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Abstract
The COVID-19 pandemic has deeply impacted all aspects of social, professional, 
and financial life, with concerns and responses being readily published in online 
social media worldwide. This study employs probabilistic text mining techniques 
for a large-scale, high-resolution, temporal, and geospatial content analysis of Twit-
ter related discussions. Analysis considered 20,230,833 English language original 
COVID-19-related tweets with global origin retrieved between January 25, 2020 
and April 30, 2020. Fine grain topic analysis identified 91 meaningful topics. Most 
of the topics showed a temporal evolution with local maxima, underlining the short-
lived character of discussions in Twitter. When compared to real-world events, 
temporal popularity curves showed a good correlation with and quick response to 
real-world triggers. Geospatial analysis of topics showed that approximately 30% of 
original English language tweets were contributed by USA-based users, while over-
all more than 60% of the English language tweets were contributed by users from 
countries with an official language other than English. High-resolution temporal and 
geospatial analysis of Twitter content shows potential for political, economic, and 
social monitoring on a global and national level.
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Introduction

Social media, and especially microblogging, provide the means to explore how 
information, perceptions, and feelings diffuse during health crises and leverage this 
evidence to better manage evolving health crises, or even discover and apply a vari-
ety of health, social, and economic indicators and predictors. Twitter, a multilingual 
microblogging platform with more than 300 million users worldwide [1] was the 
most often studied social media platform for assessment of public’s interest during 
past infectious disease outbreaks [2, 3], primarily to conduct content analysis, sur-
veillance, and engagement [4].

During the current COVID-19 pandemic, Twitter has been explored in many dif-
ferent ways for related analyses. Some approaches exploited the geolocation meta-
data available in Twitter to derive a social mobility index [5] or predict risk of pan-
demic for a region [6]. Other studies investigated the content of limited number 
of tweets published by specific official health organizations [7]; of specific social 
media movements (e.g., the Free Open Access Medical Education twitter movement 
#FOAMed) [8]; and of specific user groups, for example, people with arthritis [9], 
electronic cigarette users [10], and people interested in plastic and esthetic surgery 
[11].

Several studies have employed text mining and machine learning techniques to 
assess large volumes of tweets for topic and sentiment analysis. Examples include 
studies that use conventional text mining techniques, e.g., descriptive text mining 
to identify primary topics of discussion in a set of 7301 global tweets [12], non-
negative matrix factorization on COVID-19-related hate tweets in Arabic language 
[13], and a study that used transfer learning classifiers to analyze 60 million tweets 
originating from the USA to identify psychological effects of the pandemic [14].

Given the immense volume of Twitter data, most large-scale studies employed 
autonomous machine learning techniques, and especially the Latent Dirichlet Allo-
cation (LDA) [15], probably the most popular statistical model for unsupervised dis-
covering of abstract topics in large corpora. Notable examples are presented below.

A study (195,201 tweets with global origin) identified 12 topics and compared 
topics and sentiments in tweets posted by humans versus topics and sentiments in 
discussions posted by social bots [16]. Another study [17] used a daily sampling of 
the most popular tweets about COVID-19 during the early phase of the pandemic 
(December 2019–March 2020) to create a representative tweet dataset (to filter out 
outliers and low activity); sentiment analysis on 6 topics revealed a negative outlook 
toward COVID-19. Similarly, LDA was used to identify topics using daily COVID-
19-related tweet corpuses originated in the USA (86,581,237 original English lan-
guage tweets with USA origin) [18] and worldwide on 4,196,020 original English 
language tweets with global origin [19] and on another occasion on 1,963,285 origi-
nal English language tweets with global origin [20], with a rather limited topical 
granularity of only 8, 13, and 11 topics, respectively. These studies focused mainly 
on sentiment analysis and reported negative effects on the overall USA population 
sentiment, while highlighting fear and anger for the global tweet studies. These 
results were confirmed by another study (126,049 original English language tweets 
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with global origin) [21] which identified 10 salient topics at the early days of the 
pandemic outbreak and reported on fear as well as surprise. Another study on 
13,937,906 original English language tweets posted by individuals only (organiza-
tions excluded) [22] identified 26 topics and confirmed negative sentiments for the 
topics of spread and growth of cases, symptoms, racism, source of the outbreak, 
and political impact; in contrast, the study reported a reversal of sentiments toward 
positive for topics related to prevention, impact on the economy and markets, gov-
ernment response, impact on the health care industry, and treatment and recovery. 
Mixed sentiments were also reported by another study on 167,073 original Eng-
lish language tweets with global origin, based on 12 topics; only 2 of them (deaths 
caused by COVID-19 and increased racism) exhibited a mean negative sentiment 
[23].

