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Purpose of review

This review aims to cover current MRI techniques for assessing treatment response in brain tumors, with a
focus on radio-induced lesions.

Recent findings

Pseudoprogression and radionecrosis are common radiological entities after brain tumor irradiation
and are difficult to distinguish from real progression, with major consequences on daily patient care. To
date, shortcomings of conventional MRI have been largely recognized but morphological sequences are
still used in official response assessment criteria. Several complementary advanced techniques have
been proposed but none of them have been validated, hampering their clinical use. Among advanced
MRI, brain perfusion measures increase diagnostic accuracy, especially when added with spectroscopy
and susceptibility-weighted imaging. However, lack of reproducibility, because of several hard-to-
control variables, is still a major limitation for their standardization in routine protocols. Amide Proton
Transfer is an emerging molecular imaging technique that promises to offer new metrics by indirectly
quantifying intracellular mobile proteins and peptide concentration. Preliminary studies suggest that this
noncontrast sequence may add key biomarkers in tumor evaluation, especially in posttherapeutic
settings.

Summary

Benefits and pitfalls of conventional and advanced imaging on posttreatment assessment are discussed and
the potential added value of APT in this clinicoradiological evolving scenario is introduced.
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INTRODUCTION

MRI plays a key-role in brain tumor follow-up,
allowing to monitor response to treatment or the
detection of progression, and therefore, driving
critical clinical decisions. From year to year, as
the therapeutic arsenal increases, assessing treat-
ment efficacy, especially after radiotherapy or dur-
ing immunotherapy, becomes more difficult. The
distinction between pseudoprogression and radio-
necrosis from true progression or stable disease is
often not possible with conventional MRI sequen-
ces and requires advanced imaging. However, no
advanced MRI protocol has yet been validated. The
aim of this article is to review the current knowl-
edge on the posttherapeutic evaluation of brain
tumors with a focus on the potential added value of
Amide Proton Transfer (APT), a new promising
noncontrast MRI technique belonging to Chemi-
cal Exchange Saturation Transfer (CEST) imaging
domain.
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KEY POINTS

� Brain radionecrosis and pseudo progression require
advanced imaging.

� Perfusion holds the higher diagnostic accuracy,
especially when combined with spectroscopy and
susceptibility-weighted imaging.

� Diffusion weighted imaging must be interpreted with
caution, as similar diffusion water molecules metric can
reflect opposite phenomena (i.e. necrotic or
hypercellular lesions).

� Amide Proton Transfer weigthed imaging is an
emerging technique that promises high diagnostic
performances for assessing treatment response in
brain tumors.

Brain and nervous system
THE FUNDAMENTALS OF
RADIONECROSIS AND
PSEUDOPROGRESSION

Radiotherapy is a well established treatment option
against brain primary tumors or metastases, which
together account for the majority of brain tumors
[1]. Stereotactic radiosurgery (SRS) is currently the
most relevant therapeutic option for selected
patients with brain metastasis and its indications
are continuously expanding [2

&&

]. Maximum well
tolerated surgical resection followed by a 6-week
course of radiotherapy concurrently with temozo-
lomide chemotherapy is the cornerstone of glioblas-
toma treatment [3]. Salvage re-irradiation may also
be considered in some case of recurrent glioblas-
toma [4], although an optimal dosing regimen has
not been established [5].

Unfortunately, brain radiotherapy is likely to
induce chronic inflammatory reactions [6,7] and
possibly result in necrotic and edematous lesions
that can be extremely difficult to distinguish from
tumor recurrence with both conventional and
advanced MRI sequences [8,9,10

&&

,11].
Several risk factors can predispose to radio-induced

brain complications. Among them, the type of sys-
temic concurrent antitumor therapy plays an impor-
tant role in enhancing radiation toxicity [12]. Notably,
Immune-Checkpoint Inhibitors (ICIs), a recent target
strategy against metastatic disease [2

&&

,13], are often
combined with SRS [14

&

] as focal irradiation can
improve systemic antitumor immunity, a phenome-
non typically referred as the abscopal effect [15,16].
Nevertheless, this combinatorial approach increases
the risk of radiation necrosis [17], with largely
unknown pathophysiological mechanisms [18]. Addi-
tionally, even in the absence of irradiation, immuno-
therapy agents can provoke unconventional transient
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immune-related phenomena that lead to misleading
pseudoprogressing contrast-enhancing lesions [19].

