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Analysis of physicochemical properties of protein–
protein interaction modulators suggests stronger
alignment with the “rule of five”†

Jia Truong, Ashwin George and Jessica K. Holien *

Despite the important roles played by protein–protein interactions (PPIs) in disease, they have been long

considered as ‘undruggable’. However, recent advances have suggested that PPIs are druggable but may

not follow conventional rules of ‘drug ability’. Here we explore which physicochemical parameters are

essential for a PPI modulator to be a clinical drug by analysing the physicochemical properties of small-

molecule PPI modulators in the market, in clinical trials, and published. Our analysis reveals that those

compounds currently on the market have a larger range of values for most of the physicochemical

parameters, whereas those in clinical trials fit much more stringently to standard drug-like parameters. This

observation was particularly true for molecular weight, clogP and topological polar surface area, where

aside from a few outliers, most of the compounds in clinical trials fit within standard drug-like parameters.

This implies that the newer PPI modulators are more drug-like than those currently on the market,

suggesting that designing new PPI-specific screening libraries should remain within standard drug-like

parameters in order to obtain a clinical candidate. Taken together, our analysis has important implications

for designing future drug discovery campaigns aimed at targeting PPIs.

Introduction

Despite the vast scientific and technological advancements
made since the 1950s, drug development costs had shown a
seemingly paradoxical twofold increase every nine years with
drug approvals per US$ 1 billion global R&D dramatically
decreasing.1 Aside from the obvious tightening of regulatory
laws, another proposed reason is the “low-hanging fruit”
phenomenon, i.e. all the easily druggable targets have been
picked. Therefore, alternative strategies in drug discovery
have been the focus of scientists in recent years. One such
strategy is to broaden the target space for drug discovery to
include protein–protein interaction (PPI) inhibitors. This
approach should lead to a wide variety of new targets and as
such new therapeutics.2,3

There are over 300000 PPI pairs so far predicted in the
genome.4 The plethora of genomic data and advances in
computer power have meant that, for the first time, we can
begin to understand the complex protein–protein interaction
networks that are occurring in the cell.5,6 These advances in
computational systems and network biology have confirmed
the importance of this network structure and have revealed that
many PPIs represent important targets for drug discovery.

In 2020 there were 2374 small-molecule PPI inhibitors
registered in iPPI-DB, a manually curated dataset of small-
molecule PPI inhibitors.7,8 This is a 48% increase from 2016
and highlights the burgeoning interest in small-molecule
drug design for PPIs. Furthermore, in the past year, there
have been over 339 publications listed in PubMed related to
“protein–protein interaction” AND “inhibitor”, emphasising
this significant interest in PPI inhibition.

PPIs are defined as instances of specific, physical contacts
that occur between two or more protein molecules in living
organisms. Although challenging, recently there have been
many advances in our understanding of how to drug protein–
protein interfaces,9–11 leading to breakthroughs into
discovering small molecules for these targets, which may
pave the way for a new surge of marketed drugs.12

PPI modulators can be either inhibitors or stabilisers
(both orthosteric and allosteric) and are primarily small-
molecule modulators, peptides, and antibodies.13 Small-
molecule modulators offer the advantage of high cell
membrane permeability, oral administration, and lower
research costs, whereas peptides and antibodies have higher
specificity and affinity. In terms of disadvantages, the low
selectivity of small-molecule modulators makes them more
prone to side effects; peptides are susceptible to degradation
by hydrolases, leading to instability in vivo, low oral
bioavailability and a shorter half-life,14 whereas antibody
usage is usually constrained to extracellular targets owing to
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their inability to cross cell membranes. Antibodies have also
been known to activate severe immune reactions.13 Although
all modalities are viable therapeutics for PPIs, this paper will
focus on the desirable properties of small-molecule
modulators of PPIs only.