The above-mentioned studies used a rather limited granularity for topics (ranging 
from 6 to 26 topics, mean value 12.3 ± 6.5) with primary objective to assess senti-
ments across topics. Temporal differences in Twitter discussions before and after the 
official declaration of COVID-19 as a pandemic were explored on a set of randomly 
sampled tweets representing the 5% of the relevant Twitter activity for a 2-week 
period around the declaration of the pandemic (940,837 original English language 
tweets with global origin) [24] and results based on 9 topics indicate that concerns 
of the public vary as the pandemic progresses.

The objective of our study is to perform a high-resolution, temporal, and spatial 
analysis of discussion topics in a large-scale COVID-19-related Twitter data set. Pri-
mary research questions include:

1. What are salient topics of discussion and concern in English language tweets in 
fine granularity during the first period of the pandemic?

2. What is the temporal evolution of these topics and how temporal evolution cor-
relates to real-world events?

3. What is the geospatial variance of discussed topics?

Secondary research questions include:

4. Can global English language tweets analysis identify local (country-specific) 
topics of discussion?

5. Can Twitter topics analysis lead to indications or metrics of economic or societal 
value?

Materials and methods

Twitter data collection

The open source Social Feed Manager (SFM) [25] tool was used to COVID-19-re-
lated tweets harvest from January 25 to April 30, 2020. Data collection complied 
with Twitter’s Terms of Service and Developers Agreement and Policy and was 
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performed using the Twitter filter streaming application programming interface 
(API) and the following search keywords:

“coronavirus, #coronavirus, sars virus, #SARSvirus, #SARS2020, #SARS2, 
sars-cov, sars cov, SarsCov, #SarsCov, severe acute respiratory coronavi-
rus, severe acute respiratory syndrome, #WuhanCoronavirus, #WuhanSARS, 
Wuhan Coronavirus, Wuhan SARS, 2019-nCoV, 2019 nCoV, #2019nCoV, 
2019nCoV, COVID-19, #COVID19, COVID19”

This process retrieves invariably original tweets, retweets, quotes, and reply 
tweets generated globally and in any available language. For the purposes of this 
paper, further processing was employed to create a subset containing only original 
tweets written in English language (based on the values of the respective metadata 
fields of the originally retrieved dataset).

The duration of data collection was chosen based on landmarks provided by 
WHO COVID-19 timeline [26]. Specifically, start of collection was set on February 
25, 2020, when the WHO Regional Director for Europe issued a public statement 
outlining the importance of being ready at the local and national levels for detecting 
cases, testing samples and clinical management, thus indicating the potential for a 
worldwide pandemic. Data were collected for 15 weeks till April 30, 2020, when 
the Director-General convened the WHO International Health Regulations Emer-
gency Committee on COVID-19 convened for a third time to assess the pandemic 
and declare that the outbreak continued to constitute a public health emergency of 
international concern.

Geographical origin of tweets

The country of origin for each tweet was identified as the location of the user gen-
erating the tweet. In the retrieved dataset, this value is a free text metadata field that 
normally contains the name of a city and a country. However, this metadata field is 
often empty, or semi-completed, containing only city or country name, written in 
different languages and spellings and quite often containing typos.

Identification of country of origin was performed by basic natural language pro-
cessing of the User Location metadata field. Free text was processed to identify 
potential place names, which were semantically annotated using the freely available 
GeoNames (www. geona mes. org) geographical database, which contains over 11 
million place names spanning all countries and written in various languages. Final 
geographical origin was identified via a heuristic scoring approach that considered 
the identification of city names with population bigger than 500 people and identifi-
cation of country names to compute an overall probability for the country of origin 
for each twitter user contributing to the dataset. The pseudo-code of the heuristic 
scoring algorithm is included in “Appendix A”.

http://www.geonames.org
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Topic modeling

Topic modeling algorithms are probabilistic methods that automatically identify 
topics from a large and unstructured collection of documents. In this work, we used 
the LDA algorithm [15, 27] and specifically the scalable implementation in the 
MALLET toolkit (v2.0.8) [28], as proposed in [29]. To avoid any noise in the topic 
modeling from the free text of tweets, we applied the following cleaning process: 
(1) removed all URLs and usernames mentioned (i.e., @usernames); (2) removed 
all punctuation, special symbols and non-Latin characters; (3) converted all lower-
case words to their lemmas by applying the Krovetz stemming procedure [30]; (4) 
excluded all stop words using the list in the Text Categorization Project [31]; (5) 
to avoid bias in topics, we excluded the keywords used in the search query (i.e., 
“coronaviru, sar, sarsviru, sars2020, sars2, sars-cov, sarscov, wuhancoronaviru, 
wuhansar, 2019-ncov, ncov, 2019ncov, COVID-19”); and (6) excluded tweets with 
less than two words.

