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Abstract

Achieving most goals demands cognitive control, yet people vary widely in their success at 

meeting these demands. While motivation is known to be fundamental to determining these 

successes, what determines one’s motivation to perform a given task remains poorly understood. 

Here, we describe recent efforts towards addressing this question using the Expected Value of 

Control model, which simulates the process by which people weigh the costs and benefits of 

exerting mental effort. By functionally decomposing this cost-benefit analysis, this model has 

been used to fill gaps in our understanding of the mechanisms of mental effort and to generate 

novel predictions about the sources of variability in real-world performance. We discuss the 

opportunities the model provides for formalizing hypotheses about why people vary in their 

motivation to perform tasks, as well as for understanding limitations in our ability to test these 

hypotheses based on a given measure of performance.
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Whether they involve future colleges, jobs, or funding opportunities, achieving most goals 

requires that we allocate the mental resources needed to perform well on the ensuing tasks. 

Yet people vary widely in how they perform on those tasks, and therefore in the degree to 

which they succeed in reaching their goals. Why is that the case? Classically, answers to 

this question focused on the cognitive resources a person had at their disposal, that is, their 

ability to perform the task at hand. Did they have the appropriate knowledge and know-how, 

and were those resources at full capacity or were they drained by biological factors (e.g., 

hunger, fatigue) or environmental factors (e.g., distractors)? It has since become widely 

acknowledged that motivation serves an equally important role in determining how people 

will vary in their performance (Braver et al., 2014; Duckworth & Carlson, 2013; Shenhav 

et al., 2017). And, yet, how it is that people become motivated to invest their cognitive 

resources into a given task remains something of a mystery.
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Mental Effort as the Product of a Cost-Benefit Analysis

At the broadest level, motivation entails an interaction between a goal (e.g., loading boxes 

into a truck), an obstacle to that goal (e.g., the weight of the boxes), and a force required to 

overcome that obstacle (e.g., the contraction of muscles). For cognitively demanding tasks, 

the forces in question are forms of cognitive control, mechanisms that enable us to flexibly 

process information, for instance selectively attending some aspects of our environment 

while suppressing others (Botvinick & Cohen, 2014). Motivation further entails a key 

limitation on the application of force: a cost. People tend to prefer tasks that require less 

cognitive control (i.e., those that are less mentally effortful) (Chong et al., 2016; Kool & 

Botvinick, 2018; Shenhav et al., 2017). These costs can, however, be outweighed by the 

potential benefits of exerting effort – the larger the potential compensation, the more willing 

a person is to perform a cognitively demanding task (Kool & Botvinick, 2018; Westbrook et 

al., 2013). To understand how and why people vary in their performance across tasks, it is 

therefore critical to understand how they weigh these costs and benefits.

A Model-Based Framework for Evaluating the Costs and Benefits of Mental 

Effort

We recently developed a computational model that formalizes this cost-benefit analysis, to 

describe how a person chooses to invest their mental effort, for instance in the case of 

a student deciding how hard to study for an exam (Shenhav et al., 2013). To do so, we 

integrated insights from two bodies of research that had addressed complementary aspects of 

this problem- how people make cost-benefit decisions, and how they adjust cognitive control 

to meet the demands of a given task.

Earlier research on decision making had characterized general purpose algorithms for how 

people evaluate the expected value of a given action, taking account of its costs and benefits 

and the probabilistic structure of one’s environment. While elements of these expected value 

calculations had figured prominently throughout classic theories of motivation (Atkinson, 

1957; Bandura, 1977; Brehm & Self, 1989; Vroom, 1964) – laying the foundation for 

their application to the study of mental effort allocation – those theories lacked grounding 

in explicit mechanisms underpinning the execution of mental effort (i.e., the cognitive 

musculature). A parallel body of research had rigorously characterized the structure of 

cognitive control, formalizing the process by which information is processed over the 

course of a task, and how that information processing is adjusted with varying forms of 

control (Botvinick & Cohen, 2014). The resulting models provided quantitative estimates of 

variability in task performance (e.g., speed and accuracy) as a function of the stimuli, task 

set, and the state of the control system. However, this research had yet to explain how people 

decided that cognitive control is worth allocating.