Although most of the research in this field has been
focussed on non-covalent modulation, covalent PPI inhibitors
are being recognised in recent years due to smaller risks
associated with drug resistance in oncology and infectious
diseases.15 Specifically, due to the irreversible warhead nature
of covalent inhibitors, they are often able to retain activity in
situations where drug-resistant mutations have arisen due to
treatment with reversible inhibitors. Evidence suggests that
these inhibitors offer higher potency, are less limited by their
pharmacokinetics and that the implementation of covalent
bifunctional blockers could help reduce side effects.16

Even with numerous triumphs, modulating PPIs
represents a significant challenge. This seemingly
undruggable nature of PPIs has been attributed to several
factors. PPI interfaces, unlike enzymes and ligand-binding
domains of receptors, have not evolved to bind to small
molecules. Many PPI interfaces tend to be flat and devoid of
the usual cavities present on typical proteins that allow
binding to ligands.17 The interface area of PPIs also tends to
be larger (1500–3000 Å) and more hydrophobic than
conventional drug interactions.18

These challenges suggest that small-molecule-based
modulators of PPIs may require different design strategies
and/or follow a separate set of rules than traditional small-
molecule drugs. This is especially true with respect to
achieving oral bioavailability, the gold standard of small-
molecule drug discovery, due to its non-invasive and
convenient nature. Traditional drug discovery approaches
have used rules such as Lipinski's rule of 5 (RO5) to predict
the suitability of oral drug candidates.19 These rules add
strict levels to parameters such as molecular weight (<500
daltons), partition coefficient (<5.0), and hydrogen bond
acceptors (<10.0) and donors (<5.0). However, the atypical
characteristics of PPI targets suggest that these rules need to
be rewritten to tap into the immense potential of protein–
protein interaction drugs.

In recent years, PPI specific variants to Lipinski's rule of 5
have been suggested such as the ‘rule of four’.22–25 This rule
of four suggests that generic PPI modulators should have a
MW >400 Da, clog P >4, number of rings >4 and number of
hydrogen bond acceptors >4, a direct contrast to Lipinski's
rule of 5. However, whether drug discovery efforts towards
orally bioavailable PPI modulators should preferably focus on
RO5 space or follow additional trends remains an open
question for the field.

To address this question, here we analysed the
physicochemical properties of compounds on the market and
in clinical trials to determine if the rule-of-four trends hold
for the subset of PPI modulators that have advanced beyond
preclinical studies and into clinical trials and beyond. Our
analysis suggests that although the majority of approved

drugs that modulate PPIs fall outside the RO5 parameter
space, the compounds currently in clinical trials are more
RO5 compliant. This insight may have important
implications for informing drug discovery efforts in this area.

Methods

To compile a comprehensive list of small-molecule PPI
modulators currently in the market and in clinical trials, a
broad search of peer-reviewed journals was conducted.
PubMed, RMIT LibrarySearch, Scopus and Google Scholar
were explored using key terms such as “protein protein
interaction” and its variants (e.g. PPI and 2P2I) combined
with the term “drugs” and its variants (e.g. modulators,
inhibitors, and stabilizers). Examples of specific Boolean
operators are shown in the examples below:

“protein protein interaction” AND pharmacology
“protein protein interaction” OR 2P2I OR PPI OR 2P2Is

AND disease OR treatment
(“protein protein interaction” OR 2P2I OR PPI OR 2P2Is)
AND (drugs OR medicine OR pharmaceutical)
This search process uncovered 159 compounds that were

PPI drugs or candidates. Antibody-based PPI modulators and
peptides were then removed from the dataset and
compounds were split based on their clinical trial status (i.e.
approved, stage I, II, III or IV).

To obtain a control data set of other drugs on the market,
we utilised the DrugBank database,26 downloaded on the
20th June 2021. All PPI modulators were removed.

Compound physicochemical properties were calculated
using ChemAxon software (http://chemaxon.com/) to obtain
physiochemical properties including molecular weight (MW),
partition coefficient (clog P), number of hydrogen bond
donors (HBDs), number of hydrogen bond acceptors (HBAs),
topological polar surface area (TPSA), number of rotatable
bonds (RBs), and the number of rings.

GraphPad Prism v 9.1.0 was used to conduct statistical
analyses and construct graphs. Specifically, descriptive
statistics were utilised including minimum, maximum,
range, mean, standard deviation, standard error of the mean,
25th quartile, median, 75th quartile, 90th quartile, coefficient
of variation, skewness and kurtosis, and quadratic mean. To
gain insight into the density of data at different values, violin
plots were utilised to plot most of the data. Like a box plot,
these plots show the range of values with the median and
interquartile ranges displayed. Furthermore, these plots allow
one to visualise the density of the data, i.e. wider regions
correspond to more data points.