When applying LDA analysis, the appropriate number of topics is a user-spec-
ified parameter without a subjectively appropriate answer. A common approach is 
to perform a number of LDA experiments for different values for topics and then 
choose the most suitable number of topics based either on a topic coherence met-
ric [29, 32] or manual inspection for the most meaningful set of topics. Given our 
objective to perform high-resolution topic analysis (i.e., large number of topics) in 
a large-scale data set, the immense processing load required for coherence analysis 
proved impractical. Thus, to determine the appropriate number of topics, we per-
formed the LDA experiment for 50, 100, and 150 topics at 10,000 iterations each to 
identify the most suitable number of topics based on manual topic inspection. The 
artificially generated topics, which consist of a weighted list of words, were screened 
manually by the authors, were labeled by a short descriptive title, and organized in 
conceptual categories.

Topics popularity evolution over time

Temporal evolution of topics popularity was calculated on weekly basis following 
the approach proposed in [29]. First, the weight of each topic for each tweet was 
calculated as the percentage of the tweet words belonging to a topic. The popularity 
of the topic was defined as the weekly topic contribution estimate P(t, y) of the topic 
(t) for each week (y), and it was calculated as the average weight of this topic for all 
tweets published that week of the year Dy

where t represents a topic and w is a word in tweet d of the tweets’ collection Dy 
for week y. Accordingly, the overall popularity of a topic was defined as the over-
all topic contribution estimate, calculated as the average weight of this topic for all 
tweets included in the corpus.

P(t, y) =
1

|||Dy

|||

∑

d∈Dy

|{w ∈ d ∶ topic(w) = t}|
|d|

,
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Topics geographical distribution

Geospatial distribution of a topic was calculated following an approach similar to 
the approach used for popularity evolution over time. The weight of each topic was 
calculated as the percentage of the tweet words belonging to a topic. The popularity 
of the topic for each country of origin was defined as the topic contribution esti-
mate P(t, c) of the topic (t) for each country (c), and it was calculated as the average 
weight of this topic for all tweets Dc published by user accounts of the particular 
country (c)

where t represents a topic and w is a word in tweet d of the tweets’ collection Dc 
of the tweets by users of a particular country c. Accordingly, the overall popularity 
of a topic was defined as the overall topic contribution estimate, calculated as the 
average weight of this topic for all tweets included in the corpus of geographically 
annotated tweets.

Results

Twitter dataset

From January 25 to April 30, 2020, we retrieved 316,988,440 COVID-19-related 
tweets, produced by 33,488,183 unique Twitter accounts. Preprocessing to account 
for original tweets and English language resulted in a subset of 20,614,490 origi-
nal tweets written in English and produced by 4,834,467 unique accounts. Figure 1 
shows the distribution of English tweets per day, while the profile of the retrieved 
dataset is summarized in Table 1.

For the purposes of this paper, we considered only original tweets written in Eng-
lish language (20,614,490). Further preprocessing excluded 383,657 tweets with 
less than two words (1.86% of all retrieved original English tweets). The final corpus 

P(t, c) =
1
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Fig. 1  Number of COVID-19-related English tweets per day from January 25 to April 30, 2020
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consisted of 20,230,833 tweets, corresponding to a total of 197,728,410 words and a 
vocabulary of 2,139,369 unique words.

Topic modeling

LDA parametrization experiments resulted in a value of 100 topics as a suitable ini-
tialization parameter. Screening of the topics analysis results identified 91 meaning-
ful topics which were organized into nine categories as follows:

1. Life during the pandemic: 18 topics corresponding to how twitter users went 
through the pandemic. Examples include expression of sentiments (e.g., anger 
and fear, and fear of dying). Also includes ’USA protests’, ’USA primary elec-
tions (Wisconsin)’, and others related to art in quarantine (e.g., ‘movies and video 
games in quarantine’ and ‘musical bands and groups’).

2. Pandemic management: 16 topics related to pandemic issues and how to manage 
them (e.g., ‘relief bills in USA’, ‘US White House task force’, ‘donations and 
relief funds’, etc.).

3. Medical: 12 topics discussing concepts related to medical issues (e.g., ‘medical 
equipment and supplies’, ‘world health emergency declaration’, etc.) as well as 
for the ’vaccine development’ and the ’virus origin’.

4. Outbreak: 13 topics addressing different cases of outbreak (e.g., cases in CPAC 
2020 conference, China and Wuhan outbreak, Diamond Princess cruise ship out-
break, Arabic countries outbreak etc.).

5. Lockdown: 9 topics pertaining to specific lockdowns worldwide (e.g., ‘Nigeria 
lockdown’, ‘India lockdown’, ‘European countries and Japan lockdown’, etc.), but 
also, in events that were canceled or postponed (e.g., football, basketball, etc.).