Due to widespread use of these advanced thera-
peutic approaches, knowledge of these complex
cutting-edge treatments is essential to properly
assess treatment response and guide subsequent
clinical decisions.
Definitions

There is no clear evidence nor consensus on the
distinction between pseudoprogression and radio-
necrosis, probably because of the paucity of histo-
pathological data, difficulties in assessing the
correct histological diagnosis, given the frequent
‘mixed’ pattern with tumor remnants and radia-
tion-induced tissue changes in biopsy samples
[20], and the absence of large-scale, harmonized,
multicenter, prospective researches.

Pseudoprogression and radionecrosis are radio-
logically defined by a new or enlarging area(s) in the
radiation field that resolves without treatment mod-
ification. When images of radiation-induced lesions
appear shortly after the end of radiotherapy (within
the first 6 months for most of the studies [8,21,22],
whereas others only consider the first 2 [23] or
3 months [24,25]), the term pseudoprogression is
preferred, especially in the context of diffuse glioma.
On the contrary, radionecrosis emerges at a later
stage (from around 6 months to several years) [8,26].
Mechanism

Pathologically, no clear boundaries separate these
two entities as the physiopathology of the radio-
induced lesion is dynamic [27,28]. Pseudoprogres-
sion is probably an expression of early delayed brain
injury and is dominated by vascular damage (i.e.
vasodilation and increased capillary permeability),
resulting in vasogenic edema that normally resolves
spontaneously, and is often associated with tran-
sient demyelination [29]. Conversely, radionecrosis
is part of late delayed brain injury and is character-
ized by a mixture of vascular endothelial damage
and demyelination lesions, followed by neuronal
death, and often does not recede [24].

Even though our understanding of the biomo-
lecular pathways following radiotherapy is still very
limited, blood vessel damage has been repeatedly
recognized as one of the core step in the develop-
ment of radiation toxicity [29–31], leading to hyp-
oxia and upregulation of Hypoxia Inducible Factor-
1 alpha (HIF-1a) in microglia and subsequent Vas-
cular Endothelial Growth Factor (VEGF) induction,
and several pro-inflammatory cytokines release [32].
VEGF over-expression results in leaky angiogenesis
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and ultimately facilitates radio-induced necrotic
lesion expansion [33–35].
Incidence

Pseudoprogression and radionecrosis are common
entities in both gliomas and in brain metastases. A
recent meta-analysis showed that pseudoprogres-
sion occurred in 36% (95% confidence interval,
33– 40%) high-grade glioma patients [36]. At the
same time, nearly a third of SRS-treated metastases
show a transient, moderate volume increase at
around 6 weeks after treatments, which sometimes
lasts beyond 15 months [26,37,38]. The incidence of
later (after 6 months) radionecrotic lesions is less
understood for both primary and secondary brain
tumors, as reported incidence ranges widely from 5
to 50%, and is probably underestimated [24,34,39–
41].
Risk factors

Radiotherapy toxicity is complex and depends on
several parameters. Total irradiation dose [42,43],
treated volume [44,45] and the dose per fraction [46]
are important and obvious risk factors. In the con-
text of diffuse gliomas, it has been suggested that
MGMT promoter methylated tumors are more
prone to develop pseudoprogression [47] and that
temozolamide increases radiation-induced lesions
in both high grade [23] and low-grade glioma
[48]. Immunotherapy may raise the incidence of
radionecrosis in brain metastases treated with SRS
[17,19] but further studies are needed to quantify its
impact [14

&

,18,49]. All in all, the intertangled net-
work of these heterogeneous predisposing factors is
largely unknown, and it is impossible to predict
individual sensitivity to radiation toxicity. Large,
multivariate analysis are certainly needed, and they
should include an extensive panel on molecular
tumor characteristics and all different types of con-
current or adjuvant antitumor agents.
Clinical implications

