DALACE model is designed to be easier to interpret by explicitly learning meaningful 

and interpretable representations. The successful disentanglement of anatomy and modality 

information, as shown in Fig. 7 and Fig. 8, adds transparency to the black-box model. 

Furthermore, in the previous experiments, it was shown that the learned meaningful and 

interpretable representation is able to generalize and is useful for reconstruction and 

downstream tasks.

6. Ablation Studies

Recent work on disentanglement learning [14] suggests that, besides demonstrating 

the successful disentanglement, two important directions of future research are: (1) to 

investigate the concrete benehts of enforcing disentanglement learning for downstream 

tasks. (2) to explicitly discuss the role of supervision on disentanglement. Ablation studies 

are performed on our model to analyze the role of the components in our proposed model, in 

accordance with the above two points.

6.1. Effectiveness of Disentanglement

To investigate the concrete benefits of enforcing disentanglement of the learned 

representations, we took out the disentanglement from our model by replacing the anatomy 

encoders, modality encoders and style-based generators with CycleGAN and the other parts 

of the model remain the same, except that there will be no domain-agnostic images and 

direct modality-transfer is applied between CT and MR, which is essentially the TD-GAN 

[25] model with the segment module pretrained on CT. The ablation experiment showed 

that, without the disentanglement component, the performance decreased from 0.847 to 

0.793 for the DA task and from 0.794 to 0.719 for the DAL task, which indicates that the 

disentanglement benefits the performance of downstream tasks.

6.2. Role of Supervision on Disentanglement

To be explicit about the role of supervision for disentanglement, as well as to investigate 

the role of APM and DAM in the DALACE model, we take out the APM and DAM part 

respectively. Taking out APM will separate the end-to-end DALACE model into a two-stage 

model without enforcing semantic consistency, which is essentially DADR [24], Taking out 

DAM will result in weakening the model’s ability to learn a domain agnostic representation, 

thus degrading the performance. Please see Table 4 for details. It shows the important role of 

supervision on disentanglement and performance.
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7. Conclusions and Limitations

For medical image analysis, in practice, it is expensive and time consuming to collect and 

annotate medical images. DA can be an effective solution for generalization of deep learning 

models for medical image analysis. However, target data itself can come from different 

scanners, medical sites, protocols and modalities with domain shifts, demonstrating the 

importance of the proposed DAL task. In addition, each modality plays a unique role in 

the diagnosis and after-treatment follow-up. An accurate model for the DAL task not only 

solves the problem of scarcity of labeled training data for medical image analysis using 

deep learning, but also it will improve the current clinical workflow and greatly help the 

integration of different modalities.

This work explicitly proposed the DAL task for medical image analysis and introduced 

DALACE, an end-to-end trainable model which utilizes disentanglement to preserve 

the anatomical information and promote domain adaptation to the new DAL task. 

Through ablation studies, we explicitly investigated the effectiveness of disentanglement 

and the role of supervision for disentangled representation that is domain agnostic and 

anatomy preserving. By visualization, we showed that the disentanglement promotes the 

interpretability of the learned representation.

While DALACE is proposed to tackle the DA and DAL tasks, it also has the potential to 

realize style transfer. Getting one model that works on style transfer, DA and DAL tasks is 

difficult but desirable and an interesting direction for future work. Without paired CT and 

MR to serve as ground truth, style transfer results are difficult to be quantitatively evaluated. 

The joint learning experiment also points to a potential direction for future studies, the 

integration of modalities.

References

[1]. Almahairi A, Rajeshwar S, Sordoni A, Bachman P, and Courville A. Augmented cyclegan: 
Learning many-to-many mappings from unpaired data. In International Conference on Machine 
Learning, pages 195–204, 2018.

[2]. Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, and Abbeel P. Infogan: Interpretable 
representation learning by information maximizing generative adversarial nets. In Advances in 
neural information processing systems, pages 2172–2180, 2016.

[3]. Christ P, Ettlinger F, Grün F, Lipkova J, and Kaissis G. Lits-liver tumor segmentation challenge. 
ISBI and MICCAI, 2017.

[4]. Codella NC, Lin C-C, Halpern A, Hind M, Feris R, and Smith JR. Collaborative human-ai (chai): 
Evidence-based interpretable melanoma classification in dermoscopic images. In Understanding 
and Interpreting Machine Learning in Medical Image Computing Applications, pages 97–105. 
Springer, 2018.

[5]. Dou Q, Ouyang C, Chen C, Chen H, Glocker B, Zhuang X, and Heng P-A. Pnp-adanet: Plug
and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac 
segmentation. arXiv preprint arXiv:1812.07907, 2018.