Table 1  The profile of the COVID-19-related tweet dataset retrieved for this study, from January 25 to 
April 30, 2020

Twitter data # In all languages # In English language

Tweets
 Original tweets 36,064,666 20,614,490
 Retweets 247,882,547 147,969,146
 Reply tweets 10,076,553 5,668,059
 Quote tweets 22,964,667 11,678,287
 Total tweets 316,988,440 185,929,982

Twitter accounts
 Accounts of original tweets 8,407,815 4,834,467
 Accounts of retweets 26,839,558 16,724,425
 Accounts of reply tweets 3,368,506 1,835,153
 Accounts of quote tweets 7,361,248 3,815,053
 Total twitter accounts 33,488,183 20,483,486
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6. Economy: 10 topics that discuss the impact of COVID-19 on the economy. Exam-
ples include topics such as ’lockdown and economy restart’, ’cancellation fees and 
refunds’, and ’bitcoin and cryptocurrencies’. This category also includes topics 
related to the impact on economy (e.g., ‘impact on supply chain due to China 
lockdown’ and ‘impact on business and companies’).

7. Cases and deaths: 5 topics discussing about the number of cases and deaths 
caused by COVID-19, such as ’live data maps’,’ confirmed deaths and recoveries’, 
and ’death toll rising (China and Italy)’.

8. News and Fake News: 5 topics related to the ‘5G conspiracy theory’, the ‘misin-
formation spread in social media’, and the fact that ‘US President claims disinfect-
ants can sure’.

9. Preventive measures: 3 topics addressing the ‘facemasks’, the ‘social distancing’, 
and the ‘hand washing’.

The relative popularity of each topic category (in descending order) is shown in 
Fig. 2. The entire list of topics is presented in“ Appendix B” along with the percent-
age of the overall topic contribution used to calculate the topic popularity rank and 
the top 15 significant words defining each topic.

The ten most popular topics for the over the entire time span of the study are pre-
sented as word clouds in Fig. 3. The first and third most popular topics are ‘expres-
sion of extreme sentiment (anger & fear)’ (3.32%) and ‘expression of extreme sen-
timent (fear of dying)’ (2.69%). Second most popular is the topic ‘USA President 
response’ (2.82%) and in the tenth position is the topic ‘information and guidelines 
updates’ (1.46%). There are 2 topics related to cases and deaths (‘death toll rising 
(China and Italy)’ and ‘number of cases and deaths’), another 2 topics from the life 
during the pandemic category (‘reading and writing in quarantine’ and ‘quarantine 
time eating and activities’) and the topics ‘fears for impact on stock market’ and ‘ban 
of flights to/from China’ from the economy and lockdown category, respectively.

Topics popularity evolution

Linear regression analysis showed a significant linear fit (R2 > 80% and p 
value ≤ 0.05) for 15 topics; 13 topics showed a positive trend and 2 topics showed 

Fig. 2  Relative overall popular-
ity of the topics categories
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negative trend. The top three topics with the higher positive trend are: (a) ‘impact on 
business and companies’, (b) ‘support and donations’, and (c) ‘mental health during 
the pandemic’. The two topics with the negative trend are: (a) ‘disease spreading’ 
and (b) ‘live data maps’. Topics with significant linear fit are appropriately marked 
on Table 2 in “Appendix B”.

The following diagrams present plots of topics’ popularity per week for all topics 
for the 15-week span covered by this study, organized per category.

Figure  4 shows topics related to Life during the Pandemic category. The most 
popular topics ‘expression of extreme sentiment (anger & fear)’ and ‘expression of 
extreme sentiment (fear of dying)’ show an initial decreasing trend, followed by a 
clear peak on 11th week (Fig.  4a). Additionally, the topic ‘stay home safe’ peaks 
at 13th week (Fig. 4b). Most of the least popular topics (Fig. 4c) show brief peaks; 
exemptions are the increasing trend of the topic related to ‘art in quarantine’ and the 
decreasing trend of the topic “musical bands and groups”.

Weekly variation of popularity for topics in the Pandemic Management category 
is shown in Fig. 5. Most popular topics (Fig. 5a) of this category are related to spe-
cific events or announcements and show peaks in specific weeks. One the other 
hand, topics related to various pandemic management strategies and instruments 
(Fig. 5b,c) show a linear fit with increasing trend.

Weekly variation of popularity for topics in the Medical category are shown in 
Fig. 6. The topic on ‘world health emergency declaration’ shows repeated consecu-
tive peaks of a decreasing height for the duration of the study (Fig. 6a). A number 
of topics related to vaccines, treatment, and medical tools and supplies (Fig. 6b) pre-
sent a variability in popularity for the time span of the study, with an overall increas-
ing trend.

Figure  7 shows topics related to Outbreak category. The most popular topic is 
about ‘China and Wuhan outbreak’ with a strong prevalence up to the 8th week, 
while the topic ‘Diamond Princess cruise ship outbreak’ predominates during 6th 
to 8th week (Fig. 7a). Among the less popular topics (Fig. 7b), the ones related to 
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Fig. 3  The top eight popular topics for the entire time span
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specific events, e.g., the topic ‘cases in CPAC 2020 conference’ and ‘UK Prime 
Minister infection’ show a single clear peak on 11th week and 15th week, respec-
tively. County or region-specific outbreaks follow trend lines with recurrent peaks.