Radiation-induced toxicity is usually asymptomatic
or paucisymptomatic [44]. When radiation necrosis
is clinically meaningful, it is commonly treated with
high-dose steroids or with surgical debulking
[50,51]. Given the role of VEGF on the radiation-
induced progressing lesion [35,52], it is not surpris-
ing that bevacizumab, an anti-VEGF monoclonal
antibody, is also an effective treatment for symp-
tomatic steroid-resistant radiation necrosis of both
primary [53] and secondary tumors [54,55

&

,56] and
that it may help reducing steroid dosage [57].
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
Hyperbaric oxygen [58], laser interstitial thermal
therapy [50] and anti-TNF antibodies [59,60] are
other treatment options but have only been inves-
tigated in preliminary reports.

In the most frequent scenario, the clinical chal-
lenge is not simply to treat radiation-induced lesions
but firstly to diagnose it correctly. Resolving this
clinical problem is crucial as it permits to avoid
premature cessation of effective treatments or delays
in withdrawal of ineffective treatments. To date, no
validated single MRI-based imaging metric can dif-
ferentiate between treatment response and tumor
recurrence after radiation therapy. Therefore, a mul-
timodality approach is almost always required,
although sometimes still insufficient because of
intrinsic limitations of the available MRI sequences,
as furtherly discussed.
CURRENT MRI IMAGING IN
POSTTREATMENT TUMOR EVALUATION

The Response Assessment in Neuro-Oncology
(RANO) working group has provided consensus
response criteria for high-grade [61] and low-grade
[62] gliomas, and for brain metastases with the
commendable purposes of accuracy and reproduc-
ibility between different institutions. At present,
however, it is extremely difficult to combine these
two characteristics in posttherapeutic assessment of
brain tumors as accuracy requires advanced multi-
modal imaging protocols that are extremely difficult
to standardize and validate in multicenter studies.
On the other hand, reproducibility can be achieved
with conventional imaging but it is often far from
being accurate. At present, on the urge of interpre-
tation of clinical trials, reproducibility has been
preferred and RANO criteria are based on conven-
tional MRI sequences [63]. To overcome inherent
limitation of RANO criteria on the evaluation of
pseudoprogressing lesions during ICIs trials, immu-
notherapy response assessment for neuro-oncology
(iRANO) criteria [64] have been developed but they
are still based on morphological imaging features,
and therefore, lead to delayed diagnosis.
Conventional sequences

Visual inspection of T1-weighted (T1w), T2-weighted
(T2w), and fluid-attenuated inversion recovery
(FLAIR) sequences is essential for detecting fine
anatomical details but it is useless in the metabolic
discrimination of space-occupying lesion. Morpho-
logical imaging after contrast agent injection detects
blood–brain barrier leakage, which is present in
both radiation-induced inflammation and in neo-
plastic lesion [8]. Early studies explored the value of
r Health, Inc. www.co-oncology.com 599



Brain and nervous system
T2w and T1w postcontrast imaging in differentiating
tumor recurrence from radiation necrosis in brain
metastases treated with SRS. Evaluation of the spa-
tial concordance between the boundaries of the
lesion on T2w and T1w postcontrast imaging show
a T1/T2 match (in favor of tumor recurrence) or T1/
T2 mismatch (in favor of radionecrosis) [65]. Quan-
titative determination of lesion quotient, defined as
the area of a hypointense nodule on T2w divided by
its area on contrast-enhanced T1w, suggested to
show different results in radionecrosis (lesion quo-
tient less than 0.3) and in recurrent metastasis
(lesion quotient greater than 0.6) [66]. These quali-
tative and quantitative signs were not confirmed in
further studies [67,68].

Type of contrast uptake has also been investi-
gated, and a ‘cut-green pepper’, a ‘soapbubbles’ or a
‘gruyere’ cheese contrast enhancement appearance
has been related to radionecrosis [69,70] but the
subjective evaluation of these signs limits their
reproducibility [9].