Our model bridges these two research areas, by describing how people decide to allocate 

a certain amount of control; what impact these decisions have on their performance; and 

how they learn from the outcomes of their efforts to guide future decisions about how 

much control to allocate in that situation. Specifically, our model simulates individual task 

environments and the range of performance a hypothetical person could achieve on this task 
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(Fig. 1; Lieder et al., 2018; Musslick et al., 2015). At one extreme is their performance if 

they invest minimal control into the task, relying primarily on automatized/habitual modes 

of processing the stimuli. At the other extreme is the agent’s performance if they maximize 

their control output. The spectrum of performance that results therefore depends heavily on 

the task requirements and how automatized a given element of the task is for that individual 

(i.e., their skill level), based on innate and learned factors. Our model proposes that the 

person decides what level of control to allocate to the task by weighing the expected payoff 

against the cost of exerting the associated mental effort in their context; we refer to the 

difference between these as the Expected Value of Control (EVC) (Shenhav et al., 2013). 

Using this model, we have been able to simulate the process by which people consider the 

incentives and task demands in a given environment to choose what task(s) to perform and 

how much control to invest when performing them, allowing us to reproduce patterns of 

behavior that have been observed across labs (Lieder et al., 2018; Musslick et al., 2015, 

2019).

The EVC model provides a framework for formulating and testing predictions about how 

people become motivated to engage in particular tasks, and when and why they may be 

insufficiently motivated for the task at hand. The model formalizes key elements of this 

cost-benefit analysis, including the different ways that a person could allocate control 

in a given situation; the relevant future outcomes; and what influence control will have 

in achieving some outcomes and avoiding others (Figs. 1–2). Recent work has shown 

how powerful this functional decomposition can be for identifying and filling gaps in the 

experimental literature, and for building and refining predictions about the role motivation 

plays in shaping cognition.

Filling Gaps in our Understanding of the Mechanisms of Mental Effort

Over the past few decades, research has begun to unravel the mechanisms underlying 

motivation-control interactions. To do so, this work has focused in large part on the ultimate 

driver of effort: potential rewards. A consistent finding in this literature is that people tend 

to invest more effort in a task when there is greater reward on offer, as reflected in better 

performance (e.g., faster and more accurate responding) and greater activation of control 

circuitry (Parro et al., 2018). However, this emphasis on the rewards for good performance 

overlooks key sources of real-world mental effort motivation that our model further unravels.

Disentangling different means of achieving different ends

When deciding how to allocate our mental effort, we consider a multitude of potential 

outcomes and a multitude of strategies for achieving those outcomes. We are typically not 

only motivated by the positive outcomes that effort can achieve (e.g., wealth, praise, pride), 

but often equally or even more motivated by the potential negative outcomes that effort 

avoids (e.g., loss, rejection, disappointment) (Atkinson, 1957). We also consider how these 

outcomes can be achieved or avoided not only by adjusting how much effort we’re investing 

but also how we are choosing to invest it. For instance, we may choose to adjust what we are 

attending to (e.g., focus on the task, suppress the impulse to check social media) and we may 

choose to prioritize getting everything done either quickly or accurately.
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EVC links these two considerations: the evaluation of different types of control in the 

service of achieving different types of outcomes (Fig. 1, Fig. 2C). In doing so, it provides a 

potential account of inconsistencies in the experimental literature as well as ways of testing 

those accounts. In particular, unlike research on potential rewards for control (described 

above), the more limited set of studies that have examined responses to potential negative 

outcomes have observed mixed patterns of behavior and neural activity, including both 

speeding and slowing of responses (Cubillo et al., 2019; Ličen et al., 2016; Yee et al., 2016). 