The topics related to Lockdown category are shown in Fig.  8. The topic ‘ban 
of flights to/from China’ shows a high peak on the 5th week, followed by a quick 
decline. Topics related to schools lockdown and events cancelation appear to be of 
equivalent popularity (Fig. 8a) and overall of more importance than the country or 
region-specific lockdown shown in Fig. 8b.

Topics related to Economy category are shown in Fig. 9. Topics about ‘impact 
on supply chain (due to China lockdown)’ and ‘fears for impact in stock market’ 
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Fig. 4  Weekly variation of popularity for topics related to Life during the Pandemic category: a Most 
popular topics, with a peak of more than 2% for at least 1 week; b and c less popular topics
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peak on 8th and 9th week, respectively (Fig. 9a). The topic ‘lockdown and economy 
restart’, albeit of a low popularity, shows a clearly increasing trend (Fig. 9b).

Figure 10 shows topics of the Cases and Deaths category. The topic ‘number of 
cases and deaths’ shows a peak on  7th week and the topic ‘death toll rising (China 
and Italy)’ shows a peak on  10th week (Fig.  10a). Only the topic on ‘confirmed 
deaths and recoveries’ shows an increasing trend (Fig. 10b).

Topics related on News and Fake News category are shown in Fig. 11. The top-
ics on ‘misinformation spread in social media’ and ‘news channels updates’ are the 
most popular of this category show a slowly decreasing trend, while the topic on 
‘US President claims disinfectants can cure’ shows a sharp peak on  17th week.
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Fig. 5  Weekly variation of popularity for topics related to Pandemic Management category. a Most pop-
ular topics, with a peak of more than 2% for at least 1 week; b and c less popular topics



698 Journal of Computational Social Science (2022) 5:687–729

1 3

Figure 12 shows topics related to Preventive Measures category. The only topic 
that reaches even for a week the 2% of the topic contribution is ‘hand washing’ 
showing a peak on  10th week, while the ‘facemasks’ and the ‘social distancing’ top-
ics remain of comparatively low popularity.

Geographical distribution

Processing for geographic origin showed that tweets in the final corpus originated 
from 248 countries, while country of origin could not be determined for 6,822,526 
tweets (33.7% of the tweets included in the final corpus). Figure 13 shows the tweet 
contribution of the 20 most contributing countries.
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Fig. 6  Weekly variation of popularity for topics related to Medical category: a most popular topics, with 
a peak of more than 2% for at least 1 week; b and c less popular topics
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Fig. 7  Weekly variation of popularity for topics related to Outbreak category. a Most popular topics, 
with a peak of more than 2% for at least 1 week; and b less popular topics

(a)

(b)

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18

noitubirtnoccipot

week in 2020

sports events (football, basketball, etc)
ban of flights to/from China
European countries and Japan lockdown
schools and universi�es lockdown
events cancelled or postponed

0.00%

0.50%

1.00%

1.50%

2.00%

W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18

noitubirtnoccipot

week in 2020

city lockdown
Nigeria lockdown
India lockdown
Florida beach lockdown

Fig. 8  Weekly variation of popularity for topics related to Lockdown category: a most popular topics, 
with a peak of more than 2% for at least 1 week; and b less popular topics
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Fig. 9  Weekly variation of popularity for topics related to Economy category: a most popular topics, 
with a peak of more than 2% for at least 1 week, and b less popular topics
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The 10 top most popular topics for the four countries with the highest number of 
tweets in the corpus are shown in Fig. 14. The most popular topic in each of these 
countries is different and, as expected, of regional interest. Topics related to expres-
sion of extreme sentiments, either anger and fear or of fear of dying, appear in the 
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Fig. 11  Weekly variation of popularity for topics related to News and Fake News category
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Fig. 12  Weekly variation of popularity for topics related to Preventive Measures category
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top 10 most popular list in all these countries. However, considering countries with 
more than 10,000 tweets, Greece was that the country with the highest expression 
of topic ‘expression of extreme sentiment (anger & fear)’ (11.3% of overall tweet 
corpus of this country), while Hungary was the country with the highest expression 
of topic ‘expression of extreme sentiment (fear of dying)’ (38.9% of overall tweet 
corpus for this country).

Synthesis of results: Correlation with real‑world events

Real-world events of the period of the study were used as points in the weekly popu-
larity timeline to identify correlations and provide evidence of the efficiency and 
effectiveness of the popularity evolution analysis and geographical distribution fol-
lowed in the study.