Overall, conventional sequence evaluation does
not distinguish between tumor and posttherapeutic
lesion at an early stage [71], whereas in the later
stage, the tumor progresses while the posttherapeu-
tic lesion remains stable, shrink or disappear.
Diffusion-weighted imaging

Diffusion-weighted imaging and its various exten-
sions (diffusion tensor imaging, diffusion kurtosis
imaging, neurite orientation dispersion and density
imaging, diffusional and constrained diffusional var-
iance decomposition) can provide important com-
plementary information on tissue microstructure in
treatment-naive patients [72–76]. Conversely, after
radiotherapy, the evaluation of diffusion-derived
changes must be interpreted with caution as studies
on this topic are contradictory [77,78] and similar
diffusion water molecules metric can reflect opposite
phenomena (i.e. diffusion restriction because of
hypercellularity or postradiotherapy coagulative
necrosis) [72,79]. An example of diffusion restriction
in a pathologically proved radionecrosis is shown in
Fig. 1. Detection of restricted diffusion foci in irradi-
ated tumor successively treated withBevacizumab is a
well known form of therapy-induced necrosis
[80,81]. Radiologist and clinicians should be aware
of this entity and avoid misdiagnosis with stroke or
tumor progression.

Intravoxel Coherent Motion Imaging, a novel
diffusion technique that produces simultaneous dif-
fusion and perfusion maps, can have a potential role
in identifying radiation-induced changes in gliomas
and brain metastases treated with SRS, as a pilot
works suggest [82].
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Susceptibility-weighted imaging

Several paramagnetic and diamagnetic sources of
signal, such as deoxygenated hemoglobin, tissue
calcifications or iron deposits can alter magnetic
susceptibility and thus lead to susceptibility-
weighted imaging (SWI) changes. They can be pres-
ent in brain metastases, especially of melanoma
[83

&

], and in glioma [84]. In this latter group, the
degree of intratumoral susceptibility signal intensity
(ITSS) was shown to be positively correlated with
glioma grade and higher perfusion values [85]. After
radiotherapy, a marked increase of SWI signal
changes within the radiation field is often observed,
traducing blood vessel injury and radiotherapy-
related remnants [79,86]. Measuring the proportion
of hemorrhage shown in SWI lowers false-positive
rate in the differentiation of recurrence from radio-
necrosis-based simply on perfusion measurements
[87] and increases overall survival prediction [87].

R�2 coefficient is also sensitive to hemorrhage
and calcifications, and it can be measured within
a specific region of interest by fitting signal decay
through multiechoes gradient echo sequences. A
pilot study in glioblastoma patients showed that
this coefficient, also referred as apparent transverse
relaxation, shows lower value in pseudoprogressing
compared with progressing contrast –enhancing
lesions [88]. Preclinical data suggest that R�2 coeffi-
cient might even predict radionecrosis 10 weeks
before morphological changes [89].
Brain perfusion

Brain MRI tumor perfusion measures can be
acquired through dynamic susceptibility contrast
(DSC), dynamic contrast-enhanced (DCE), or arte-
rial spin labelling (ASL) techniques. Relative Cere-
bral Blood Volume (rCBV) value, a semi-quantitative
vascularity measure derived from DSC perfusion, is
the most used advanced MRI indicator in posttreat-
ment tumor assessment [90–93], with a cutoff of the
contralateral white matter Region of Interest (ROI)
usually ranging above 1.5–2 for tumor lesions [94–
96]. Elevated rCBV is a marker of increased micro-
vascular density and often reflects tumor aggres-
siveness, correlating with glioma grade [97] and
survival [98] (except for oligodendrogliomas [99]).
The increase in rCBV compared with baseline after
antitumor treatment predicts a worse outcome
[100,101] and seems more accurate in survival pre-
diction than histopathologic grade in glioma [102].