[6]. Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, and Kagal L. Explaining explanations: An 
overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on 
data science and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[7]. Higgins I, Amos D, Pfau D, Racaniere S, Matthey L, Rezende D, and Lerchner A. Towards a 
definition of disentangled representations. arXiv preprint arXiv:1812.02230, 2018.

Yang et al. Page 12

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, and Lerchner A. 
beta-vae: Learning basic visual concepts with a constrained variational framework. ICLR, 2(5):6, 
2017.

[9]. Huang X, Liu M-Y, Belongie S, and Kautz J. Multimodal unsupervised image-to-image 
translation. In Proceedings of the European Conference on Computer Vision (ECCV), pages 
172–189, 2018.

[10]. Jiang J, Hu Y-C, Tyagi N, Zhang P, Rimner A, Mageras GS, Deasy JO, and Veeraraghavan 
H. Tumor-aware, adversarial domain adaptation from ct to mri for lung cancer segmentation. 
In International Conference on Medical Image Computing and Computer-Assisted Intervention, 
pages 777–785. Springer, 2018.

[11]. Karras T, Laine S, and Aila T. A style-based generator architecture for generative adversarial 
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pages 4401–4410, 2019.

[12]. Kingma DP and Ba J. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980, 2014.

[13]. Li X, Dvornek NC, Zhou Y, Zhuang J, Ventola P, and Duncan JS. Efficient interpretation of deep 
learning models using graph structure and cooperative game theory: Application to asd biomarker 
discovery. In International Conference on Information Processing in Medical Imaging, pages 
718–730. Springer, 2019.

[14]. Locatello F, Bauer S, Lucic M, Raetsch G, Gelly S, Schölkopf B, and Bachem O. 
Challenging common assumptions in the unsupervised learning of disentangled representations. 
In International Conference on Machine Learning, pages 4114–4124, 2019.

[15]. Long M, Cao Y, Wang J, and Jordan MI. Learning transferable features with deep adaptation 
networks. arXiv preprint arXiv:1502.02791, 2015.

[16]. Luo Y, Zheng L, Guan T, Yu J, and Yang Y. Taking a closer look at domain shift: Category-level 
adversaries for semantics consistent domain adaptation. In Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition, pages 2507–2516, 2019.

[17]. Oliva MR and Saini S. Liver cancer imaging: role of ct, mri, us and pet. Cancer imaging, 4(Spec 
No A):S42, 2004. [PubMed: 18215974] 

[18]. Peng X, Huang Z, Sun X, and Saenko K. Domain agnostic learning with disentangled 
representations. In International Conference on Machine Learning, pages 5102–5112, 2019.

[19]. Ramirez PZ, Tonioni A, and Di Stefano L. Exploiting semantics in adversarial training for 
image-level domain adaptation. In 2018 IEEE International Conference on Image Processing, 
Applications and Systems (IPAS), pages 49–54. IEEE, 2018.

[20]. Ronneberger O, Fischer P, and Brox T. U-net: Convolutional networks for biomedical image 
segmentation. In International Conference on Medical image computing and computer-assisted 
intervention, pages 234–241. Springer, 2015.

[21]. Tzeng E, Hoffman J, Darrell T, and Saenko K. Simultaneous deep transfer across domains and 
tasks. In Proceedings of the IEEE International Conference on Computer Vision, pages 4068–
1076, 2015.

[22]. Tzeng E, Hoffman J, Saenko K, and Darrell T. Adversarial discriminative domain adaptation. 
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 
7167–7176, 2017.

[23]. Wang M and Deng W. Deep visual domain adaptation: A survey. Neurocomputing, 312:135–153, 
2018.

[24]. Yang J, Dvornek NC, Zhang F, Chapiro J, Lin M, and Duncan JS. Unsupervised domain 
adaptation via disentangled representations: Application to cross-modality liver segmentation. 
arXiv preprint arXiv:1907.13590, 2019.

[25]. Zhang Y, Miao S, Mansi T, and Liao R. Task driven generative modeling for unsupervised 
domain adaptation: Application to x-ray image segmentation. In International Conference on 
Medical Image Computing and Computer-Assisted Intervention, pages 599–607. Springer, 2018.

[26]. Zhu J-Y, Park T, Isola P, and Efros AA. Unpaired image-to-image translation using cycle
consistent adversarial networks. In Proceedings of the IEEE international conference on 
computer vision, pages 2223–2232, 2017.