Weekly variation of popularity for topics in the Lockdown category is shown in 
Fig.  15, together with related real-world events. On 27 February, Prime Minister 
Shinzo Abe requested that all Japanese elementary, junior high, and high schools 
close until early April to help curb the virus [33]. This coincides with the 9th week 
peak of the topic ‘European and Japan. The topic ‘Nigeria lockdown’ shows also 
a first peak on 9th week; at the same time, the first confirmed case in Nigeria was 
announced (27 February, [34]). The same topics peak again during the 13th week 
and then follows an increasing trend; this is corroborated by the fact that on March 
23th Ebonyi State government in southeastern Nigeria, banned all public gatherings 
[35], while at the same time, Kwara State and Lagos State announced the indefi-
nite closure of their schools [36, 37]. On 24 March, the Government of India under 
Prime Minister ordered a nationwide lockdown [38], and this is depicted on the 
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Fig. 14  Top 10 most popular tweets for the four countries with the highest number of tweets in the cor-
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respective topic on ‘India lockdown’ which sharply increases popularity during the 
2 previous weeks.

Figure 16 shows USA representative topics and events. Clearly, the topic ‘warn-
ing by Dr. Fauci’ peaks on the week of Dr. Fauci’s announcement at a business 
show on CNBC that “good public health has limited outbreak in the US” [39] and 
is briefly discussed for the following 2  weeks. The topics ‘US White House task 
force’ and ‘USA President response’ peak sharply on the 9th week, as the President 
Trump, Vice President Pence, and members of the coronavirus task force gave a 
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Fig. 15  Representative events related to lockdown
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Fig. 16  Representative USA-related topics and events. a Most popular topics, with a peak of more than 
2% for at least 1 week; and b less popular topics
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press conference on February 26th [40]. The topic ‘tax relief and relief funds in 
USA’ shows a peak on 13th week, coinciding with the U.S. President signing the 
Coronavirus Aid, Relief, and Economic Security Act on March 27th [41]. Τhe topic 
on ‘USA primary elections (Wisconsin)’ shows a low but continuous popularity 
from the 8th till the 16th week and peaks during the week of the elections [42]. 
Finally, the topic ‘USA protests’ is spawned by the USA protest on 15 April [43], 
while the topic ‘US president claims disinfectants can cure’ is briefly popular during 
the week of the respective announcement [44].

Figure 17 shows representative events of Outbreak category. The topic on ‘Dia-
mond Princess cruise ship outbreak’ shows an increase in popularity during the 
6th week, and peaks during the 8th week when passengers were evacuated after a 
2 week period of continual announcements of new positively tested passengers [45]. 
On 2 March, Saudi Arabia confirms its first case, a Saudi national returning from 
Iran via Bahrain [46] and this seems to spawn a 1 week earlier peak for the topic 
on the neighboring ‘Arabic countries outbreak’. On 27 March, Britain’s Prime Min-
ister Boris Johnson tested positive [47], subsequently admitted in the hospital and 
discharged on 12 April [48] which coincides with the popularity of the ‘UK Prime 
Minister infection’ peaking on 13th and 15th week.

The time evolution of the popularity of the topic ‘toilet paper and other supplies 
panic-buying’ is shown in Fig. 18. The 5 countries where this particular topic was 
most popular were Australia (2% of overall tweet corpus of this country), Hong 
Kong (1.7%), New Zealand (1.5%), Ukraine (1.4%), and United Kingdom (1.3%) 
(considering countries with more than 10,000 tweets), so related events or announce-
ments from these countries are also depicted in Fig. 18. The popularity of the topic 
starts increasing during  8th week, when armed robbers stole hundreds of toilet trolls 
in Hong Kong [49]. The increase continues next week, as Australian toilet paper 
company announced that it had completely sold out of stock on 26 February [50], 
and a supermarket rush evolves along the first confirmed case in New Zealand [51]. 
The popularity of this topic peaks during 10th week, when on March  6th, the Brit-
ish Health Secretary has urged the public to stop panic-buying [52]; a slow decline 
thereafter is followed with the Ukrainian announcement of quotas for shoppers [53].
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Fig. 17  Representative events related to disease outbreak
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Discussion

Principal findings

Our study performed a high-resolution topic analysis, including an investigation of 
temporal and geospatial variance of topics, of public discussions related to COVID-
19 in a set of 20,230,833 original English language postings on Twitter, correspond-
ing to a period from January 25 to April 30, 2020. Fine grain topic analysis iden-
tified 91 meaningful topics which give detailed insights on public concerns and 
discussions on Twitter during the period of the study. Calculation of the relative 
popularity of each topic showed that topics related to life during the pandemic were 
most popular, followed by discussions on pandemic management (at a social and 
political level and in terms of scientific response) and by information diffusion on 
local outbreaks and lockdown measures. Several topics related to concerns about 
economy were also identified.