Results
PPI inhibitors on the market

Our literature search found a total of 25 approved PPI small-
molecule drugs (Table 1). As expected from the analysis of
others,21,27,28 76% percent of the small-molecule PPI
modulators on the market failed Lipinski's RO5. This
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Table 1 Physicochemical properties of clinically approved PPI modulators. Shown are the PPI target, method of discovery, i.e. derived from natural
products or synthetic, molecular weight (MW), partition coefficient (clogP), topological polar surface area (TPSA), number of hydrogen bond donors
(#HBD), number of hydrogen bond acceptors (#HBA), number of rotatable bonds (#RB), number of rings (#ring), number of carbons (#C), number of
heteroatoms (#Het), and number of heavy atoms (#HA)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Avatrombopag MPL/TPO Synthetic 649.7 4.13 158 2 10 7 6 29 13 42

Cabazitaxel Microtubule Natural 835.9 5.44 202 3 14 15 5 45 15 60

Colchicine Microtubule Natural 399.4 1.20 83 1 6 5 3 22 7 29

Dimethyl fumarate KEAP1/NRF2 Synthetic 144.1 0.78 52.6 0 4 4 0 6 4 10
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Table 1 (continued)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Docetaxel Microtubule Synthetic 807.9 4.08 224 5 14 13 5 43 15 58

Eltrombopag MPL/TPO Synthetic 442.5 5.25 115 3 7 5 4 25 8 33

Eribulin mesylate Microtubule Natural 826 1.24 209 3 15 4 8 41 16 57

Everolimus FKBP12/MTOR Natural 958.2 7.10 205 3 14 9 2 53 15 68

Levetiracetam CACNA1B Synthetic 170.2 −0.34 63.4 1 2 3 1 8 4 12

Lifitegrast ITGAL/ICAM1 Synthetic 615.5 2.28 142 2 7 7 5 29 12 41

RSC Medicinal ChemistryResearch Article



RSC Med. Chem., 2021, 12, 1731–1749 | 1735This journal is © The Royal Society of Chemistry 2021

Table 1 (continued)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Lusutrombopag MPL/TPO Synthetic 591.5 7.92 126 2 7 13 3 29 10 39

Maraviroc CCR5/gp120 Synthetic 513.7 3.26 63 1 6 8 6 29 8 37

Paclitaxel Microtubule Natural 853.3 4.73 221 4 14 14 9 47 15 62

Pimecrolimus FKBP12/CNA/CNB Natural 810.4 7.10 158 2 11 6 3 43 13 56
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Table 1 (continued)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Plerixafor CXCR4/CXCL12 Synthetic 502.8 −0.25 79 6 8 4 3 28 8 36

Romidepsin HDAC Natural 540.7 3.44 193 4 8 2 2 24 12 36

Selinexor CRM1/tumour suppressor
proteins

Synthetic 443.3 2.68 97.6 2 12 5 3 17 14 31

Rapamycin (sirolimus) FKBP12/MTOR Natural 914.2 7.04 195 3 13 6 3 51 14 65

Tacrolimus FKBP12/CNA/CNB Natural 804.0 5.78 178 3 12 7 4 44 13 57
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Table 1 (continued)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Tafamidis TTR tetramer Synthetic 308.1 5.00 63 1 4 2 3 14 6 20

Temsirolimus FKBP12/MTOR Natural 1030.3 7.46 242 4 16 11 3 14 17 73

Tirofiban FGG/ITGA2B/ITGB3 Natural 440.6 2.00 113 3 7 14 2 22 8 30

Venetoclax BCL2/BAX Synthetic 868.4 10.31 183 3 11 12 8 45 17 61
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observation agrees with the notion that most PPI drugs are
RO5 outliers. Specifically, in our list of 25 compounds, only
six compounds (colchicine, levetiracetam, selinexor,
tafamidis, tirofiban, and vorinostat) did not break the
Lipinski RO5 criterion. Two of these drugs (colchicine and
tirofiban) are naturally derived products, whereas the
remaining four are synthetic. In recent years there has been
discussion regarding alternate types of PPI interfaces, with
the suggestion that some are easier to target than others.18,25

However, all six RO5 PPI modulators act at alternate PPI
interfaces and modalities. Therefore, due to the limited
number of PPI modulators on the market, we chose to
analyse all small-molecule PPI modulators together
irrespective of the type of interaction they modulate.