Yang et al. Page 13

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic diagram of the domain adaptation task and the domain agnostic learning task.
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Figure 2. 
(Best viewed in color) The end-to-end DALACE pipeline to learn domain-agnostic 

anatomical embeddings. The solid line shows the self-reconstruction process while the 

dotted line shows the cross-reconstruction/modality-transfer generation process.
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Figure 3. 
Domain-Agnostic Module, which encourages the embedding to be domain-agnostic by 

adversarial training.
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Figure 4. 
Anatomy-Preserving Module, which encourages the embedding to be anatomy-preserving 

by adversarial training. D is the discriminator, S is the U-Net segmentation module.
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Figure 5. 
Examples of images from different modalities, from left to right: CT, pre-contrast phase MR, 

20s post-contrast phase MR and 70s post-contrast phase MR.
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Figure 6. 
Two examples of DA task for cross-modality liver segmentation with different methods. 

From left to right: original pre-contrast phase MR images, ground truth masks, U-Net w/o 

DA results, CycleGAN results, TD-GAN results, DADR results, DALACE results.
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Figure 7. 
Two sets of examples of domain-agnostic images. In each set, the first row from right to left 

is CT, pre-contrast MR, 20s post-contrast MR, and 70s post-contrast MR, and the second 

row is its corresponding domain-agnostic images.
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Figure 8. 
CT images are transferred to multi-phasic MR images in three phases. From left to right, 

each column is the multi-phasic MR images (from top to bottom: 70s post-contrast phase 

MR, 20s post-contrast phase MR, pre-contrast phase MR), the CT images, the modality

transferred images with anatomy structure from the CT images in the second column and 

modality rendering from the multi-phasic MR images in the first column.
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Table 1.

DA results. Estimated lowerbound and upperbound for cross-modality liver segmentation with DA. 

Comparison of segmentation results for domain adaptation with different models. Our DALACE outperforms 

other methods.

DA task DSC (std)

lowerbound 0.260 (0.072)

upperbound 0.869 (0.044)

Method DSC (std)

CycleGAN [26] 0.721 (0.049)

TD-GAN [25] 0.793 (0.066)

DADR [24] 0.806 (0.035)

DALACE 0.847 (0.041)
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Table 2.

DAL results. Estimated lowerbound and upperbound for cross-modality liver segmentation with DAL. 

Comparison of segmentation results for domain adaptation with different models. Our DALACE generalizes 

well to the DAL task compared to other methods.

DAL task DSC (std)

lowerbound 0.228 (0.130)

upperbound 0.823 (0.057)

Method DSC (std)

CycleGAN [26] 0.522 (0.064)

TD-GAN [25] 0.719 (0.089)

DADR [24] 0.742 (0.045)

DALACE 0.794 (0.044)

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2021 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 24

Table 3.

Joint learning results. Results of joint learning models and comparison with fully-supervised U-Net models on 

each modality.

Method CT tested DSC MR tested DSC

CT trained U-Net 0.901 (0.020) 0.260 (0.072)

MR trained U-Net 0.134 (0.091) 0.869 (0.044)

CT&MR trained U-Net 0.835 (0.035) 0.590 (0.098)

Joint CT&MR CycleGAN 0.870 (0.023) 0.846 (0.048)

Joint CT&MR TD-GAN 0.880 (0.018) 0.863 (0.029)

Joint CT&MR DADR 0.912 (0.012) 0.891 (0.040)

Joint CT&MR DALACE 0.911 (0.013) 0.907 (0.049)
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Table 4.

Ablation studies on the Role of Supervision on Disentanglement of Anatomy Preserving Module (APM) and 

Domain Agnostic Module (DAM).

APM DAM DSC for DA DSC for DAL

✓ 0.806 (0.035) 0.742 (0.041)

✓ 0.776 (0.078) 0.702 (0.132)

✓ ✓ 0.847 (0.041) 0.794 (0.044)

IEEE Int Conf Comput Vis Workshops. Author manuscript; available in PMC 2021 October 20.


	Abstract
	Introduction
	Related Work
	Domain Agnostic Learning.
	Disentangled Representation Learning.
	Interpretation by Disentanglement

	Method
	End-to-End Pipeline
	Feedback Supervision Modules
	Domain Agnostic Module
	Anatomy Preserving Module (APM)

	Implementations Details

	Experimental Results
	Data and Preprocessing
	Domain Adaptation
	Settings
	Results

	Domain Agnostic Learning
	Settings
	Results

	Joint Learning
	Settings
	Results


	Analysis
	Results Analysis
	Visualization of Disentanglement
	Domain-Agnostic Images
	Modality-Transferred Images

	Interpretation

	Ablation Studies
	Effectiveness of Disentanglement
	Role of Supervision on Disentanglement

	Conclusions and Limitations
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