Regression analysis on the temporal evolution of topic popularity revealed only 
15 topics (16%) with a good linear fit (R2 > 80% and p value ≤ 0.05). The major-
ity of the topics showed a temporal evolution with local maxima (in most cases a 
single peak) of a duration spanning (in most cases) 1 week, underlining the short-
lived character of discussions in Twitter, which reinforces the previous findings on 
the rather swift temporal evolution of discussions on Twitter [24]. When compared 
to real-world events, temporal popularity curves show a good correlation with and 
quick response to real-world triggers.

Geospatial analysis of topics showed that approximately 30% of original English 
language tweets were contributed by USA-based users, while overall more than 60% 
of the English language tweets were contributed by users from countries with an 
official language other than English. Topic popularity analysis per country for the 
countries with significant contribution revealed that the most popular topics were 
rather similar for each country, including topics on expression of negative senti-
ments, on aspects of life during the quarantine and information on cases, deaths, and 
guidelines. However, the ranking of most popular topics varied among countries; in 
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Fig. 18  The topic ’toilet paper and other supplies panic-buying’ and related events in the five countries 
where this topic was most popular
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most cases, the first most popular topic for each country was of local interest, related 
either to political issues, local outbreak, or local lockdown.

Comparison with prior work

A recently published study produced an LDA analysis of the daily USA tweets for 
approximately the same period as our study, namely from the 4th till the 15th week 
of 2020 [18]. They identified eight salient topic groups, in order of popularity: (1) 
China, (2) USA, (3) deaths, (4) lockdown, (5) USA president, (6) home, (7) pan-
demic, and (8) social distancing. Although the topical granularity reported is lim-
ited, we did identify similar topics within the 10 most popular topics in the USA as 
presented in Fig. 14. This verifies the ability of the LDA approach to identify similar 
topics of discussion in Twitter either applied on a daily tweet corpus or on a corpus 
of larger duration as in our study.

A similar LDA analysis of global English language tweets and a coarse topic res-
olution of 11 topics for the period week #4 to week #10 [20] was not possible to 
identify a topic related to symptoms or to treatments. Our findings reveal a topic on 
‘treatment drugs and trials’ which shows an increasing popularity after week #11, 
outside the time period of the aforementioned study. Additionally, our high-reso-
lution analysis revealed a topic on ‘symptoms’ which is prevalent from week #9 to 
week #10; this is consistent with other Twitter analysis findings which indicate dis-
cussion on COVID-19 symptoms in Twitter well before the first official announce-
ment of the 3 major symptoms by the Centers for Disease Control and Prevention 
(CDC) on March 30 followed by a second announcement with more detailed list of 
symptoms on April 19, 2020 [54, 55].

Another study identified 26 topics for the period week #1 to week #19 in global 
tweets only by individuals [22], which suggests that topics related to economy and 
markets are most popular and correspond to about 20.51%. Our study confirms a 
9.56% popularity of topics related to economy and financial issues, which brings 
this category lower in the relative popularity list (Fig. 2).

Another investigation looked into the content and credibility of tweets by Cent-
ers for Disease Control and Prevention (CDC)  and the American College of Sur-
geons (ACS) for 5 months starting on February 1, 2020 [7]. These 2 accounts dur-
ing this time mainly published national guidelines and personal protective measures 
for practitioners. The study concluded that the 2 accounts showed a greater public 
response with a higher mean of retweets and likes, which peaked in March for CDC 
and in April for ACS. Indeed, our study identified a relevant topic ‘information and 
guideline updates’ with a popularity which, as shown in Fig. 5, starts increasing in 
the beginning of March, peaks mid-March and continues in a rather steady popular-
ity (of around 1.5%) during April.

Our findings are consistent with a previous study [19] that analyzed global 
tweets between weeks #11 and #16. In particular, we confirm all the topics identi-
fied, although our analysis did not identify topics related to the Chinese Communist 
Party. Our findings agree that handwashing is no more popular after the 12th week 
(with a peak during 10th week), and as new measures are becoming more popular, 
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namely social distancing (peak on 12th week) and facemasks (peak on 14th week). 
Contrary to what has been suggested by this previous study, our analysis for this 
time interval revealed a number of topics (with high or increasing popularity or even 
popularity peaks), clearly related to events in countries other than USA (2 topics 
on India and 1 about Nigeria). We also identified 3 additional distinct UK-related 
topics (instead of 1) with different temporal evolution, and also 4 additional USA-
related topics, again with distinct temporal evolution. Also, our analysis also reveals 
additional popular topics on (1) fear and anger (peak on w11); (2) lockdown and 
economy restart (significant increase from  14th week onwards); (3) three distinct 
topics on lifestyle during quarantine; (4) two topics related to donations and support 
funds; (5) two topics related to medical equipment and specific clinical trials; and 
(6) a topic on surveillance applications. This indicates that topic modeling of twitter 
datasets should use larger numbers of topics; this implies that topic coherence analy-
sis to identify the number of topics should consider experiments with a large span of 
values and consider higher local minimization points.