The EVC model offers a potential explanation for these apparent inconsistencies - namely 

that the value of potential outcomes can signal the need to adjust both how much and what 
kind of control to engage. We recently tested the model’s prediction that different types of 

control can be adaptive depending on the relative incentives for achieving correct responses 

and avoiding incorrect responses (Leng et al., 2020). We designed a task that allowed 

participants to complete as many trials as they wanted within a fixed period of time, giving 

them the freedom to choose how much to emphasize speed and/or accuracy. Our model 

predicted that higher rewards for a correct response would lead participants to adjust their 

control in a way that increasingly favored speed and accuracy, whereas higher penalties on 

errors would lead them to selectively favor accuracy over speed. Our experimental findings 

confirmed these model predictions.

Disentangling different paths between means and ends

Our decisions about how to allocate mental effort are clearly determined to a significant 

degree by how good or bad the outcomes could be. However, just as important is how much 

our efforts matter for bringing about those outcomes. Sometimes, increasing our cognitive 

control is unnecessary, ineffective, or entirely irrelevant to whether we achieve desirable 

outcomes and avoid undesirable ones. The EVC model teases apart the formally distinct 

elements of what can be broadly referred to as the efficacy of our efforts, distinguishing 

between whether these relate to the translation of cognitive control into performance or to 

the translation of performance into the ultimate outcomes (Fig. 2A–B) (cf. Bandura, 1977; 

Vroom, 1964).

One factor that determines how much one’s effort matters is the extent to which higher 

intensities of control (i.e., greater investments of mental effort) translate into better 

performance. This factor, which we will refer to as control efficacy1, is determined by a 

person’s skill at a particular type of task (as shaped by a combination of innate ability 

and practice) as well as the level of difficulty they are currently attempting (Fig. 2A). 

However, as applicants to colleges, jobs, and grants are aware, even the best performance 

does not guarantee the best outcomes. How much one’s effort matters is also a function 

of performance efficacy, the extent to which potential outcomes are determined by how 

well they perform a given task, versus by performance-unrelated factors, such as reviewer 

subjectivity/bias (Fig. 2B). These factors do not affect whether a given level of effort is 

sufficient to perform well (as in the case of control efficacy), but rather whether performing 

well is even relevant for achieving a good outcome and/or avoiding a bad one. In other 

1Note that the distinction we are drawing between control efficacy and performance efficacy overlaps conceptually with previous 
distinctions between, for instance, self-efficacy vs. expectancy (Bandura, 1977) and expectancy vs. instrumentality (Vroom, 1964).
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words, as expected performance efficacy decreases, effort seems increasingly pointless. 

Efficacy estimates thus rely on subjective perceptions of one’s own skill, competence, and 

demands of the task (control efficacy) as well as their agency and the controllability of 

the environment (performance efficacy) (Bandura, 1977; Brehm & Self, 1989; Dweck & 

Leggett, 1988; Graham, 1991; Ly et al., 2019).

Recent work on motivation-control interactions has indirectly tapped into efficacy 

expectations by studying the influence of expected task difficulty on performance. Studies 

have shown behaviorally and neurally that people tend to invest more effort when they 

expect the upcoming task to be more difficult (Jiang et al., 2015; Krebs et al., 2012). 

However, this approach only taps into the relationship between control and performance 

(control efficacy), and in fact does so in a nonmonotonic (U-shaped) fashion (control 

efficacy is highest when difficulty is moderate and lowest when difficulty is very low or 

very high; Brehm & Self, 1989). To address this gap, we have recently begun to examine 

the mechanisms by which control allocation varies as a function of the expected efficacy of 

performance, while holding expected control efficacy (e.g., task difficulty) constant (Frömer 

et al., 2021; Grahek, Frömer, et al., 2020) (see also Manohar et al., 2017). Specifically, we 

varied the extent to which participants could expect reward to be determined by performing 

well at the task or whether it would be determined at random. Confirming our model’s 

predictions, behavioral and neural measures of control in these studies show that participants 

integrate expected levels of reward and performance efficacy to invest more effort the more 

they expect performance to be both rewarding and efficacious.