When analysing all the PPI modulators on the market,
one parameter, HBD, remained strictly within Lipinski's RO5.
The majority of compounds (24 out of 25) contained ≤5
HBDs, with only plerixafor containing 6 HBDs. Furthermore,
the average was only one extra than the mean of all approved
drugs (meanPPI = 3.323, meanALL = 2.239, ESI† Tables S1 and
S2), suggesting that this is a tight parameter. Others have
also found that HBD counts remain relatively invariant when
analysing the chemical properties of orally available drugs
over time.28 This suggests that the number of HBDs may be
an important physicochemical parameter for all drugs,
including PPI modulators.

Compared to HBD, HBA in PPIs are often inflated past
Lipinski's rule. Twelve of the 25 PPI drugs on the market
exceeded the Lipinski guideline of no more than 10 HBA. On
average, the mean number of HBA of the drugs in the list
approaches this limit and is greater than those of other
approved drugs (meanPPI = 9.48, meanALL = 4.91). Increasing
the number of HBDs and/or HBAs often leads to an increase
in TPSA, which in turn reduces the ability of the small-
molecule compounds to pass through cell membranes.

Interestingly, the mean TPSA value we calculated for all
PPI modulators on the market was significantly larger
(meanPPI = 143.7 Å, ESI† Table S1) than the average of
conventional drugs (meanALL = 91 Å, ESI† Table S2). In fact,
the mean is also higher than the established drug discovery
cut-off of 140 Å (ref. 29) and is higher than reported in other
studies on PPI modulator properties.27 As stated above, a
higher TPSA reduces the ability of compounds to pass
through cell membranes, often leading to low oral
bioavailability. Thus, TPSA is thought to be a useful
estimation of oral bioavailability and permeability29,30 which
have been shown to be inversely related to TPSA.29–31 When
we compared the route of administration against TPSA for
the current clinical PPI modulators (Fig. 1A), drugs with
higher TPSA values were observed to use non-oral routes of
administration. Therefore, the use of alternative routes of
administration may reflect a need to circumvent oral
bioavailability problems. This may be possible for diseases
with a significant death burden (e.g. cancer) but is not viable
for other diseases (e.g. CNS disorders) for which there is a
clear unmet need which could be answered by small-
molecule PPI modulators.

Although the polar surface area of PPI drugs is larger than
that of conventional drugs, PPI modulators are also larger in
mass than conventional drugs. Our analysis showed a
significantly higher median/mean MW than other drugs
(medianPPI 615.5, meanPPI 621.8, compared to medianALL

335.5, meanALL 384.7, ESI† Tables S1 and S2 and Fig. 2).
Therefore, the higher TPSA values may simply be reflective of
larger molecules. To assess this further we mapped the
molecular weight against the TPSA and found a positive
correlation (adjusted r2 = 0.8070, p = 6.7 × 10−10) (Fig. 1B).
TPSA and number of HBAs also showed a positive correlation
(adjusted r2 = 0.7789, p = 5.34 × 10−9) (Fig. 1C). However, a
linear model of TPSA with molecular weight and HBA as

Table 1 (continued)

PPI drug Target Method
MW
(Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Vinblastine Microtubule Natural 811.0 5.23 150 3 12 10 9 46 13 59

Vorinostat HDAC Synthetic 264.3 0.99 78 3 3 8 1 14 5 19
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variables (Fig. 1D) only improved the fit slightly over
the linear TPSA model with only molecular weight as a
variable (adjusted r2 = 0.8185), with the HBA
contribution in the multivariable model being
statistically insignificant (p = 0.118), indicating that the
contribution of HBA to TPSA is already accounted for
in the molecular weight variable in the model. Although
this is a small data set, our analysis suggests that in
general, larger PPI inhibitors contain more HBAs,
contributing to an increase in TPSA.