Another similar study [12] using a different analysis approach (combining text 
mining and manual analysis) of a limited USA tweet set acquired during the 20th 
and 21st weeks of 2020 (just after the period of our study) identified six major top-
ics: (1) surveillance, (2) prevention measures, (3) treatment and testing information, 
(4) symptoms and transmission, 5) fear, and 6) financial loss. These topics again 
are very similar to the ones we have identified as top most popular topics for USA 
tweets. An exception is the most popular topic on ‘USA President response’ which 
is not identified in the aforementioned study, which is of no surprise as we found 
this topic to peak during the 9th week, showing a steady decline thereafter (Fig. 5).

A similar LDA analysis of 203,191 original Chinese language microblogs posted 
in Sina Weido, a Chinese Twitter equivalent [56], identified 17 salient topics for a 
period from December 1, 2019 to July 31, 2020 (including the observation period of 
our study). The geospatial analysis performed on Chinese originating tweets (a total 
of 212,373 tweets) included in our study confirms 14 similar topics, ranked within 
the top 20 most popular for China; our study could identify the following topics: (1) 
joint prevention and control; (2) epidemics in neighboring countries; and (3) fueling 
and saluting anti-epidemic action.

A recent analysis [57] showed a substantial increase in purchases and searches 
for previously unpurchased and unsearched therapies by the general public follow-
ing the backing of US president Donald J Trump. These increases correlated with 
his discussions in press conferences and personal social media posts advocating for 
hydroxychloroquine and chloroquine cures, followed the initial press conference on 
March 19, 2020. Our study confirms this, by the evolution of the topic ‘treatment 
drugs and trials (hydroxychloroquine)’ which after a deep low during week #11, 
shows a statistically significant increase of the popularity from week #12 (16th to 
22nd March 2020) which peaks on week #15.

Finally, a study on economic uncertainty during the pandemic using several 
different indicators shows that implied volatility rose rapidly from late February, 
peaked in mid-March and fell back by late March [58]. This coincides with our find-
ing on the time evolution of 2 related topics “fears for impact on stockmarket” and 
“impact on economy” (Fig.  9), which follow the same longitudinal behavior. The 
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same study also shows that broader measures of economic uncertainty reporting on 
subjective business uncertainty peaked later; again, this agrees with the evolution of 
the topic ‘impact on business and companies’ and ‘lockdown and economy restart’ 
which during the period of our study are both statistically significantly increasing.

Strengths and limitations of this study

A major strength of the approach used in this study to explore Twitter content with 
temporal and geospatial analysis is the statistical unsupervised nature, which makes 
it ideal for the big data sets produced in Twitter, which in principle cannot be fully 
and homogeneously retrieved via the provided API. Additionally, our approach is 
language independent and can easily produce temporal and geospatial analysis.

A principal limitation pertaining to Twitter content analysis in our study arises 
from the original set of tweets which was generated using a query based on a spe-
cific search terms identified in the initial phases of the pandemic. As the pandemic 
evolves, more hashtags and keywords are emerging, which should be also consid-
ered for inclusion in the query. The findings of the study are clearly limited to the 
duration of collected data; more experiments are required to cover later phases of 
the pandemic and compare to findings of the onset explored here. Another limitation 
might arise from the fact that, as customary, only original tweets were included; cal-
culating topic popularity should ideally include a weighting based on the impression 
of original tweets as expressed by retweets and likes. Additionally, tweets included 
in the study did not filter out postings by social bots which might skew findings 
on public concerns; a recent twitter analysis of COVID-19-related tweets during 
approximately the same period estimated that only 9.27% of related tweets can be 
attributed to social bots [16]. Finally, the findings of our study should be viewed 
under the assumption of Twitter users demographics; based on Twitter reports, users 
cover all age range (with most users in the range of 18–49 years old), with a clear 
bias toward male sex (70.4%) [1].

Questions answered and future work

Results of this study indicate that a high-resolution (i.e., large number of topics) 
topic analysis of Twitter datasets can reveal valuable information with a fine granu-
larity on public discussions and concerns. Temporal evolution of topics popularity 
shows that most discussions on Twitter are short-lived and often closely driven by 
real-world events. Topics in English language Twitter are quite similar among users 
originating from different countries; however, the relative popularity of each topic 
within a country may vary; topics of local interest are most often the most popular 
in each country. Based on preliminary comparison with other studies, our findings 
indicate that exploring global, English language Twitter datasets might be adequate 
to identify salient themes of discussion for country-specific audiences. More experi-
ments are necessary to compare identified topics using the same Twitter dataset for 
global and local analysis. Finally, based on our findings, Twitter discussions related 
to fears or expectations regarding economy and the markets seem to correlate with 
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conventional economic indicators. Again, further analysis is needed to specify topic 
modeling methodologies that could lead to qualitative indices of economic uncer-
tainty and its recovery.

Appendix A

Appendix B

See Table 2.
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