In SRS-treated metastasis, the percentage signal-
intensity recovery (PSR) towards baseline, an indi-
cator of capillary permeability, appears to be a better
prognostic indicator of metastatic tumor
Volume 33 � Number 6 � November 2021



FIGURE 1. Pathologically proven radionecrosis in a 45 years old woman with anaplastic pleomorphic xanthoastrocytoma
treated with Stupp protocol (radiotherapy and concurrent chemotherapy with temozolomide). Axial 3D T1w spin echo before
(a) and after (b) gadolinium injection showed a contrast-enhancing intra-axial frontal lesion, with some hemorrhagic remnants
that were spontaneously bright on T1w. This lesion was surrounded by a large nonenhancing FLAIR hyperintensity, visible on
axial 3D FLAIR (c) and it was characterized by a strong diffusion restriction (d: axial diffusion with b100 value, e: ADC
cartography). No hyperperfusion was seen [f: axial arterial spin labelling (ASL) perfusion]. This radio-induced lesion
developed 2 months after the end of radiotherapy. ADC, apparent diffusion coefficient.
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progression than rCBV as radiation-induced lesions
show a higher PSR than do recurrent tumors [103].

Unfortunately, because of the difficulty in con-
trolling several technical acquisition and postprocess-
ing variables, there are considerable interinstitutional
and even intrainstitutional variations in DSC-derived
measurements [104]. This variability severely limits
reproducibility and hampers the implementation of
DSC perfusion in the routine assessment of treatment
response (e.g. current RANO criteria) [105].

DCE-MRI data enable the evaluation of several
pharmacokinetics parameters. The most investi-
gated is the volume transfer coefficient (Ktrans) that
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
reflects the tumor vascular permeability and is
higher in radiation necrosis than in tumor progres-
sion [106–109]. In brain metastatic disease, DCE
technique appears to have better diagnostic accu-
racy than DCS perfusion in the differential diagnosis
between radiation necrosis and tumor recurrence
[110]. In contrast, high-grade glioma DSC-derived
blood volume measures seem more accurate than
DCE-derived permeability measures in the same
distinction [111,112].

ASL is a contrast-free perfusion technique
obtained through magnetically labeled blood pro-
tons. ASL imaging is starting to be studied in high-
r Health, Inc. www.co-oncology.com 601



Brain and nervous system
grade gliomas [113], especially in posttherapeutic
settings, where it showed no need of leakage-correc-
tion algorithms, fewer susceptibility artifacts than
DSC perfusion [114] but contrasting accuracy
results. To date, no studies have been published
on the ASL performance in brain metastasis
posttreatment evaluation.
Spectroscopy

Magnetic resonance spectroscopy (MRS) provides
insight into metabolic tissue features by noninva-
sively detecting solute protons in water. Concentra-
tion of choline-containing compound metabolites,
markers of cell membrane turnover, is highly
increased in tumor progression [115], whereas lipids
and lactates have been shown to dominate in post-
treatment disease, suggesting cellular necrosis [116].
Several metabolite ratios have been proposed to
diagnose radionecrotic lesion (summarized in pre-
vious reviews [117–119]), and Cho/NAA and Cho/
Cr ratios seem to be the best discriminators [120] but
none of them have been validated in multicenter
studies. When compared with perfusion, MRS
showed inferior discriminating abilities [121]. How-
ever, the combination of MRS and perfusion imag-
ing increases diagnostic accuracy [111,122], hence
with sensitivity and specificity values that still pre-
vent replacing invasive biopsy sampling or serial
imaging confirmation.

D-2-hydroxyglutarate (2HG) MRS [123] is an
umbrella term that refers to MRS techniques that
can measure 2HG oncometabolite [124] in IDH-
mutant diffuse gliomas. Preliminary longitudinal
2HG MRS evaluations have shown that this bio-
marker decreases after antitumor treatments [125]
and possibly increases in tumor recurrence [126],
thus this novel noninvasive technique could also
aid in IDH-mutant glioma posttreatment assessment.
Texture analysis and radiomics

The term ‘texture analysis’ encompasses different
computational methods that are used to quantify
the spatial arrangement of image signal intensities.
After ROI definition and preprocessing, several fea-
tures, imperceptibles to the human eye, are
extracted, selected and finally classified [127]. The
complementary information provided by this non-
invasive, objective and possibly fully automatic
approach is clearly attractive but lack of standardi-
zation and overfitting issues are still major con-
straints [128,129]. When these multiple
parameters are used to predict clinical and biological
variables, this multistep approach is referred to as
‘radiomics’ [130].
602 www.co-oncology.com
MR texture analysis and radiomics have been
conducted mainly with conventional sequences,
with already interesting results, especially in the
evaluation of tumor shape features and surface irreg-
ularities in the diagnosis of glioblastoma versus
pseudoprogression [131]. Adding complementary
advanced sequences to this complex evaluation
indeed promises to achieve higher diagnostic per-
formances [132,133