These larger compounds also tend to be more flexible, with
PPI modulators in the clinic showing on average a larger
number of rotatable bonds (mean = 7.760, ESI† Table S1),
whereas non-PPI drugs in the clinic show an average of 6.03
rotatable bonds (ESI† Table S2). Although this may seem like a
modest increase, studies have shown that compounds with
more than 7 rotatable bonds have been associated with poor
oral bioavailability, with the effect more pronounced when that
number exceeds 10.29 The effect of this increase in rotatable
bonds may extend beyond just reduced bioavailability.

Fig. 1 (A) Higher TPSA values are observed in clinical drugs employing non-oral routes of administration. (B) There is a clear positive correlation
between MW and TPSA for clinical drugs. (C) A positive correlation also exists for clinical drugs between the number of HBAs and TPSA. (D) A linear
regression model of TPSA with HBA and molecular weight as variables for clinical drugs. The linear fit is slightly improved relative to the model
presented in (A). However, the p value of HBA being >0.05 suggests that the contribution of the HBA variable is not statistically significant.

Fig. 2 Violin plots displaying the distribution of molecular weight, clogP and topological polar surface area (TPSA). Displayed is the range of values
with the median (thick dotted line) and interquartile ranges (thin dotted line). The graph thickens in relation to more data points. All data points are
shown for the PPI modulators which have been approved (approved) and those currently in clinical trials (clinical trial). Due to the large data set, these
are not displayed for the non-PPI compounds which have been approved for use26 (non-PPI) and the PPI inhibitors collated in the iPPI-DB7,8 (iPPI-db).
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One protein can form numerous PPIs, thought to be
possible due to flexibility in the protein interfaces themselves,32

and this conformational plasticity at the protein–protein
interaction interface has been successfully exploited to generate
suitable binding pockets for PPI modulators.33 Since protein
interfaces involved in the PPI can be flexible, the addition of
conformational constraints to the inhibitors could effectively
improve potency as restricting the molecule towards productive
conformers would reduce the entropic barriers to binding.

Therefore, a promiscuous protein that has multiple
potential binding partners needs a compound that is very
target specific to reduce the chance of unwanted side effects.
In recent years, higher clog P has been thought to add to the
promiscuity of compounds, with an ideal clog P being under
3.38 Specifically, high lipophilicity has been shown to drive
binding to unwanted pharmacological targets, including
hERG,39,40 leading to the likelihood of reactive metabolites
and/or organ toxicity. This is reflected by all non-PPI drugs
displaying a very low mean clog P of 1.623 (ESI† Table S2). In
contrast, our analysis of the PPI modulators on the market
showed a much higher average clog P (mean = 4.2, median =
4.1, ESI† Table S1 and Fig. 2). Although 60% of the PPI
modulating compounds on the market had a clog P within
Lipinski's RO5, reducing this should be a priority for future
studies to reduce unwanted effects.

Of note, venetoclax, an approved PPI inhibitor of Bcl-2 for
chronic lymphocytic leukaemia (CLL), has the highest clog P
of 10.31 and is also a substrate for cytochrome P450 3A.
Therefore it is often co-administered with CYP3A inhibitors
to counteract this effect.41 Additionally, venetoclax is also
practically insoluble in aqueous solutions and encounters
strong food-dependent bioavailability. It displays a 5-fold
increase in oral bioavailability following a high-fat meal than
when compared to a fasted state42 due to its lipophilicity;43

therefore a meal prior to oral drug administration is required
to achieve acceptable oral bioavailability.44

Furthermore, the drug discovery program for venetoclax
and its derivative navitoclax were plagued by
pharmacokinetic and pharmacodynamic issues.45,46 These
issues may be acceptable for first-in-class cancer treatment;
however, care would need to be taken if increasing clog P for
other diseases. It is also worth noting that calculated log Ps
can be very different from experimental log Ps, and log P does
not consider ionisable compounds. Regardless, this analysis
does highlight the importance of this physicochemical
parameter in all aspects of drug discovery.