Explaining Variability in Cognitive Performance: Opportunities and 

Constraints

By decomposing motivation into formal components, the EVC framework not only provides 

a path toward disentangling the mechanisms driving each of those components, it also 

offers a richer hypothesis space for predicting how variability across these components 

contributes to variability in cognitive performance across individuals and contexts. For 

instance, in studying motivational impairments that are prevalent in disorders like depression 

and schizophrenia, researchers have focused on the extent to which these individuals may 

undervalue the expected rewards for their efforts and/or overvalue the associated effort 

costs (Chong et al., 2016). The EVC model provides a means of generating and testing 

alternate sources of motivational impairments, such as an overvaluation of potential negative 

outcomes for poor performance (e.g., leading to excessive caution) or misperception of the 

extent to which that performance determines one’s outcomes (Grahek et al., 2019). The EVC 

model also clarifies the means by which one’s effort investment – whether in the classroom 

or workplace – might be shaped by their past experiences (Bustamante et al., 2021; Grahek, 

Frömer, et al., 2020; Lieder et al., 2018). For instance, growing up in a volatile environment 

could downwardly bias perceptions of performance efficacy in future task environments, and 

growing up in a resource-poor environment could downwardly bias expected rewards for 

one’s efforts (Dweck & Leggett, 1988; Graham, 1991; Ly et al., 2019).
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These hypotheses are speculative, but this model-based framework puts flesh on these 

hypotheses (Fig. 2, right), enabling researchers to simulate the real-world outcomes that 

might result from each of these different sources of variability, and to probe the relevant 

processes in targeted experiments. Applying this approach, we have recently simulated 

different ways in which changes in one’s mood could theoretically alter their motivation to 

engage with a task (e.g., by making a task seem easier or harder) (Grahek, Musslick, et al., 

2020).

The EVC model thus provides the means to generate a wide variety of theoretically distinct 

hypotheses for why people distribute their mental efforts in a particular way. Beyond 

that, even within a given experiment, it can offer alternative explanations for a single 

experimental finding. For instance, the fact that Participant A places a higher premium on 

performing a difficult task than Participant B (cf. Westbrook et al., 2013) is often interpreted 

as A experiencing mental effort as more costly. But it is also possible that, relative to B, A 

has different expectations about their likelihood of performing well at the task (Fig. 2A) or 

places greater weight on avoiding failure (Fig. 2C). This example also assumes that people 

only ever experience effort as costly, when in fact there are a variety of circumstances in 

which people prefer the experience of a mentally demanding task over a less demanding one 

(Inzlicht et al., 2018). Participant B may therefore prefer engaging in the more difficult task 

because of how much effort it requires rather than in spite of it.

The availability of these varied hypotheses also underscores that even simple measures of 

task performance are multiply determined. This in turn raises a troubling question: is it 

even possible to tease these hypotheses apart from one another? Fortunately, a model-based 

approach provides a path towards addressing such a concern. Because the EVC model 

is able to ask how performance varies as a function of different model parameters (e.g., 

expected outcomes vs. expected performance efficacy), we can use it to also ask the same 

question in reverse: how likely is it that one source of performance variability will be 

confused with another? For instance, by simulating a population of individuals who vary in 

their ability and/or motivation to perform different tasks, we have quantified how reliably 

individual differences in a given element of motivation or ability (e.g., the cost of control) 

can be estimated from their performance on a given task (Musslick et al., 2018), as well 

as which task measures are best suited for indexing the individual difference of interest 

(Musslick et al., 2019). This approach has value both as a psychometric tool and as a means 

of constructing and validating novel tasks that better tap into the cognitive and motivational 

processes that underlie variability in real-world performance.