&&

].
CHEMICAL EXCHANGE SATURATION
TRANSFER IMAGING: A NEW TOOL ON
MRI ARSENAL

Chemical exchange saturation transfer (CEST) is a
molecular imaging technique recently available on
3 Tesla MRI scanners [134,135] that detects low-
concentration solute molecules with exchangeable
hydrogen protons. By applying a radiofrequency
pulse at their resonance frequencies, the chemical
species of interest – such as amide (NH), amine
(NH2) or hydroxyl group (OH) – reach a saturation
state and their labile excited hydrogen protons are
exchanged with the nonexcited hydrogen protons
of solvent water. If this process is repeated continu-
ously for a few seconds of RF irradiation, saturation
builds up, which decreases water signal, thus indi-
rectly reflecting the concentration of the targeted
species with amplified detection. Their detectability
is, for example, amplified by a factor of 100, if this
exchange takes places 100 times [136].

To extract the CEST signal of interest, multiple
samples are acquired around the frequency of water
and molecules of interest to correct field inhomoge-
neities [137,138], for denoising purposes [139], and
for averaging of the sampled values to increase the
signal-to-noise ratio [140]. This set of sampled vol-
umes (normalized for an unsaturated volume) is
called the Z-Spectrum [136].

The most marked clinical distinction for this
molecular technique is whether the CEST agent is
endogenous (and therefore, is already found in the
human body, such as the amide and amine groups
from peptides and proteins [141]) or exogenous (and
therefore, needs to be administered, such as glucose-
based agents [142] or Iopamidol [143]).

Amide CEST imaging, also known as APT, has
been shown to provide more stable and sensitive
detection compared with other CEST agent on clin-
ical 3 Tesla scanners, and therefore is, to date, the
most used CEST technique, in and out of the neu-
rological field [144]. In neuro-oncology, an increase
in APT-weighted (APTw) signal intensity is observed
in tumor tissues, because of elevated concentration
of intracellular mobile proteins and peptides, and
consequent increase of protein backbone amides.
Volume 33 � Number 6 � November 2021



FIGURE 2. Biopsy-proven tumor progression early detected by Amide Proton Transfer and not by conventional nor perfusion
MRI. A 54-year-old woman with a single brain metastases of a breast cancer was treated with surgical resection and
stereotactic radiosurgery (SRS) to the surgical cavity. Nine months after SRS, a postrolandic lesion appeared, visible on
noncontrast 3D T1w spin echo (a) and showing a linear contrast-enhancement (b), and a FLAIR hyperintensity on axial 3D
FLAIR sequence (c). Axial SWI (d) showed several hemosiderin remnants, axial diffusion with b100 value (e) and ADC
cartography (f) showed no diffusion restriction, dynamic susceptibility contrast (DSC) perfusion (g) no neoangiogenesis.
Therefore, conventional and advanced imaging suggested a radio-induced lesion. In addition, amide signal increased intensity
on fluid-suppressed [150] APTw imaging (h) suspected tumor progression, and this was confirmed by a surgical resection done
shorty after a 3-month MRI follow-up (w: 3D T1w spin echo without contrast injection, x: axial diffusion with b1000 value, y:
axial 3D FLAIR, z: axial 3D T1 spin echo with contrast injection). Olea Sphere 3.0 software (Olea Medical, La Ciotat, France)
was used to compute APTw and perfusion maps. APTw, Amide Proton Transfer-weighted; ADC, apparent diffusion coefficient;
SWI, susceptibility-weighted imaging.

Current emerging MRI tools Nichelli and Casagranda
APTw imaging has demonstrated promising
results in glioma grading [141,145,146], in the iden-
tification of higher cellularity and proliferation area
in heterogeneous diffuse glioma [147], as in IDH
status and 1p/19q co-deletion prediction [148–151].