Many early PPI modulators that have been approved for
human use are based on natural products, and as such their
physicochemical characteristics may be more varied.
Examples, such as vinblastine and paclitaxel, are large, un-
druglike compounds derived from natural products.
Conversely, tirofiban is also a natural product; however, it is
more “drug-like” in terms of its physicochemical parameters.

To explore the potential differences between synthetic and
naturally derived PPI modulators, we analysed each group
separately. The data set contained an almost identical split
between naturally derived molecules (12 compounds) and
synthetically derived molecules (13 compounds). When
analysed separately, they maintain an almost identical clog P
(meanNAT = 3.86, meanSYN = 3.87); however, the MW (meanNAT

= 697.4, meanSYN = 528.4) and TPSA (meanNAT = 181.8, meanSYN

= 116.7) were both larger for the compounds derived from
natural products (Fig. 3). Nonetheless, both sets of PPI
modulators still displayed a significantly larger MW and TPSA
than those of conventional small-molecule modulators
(meanMW = 384.7, meanTPSA = 91.9, ESI† Table S2).

Taken together, our analysis suggests that PPI modulators
approved for human use mostly reside outside the RO5
guidelines as expected based on previous analysis. This is
also in agreement with expectations based on differences
between PPI properties when compared to enzyme active sites
or ligand binding sites of different receptors.

Fig. 3 Column graphs showing the differences between the molecular weight (MW), clogP and topological polar surface area (TPSA) for PPI
modulators on the market that are derived from natural products (NAT) or synthetically derived (SYN). The clogP values for both are very similar,
whereas natural product derived compounds have slightly higher MW and TPSA. Error bars show the standard deviation.
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Table 2 Physicochemical properties of PPI modulators in clinical trials. Shown are the PPI target, clinical trial phase, molecular weight (MW), partition
coefficient (clogP), topological polar surface area (TPSA), number of hydrogen bond donors (#HBD), number of hydrogen bond acceptors (#HBA),
number of rotatable bonds (#RB), number of rings (#ring), number of carbons (#C), number of heteroatoms (#Het), and number of heavy atoms (#HA)

PPI drug Target Phase MW (Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

AMG-232 MDM2/p53 1/2 568.6 6.49 100 1 5 9 3 28 10 38

Apabetalone (RVX-208) Bromodomain/histone 3 370.4 3.25 89.4 2 6 6 3 20 7 27

APG-115 MDM2/p53 1/2 642.6 4.36 98.7 3 6 5 6 34 10 44

ASTX660 XIAP/caspase-9 1/2 539.7 2.85 81.2 2 8 7 5 30 9 39

Birinapant XIAP/caspase-9 1 806.9 2.78 195 8 10 15 6 42 16 58

Carotegrast methyl α4-Integrin 3 569.4 4.61 99.3 1 6 8 4 28 11 39

CCX140 CCR2 2 495.9 4.37 126 2 10 5 4 20 13 33
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Table 2 (continued)

PPI drug Target Phase MW (Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

CCX354 CCR1 2 451.9 2.96 92.2 1 6 5 5 22 10 32

Cenicriviroc CCR2/CCR5 3 696.9 8.78 105 1 7 17 5 41 9 50

CGM097 MDM2/p53 1 659.3 7.88 65.6 0 6 9 6 38 9 47

CPI-0610 BET proteins 3 365.8 2.57 81.5 1 4 3 4 20 6 26

CUDC-427 (GDC-0917) XIAP/caspase-9 1 564.7 3.56 158 3 8 9 5 29 11 40

Epothilone B (patupilone) Microtubule 2 507.7 3.21 138 2 8 2 2 27 8 35

Idasanutlin (RG-7388) MDM2/p53 3 616.5 4.97 111 3 8 8 4 31 11 42

LCL161 XIAP/caspase-9 2 500.6 3.57 120 2 7 8 4 26 9 35
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Table 2 (continued)

PPI drug Target Phase MW (Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Milademetan (DS-3032) MDM2/p53 1 618.5 3.70 135 4 7 4 6 30 12 42

Navarixin CXCR2 2 397.4 1.31 112 3 7 7 3 21 8 29

Navitoclax (ABT-263) BCL-2 family 2 974.6 12.39 170 2 14 16 7 47 18 65

Obatoclax MCL1/BAX 3 317.4 1.78 49.4 2 3 2 4 20 4 24
BCL2/BAX
BCLXL/BAK

Pevonedistat NAE 2 443.5 1.16 141 3 8 6 5 21 10 31

PF-4136309 CCR2 2 568.6 1.57 120 3 10 7 5 29 12 41
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Table 2 (continued)