Concluding Remarks

These final points underscore the inherent complexities in measuring one’s motivation 

to exert mental effort. As difficult as these inference problems can be in a controlled 

experiment, they are only magnified when moving outside of the lab to compare a student or 

professional to their peers. The EVC model lays bare these complexities, and identifies 

avenues for piecing apart the underlying mechanisms. These avenues further provide 

opportunities for testing and potentially falsifying the model’s core assumptions, and for 

deepening our understanding of the complexities of control allocation that the model has 
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yet to address. For instance, it remains unknown what the costs are of engaging in the 

cost-benefit calculation itself, and to what extent those costs encourage people to generate 

rough approximations to EVC and/or use simplifying heuristics for when to engage control. 

A person may, for example, settle on default control policies for situations that generally 

merit a certain level of control (cf. Gollwitzer, 1999), even if this may result in sometimes 

exerting more effort than is necessarily worth it (cf. Bustamante et al., 2021). Addressing 

this broader set of questions represents a considerable challenge, but one whose benefits will 

surely outweigh its costs.
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Figure 1. 
The Expected Value of Control (EVC) model proposes that we determine how to exert 

mental effort by weighing the costs and benefits of allocating cognitive control in a 

particular way given their current situation. Cognitive control is allocated according to two 

factors: the types of control being engaged (e.g., attention to specific features of a task, 

suppression of inappropriate responses) and how intensely to engage each of these. The 

model assumes that we experience greater intensities of control as more mentally effortful, 

and therefore more costly (for a discussion of potential sources of these costs, see Shenhav 

et al., 2017). To determine the overall value of a given control allocation (EVC) given the 

current context, this effort cost is weighed against the expected payoff for exerting effort. 

This payoff is determined by the estimated expected outcomes for exerting effort (e.g., 

monetary gain/loss, social approval/admonishment), weighed by the extent to which these 

outcomes change with increasing control (i.e., effort). The payoff is further determined by 

whether control matters for attaining these outcomes. If greater control has little bearing on 

one’s performance (low control efficacy, e.g., if the task is too difficult or is beyond our 

ability) or if outcomes are expected to be largely determined by performance-unrelated 

factors like a person’s social status (low performance efficacy), then control will be 

deemed less worthwhile. Though not shown here, each of these components can have some 
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uncertainty around it - for instance, even when outcomes are completely determined by 

performance, there may be some uncertainty about whether a given outcome will come to 

pass.
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Figure 2. 
According to the EVC model, a person’s effort allocation (e.g., how hard a student studies 

for an exam) is jointly determined by what they perceive as their expected outcomes, 

expected control efficacy, and expected performance efficacy. The student will generally 

be motivated to invest more effort the more they expect these efforts to achieve positive 

outcomes and/or avoid negative ones (C). However, the motivation to achieve these 

outcomes will change based on the extent to which the student sees those efforts as an 

effective means of achieving those outcomes. If the student sees themselves as having little 

ability to improve their performance by increasing cognitive control (low control efficacy; 

A), or if they perceive their performance as unlikely to be a major factor in determining 

those outcomes (low performance efficacy; B), they will be less motivated to invest effort 

into the task because the expected payoff for that effort has decreased. On the right side of 

each panel we visualize how changes in each of these components affects the evaluation and 

allocation of control. For each of these, the EVC for a given control intensity (purple curves) 

is calculated by subtracting the expected effort costs (red) from the expected payoffs (blue). 

The optimal level of control to invest is the one that maximizes EVC (vertical black arrows). 

In addition to being associated with higher effort costs, higher control intensities typically 

yield better performance, which typically yields better outcomes (i.e., higher payoffs). 

However, the shape of this payoff curve will vary based, for instance, on expectations 

of (A) task difficulty (affecting how much control is needed to achieve a given level of 

performance); (B) performance contingency (affecting how significantly payoffs increase 
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with increased levels of performance); and (C) reward magnitude (affecting how high the 

peak of the payoff curves at the highest levels of performance). Right panels adapted from 

Shenhav et al. (2013) and Frömer et al. (2021).
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