Another major potential application of APTw
imaging is the assessment of response to treatment,
with the hypothesis that tumor hypercellularity
leads to an increase in APTw signal intensity com-
pared with lower cellular density of therapeutic
related changes. In 2011, a first preclinical study
showed a significant decrease in APTw signal inten-
sity in the radionecrotic lesions compared with
gliomas [152]. Shortly thereafter, another preclini-
cal work showed that APTw values decrease more
rapidly than diffusion and ASL perfusion values,
suggesting that Amide CEST could prompt early
response information [153]. The former group then
conducted a first clinical radiohistopathological
validation in glioma patients and found positive
significant correlations between APTw signal
intensity and both cellularity and proliferation
index [154], therefore, suggesting that APTw values
are a marker of active glioma in posttreatment
settings. These results are in line with other studies
that have been conducted in diffuse gliomas, espe-
cially in context of the antiangiogenic therapy
1040-8746 Copyright � 2021 The Author(s). Published by Wolters Kluwe
[155] and in the distinction between progressing
and pseudoprogressing lesion [149]. Interestingly,
the changes in APTw signal intensity was also seen
to spatially overlap FET-PET data for both contrast-
enhancing and noncontrast-enhancing glioma
lesions [156], which is easily explained as biological
processes behind this different imaging modalities
are similar.

Concerning brain metastases, previous study
reported that not only the CEST signal from amide
groups but also from the Nuclear Overhauser
Enhancement (NOE) effects, a protein un-folding
biomarker [157] that can be derived through CEST
imaging fitting [138,158], was able to distinguish
radiation necrosis from tumor progression, and NOE
signal intensity provided the best separation of these
two conditions [158].

Advances in CEST imaging are increasing the
ability to extract both individual APT and NOE
biomarkers in clinical routine [134,159] without
the contamination of magnetization transfer effect
coming from semisolid macromolecules [136].

Figure 2 illustrates an example of biopsy-proven
tumor progression that was early detected by APTw
imaging and neither by conventional nor perfusion
MRI, whereas Fig. 3 displays a radiation-induced
lesion that regressed at 6-month follow-up.
r Health, Inc. www.co-oncology.com 603



FIGURE 3. Radiation-induced contrast-enhancing lesion that regressed at 6-month follow-up. A 46-year-old patient with a
single brain metastases of a lung cancer was treated with surgical resection and stereotactic radiosurgery (SRS) to the surgical
cavity. Four months after SRS, an irregular, nonnodular contrast enhancing lesion appeared (a: noncontrast 3D T1w spin echo,
b: postcontrast 3D T1w spin echo, c: axial 3D FLAIR) with several hemosiderin remnants visible on axial SWI (d). The lesion
showed neither diffusion restriction (e: axial diffusion with b100 value, f: ADC map) nor neoangiogenesis on axial DSC
perfusion (g) nor amide signal increased intensity on fluid-suppressed APT-weighted imaging (h). Therefore, a radio-induced
lesion was suspected. This diagnosis was confirmed at a 6-month MRI follow-up, where the contrast enhancement disappeared
(w: 3D T1w spin echo without contrast injection, x: axial diffusion with b1000 value, y: axial 3D FLAIR, z: axial 3D T1 spin
echo with contrast injection). Olea Sphere 3.0 software (Olea Medical, La Ciotat, France) was used to compute the APTw
map. APTw, Amide Proton Transfer-weighted; ADC, apparent diffusion coefficient; SWI, susceptibility-weighted imaging.

Brain and nervous system
CONCLUSION

Radionecrosis and pseudoprogression are common
phenomena that urge precise imaging diagnosis to
provide optimal early patient care. Shortcomings of
conventional MRI are well known, whereas the
added value of complementary advanced imaging
sequences, especially perfusion, needs to be accu-
rately established, as inherent limitations have been
reported for each sequence. In this evolving sce-
nario, APT-CEST metrics offer new problem-solving
tools that expand MRI armamentarium for assessing
treatment response. A multimodal machine-learn-
ing analysis that includes the best performing per-
fusion technique with validated molecular
information provided by CEST imaging promises
highly accurate personalized patient care of each
individual brain lesion.
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ment of Neuroradiology, La Pitié Salpêtrière - Charles
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