PPI drug Target Phase MW (Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

PRI-724 β-Catenin/CBP 1/2 658.6 3.53 156 3 9 8 6 33 14 47

Reparixin CXCR1/2 3 283.4 2.66 71.6 1 3 5 1 14 5 19

RG7112 (RO5045337) MDM2/p53 1 727.8 10.6 90.9 0 6 10 5 38 11 49

RO6870810 (TEN-010) BET proteins 1 540.1 2.45 107 1 7 7 5 27 10 37

SAR405838 (MI-77301) MDM2/p53 1 562.5 4.95 90.5 4 5 5 5 29 9 38

Serdemetan MDM2/p53 1 328.4 4.53 52.7 3 3 6 4 21 4 25

Siremadlin (HDM-201) MDM2/p53 1/2 555.4 4.11 103 0 7 6 5 26 12 38

Vercirnon (Traficet-EN) CCR9 3 444.9 4.33 97.1 1 5 6 3 22 8 30
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PPI modulators in clinical trials

To expand our analysis beyond the very limited number of PPI
drugs on the market, we explored the features of those PPI
modulators that are in clinical trials. These compounds have
been extensively characterised in a preclinical setting. Therefore,
their physicochemical properties should be a good indicator of
the parameters needed for a PPI modulator. Our search found
30 such compounds in Phase 1–3 clinical trials (Table 2).

We observed that PPI modulators currently in clinical
trials did have differing properties than those already in the
market. In particular, the spread/range of the values for each
of the calculated properties was tighter. For example, where
the MW for PPI drugs on the market had a range of 886.2 Da
(144.1–1030) and a mode around 800 Da, those in clinical
trials have a much tighter range of 691 Da (283.4–974.6) and
a mode around 500 Da (Fig. 2).

A similar trend is seen with almost every other parameter
(ESI† Table S3), with the mode of the physicochemical
parameters being much higher for those on the market than
those in clinical trials.

In our data set, over 90% of the compounds in clinical
trials are synthetically derived; therefore we compared our
synthetically derived PPI drugs on the market to those in
clinical trials. This showed a tighter comparison; however,
the range of values for MW and TPSA were still larger for the
PPI drugs on the market, with range values of 724.3 and
171.4, respectively, than those in clinical trials (range values
of 691.2 and 145.6, respectively, for MW and TPSA) (Fig. 4).

As described above, the clog P did not significantly change
regardless of the discovery method (synthetic or natural) for
the approved drugs and this remained true for those in
clinical trials (Fig. 2, ESI† Table S3). Of note, these clog P
values are all still higher than those of the non-PPI drugs
(Fig. 2). However, a 2014 analysis showed that clog P values of
PPI inhibitors in clinical trials were not higher than those of
non-PPI inhibitors in clinical trials.47 This suggests that in
coming years, the average clog P may in fact increase for all
approved drugs, not just PPI modulators.

Of note, although the clogP mean remained similar for the
compounds in clinical trials compared to those on the market,
the median was reduced (median = 3.6, mean = 4.3) with
navitoclax, a derivative of venetoclax, as an outlier with the
highest clogP of any compound in clinical trials (clogP =
12.39). Furthermore, as with venetoclax, the drug discovery
program for navitoclax was plagued by pharmacokinetic and
pharmacodynamic issues.45,46 The overall trend towards lower
clogP may be indicative of a concerted effort to lower clogP
and the unwanted side effects mentioned above (Fig. 2).

Like the drugs in the market, most PPI modulators in
clinical trials fit within the Lipinski RO5 for HBDs. The only
exception was birinapant. Although classed as a small
molecule, birinapant is a peptidomimetic, and therefore this
is not unexpected. However, the number of HBAs is notably
less for those in clinical trials (mean = 6.8, median = 7, ESI†
Table S3) compared to those on the market (mean = 9.4,
median = 10, ESI† Table S1) which is likely leading to the
significantly lower TPSA for modulators in clinical trials

Table 2 (continued)

PPI drug Target Phase MW (Da) clogP TPSA (Å2) #HBD #HBA #RB #ring #C #Het #HA

Xevinapant (AT-406) IAP 1/2 561.7 2.95 111 3 5 9 4 32 9 41

Fig. 4 Violin plots comparing the PPI modulators in clinical trials (clinical trials) compared to those approved for use which are synthetically
derived (synthetic) show a much closer distribution of molecular weight and TPSA, although the range is still larger for the PPI modulators which
have been approved.
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(mean = 108.9, median = 104) compared to those on the
market (mean = 143.7, median = 150) (Fig. 2). These
parameters are notably less even when the clinical trial
compounds are compared to just the synthetically derived
approved drugs. As described above, TPSA can be used as an
estimation of oral bioavailability and permeability;29,30

therefore this may be reflective of a push towards PPI
modulators which are orally available.

Overall, the differences between PPI drugs on the market
and compounds currently in clinical trials that we observed
were unexpected. We observed that PPI modulators in clinical
trials are closer to RO5 parameters. This trend was
unexpected and might be suggestive of those few on the
market being the “low-hanging fruit” of PPIs. This change in
distribution of properties may also be reflective of a shift
away from natural products towards more synthetic
compounds in the clinical trials set compared to the PPI
modulators on the market. A third possible explanation may
be that chemists have learned from those PPI modulators
that have failed to reach the clinic and modified their
developmental pipeline to include more conventional “drug-
like” parameters.

Preclinical PPI modulator pipeline

To access the properties of PPI modulators currently in the
preclinical phase of lead and probe development, we used a
publicly available, manually curated data set of small-
molecule PPI inhibitors, the iPPI-DB,7 which importantly only
includes compounds if the binding activity and target are
known. The vast majority (>90%) are investigational drugs.
We calculated the same range of physicochemical parameters
(MW, TPSA, clog P, HBD and HBA) and observed that PPI
inhibitors in the iPPI-DB display the same trend as those in
clinical trials, i.e. the physicochemical properties and
distribution modes shifted towards more conventional drug-
like values (Fig. 2). However, iPPI-DB has a broad coverage
and includes not only possible lead compounds but also a
number of experimental tool compounds that have not been

optimised for drug-like properties. This is reflected in the
larger range of some parameters. For example, the clog P had
a larger range (Fig. 2) which could perhaps be an indication
of the un-drug like nature of some of these compounds.

Taken together, despite the expectation that PPI modulators
would routinely exhibit properties outside RO5, we observed
that the current space of PPI modulators in clinical trials and
preclinical development is enriched for compounds that fall
within traditional rules for oral bioavailability.

Discussion

Small molecules dominate the PPI inhibitor drug discovery
landscape, representing over 50% of modulators in manually
curated lists.48 However, despite the clear unmet need,
compared to conventional drugs, a disproportionately small
number of PPI modulators have entered the market12 and
small-molecule PPI modulators represent approximately 10%
of the DrugBank database.26 We conducted the analysis of
PPI modulators to better understand the distribution of their
physicochemical parameters and the results of our analysis
can be used as a starting point to inform future PPI
modulator development.

The selection of chemical starting points can be critical to
the success of a drug development project. Thus, based on
our analysis, we propose that for an initial screening library,
the physicochemical properties should be clog P <3.5, MW
<500, TPSA <100, HBD <3, and RB <6. Keeping these
parameters lower than the average will allow for medicinal
chemistry optimisation to occur readily without sacrificing
physicochemical properties due to “property inflation”.49 As
the lead compound is optimised, properties such as
molecular weight and lipophilicity are likely to increase.50

For example, it has been shown that a medicinal chemistry
campaign adds on approximately 70–100 Da when
progressing from hit to lead51 and starting with these larger
compounds may result in difficult optimisation campaigns.

There have been previous attempts to derive
physicochemical and pharmacological trends in PPI

Table 3 Academic and commercial attempts to generate focussed libraries and/or algorithms to generate focussed libraries targeting PPI interactions

Company/academic
group Library Library construction method

# of
compounds Commercial/academic Ref.

Institut Paoli-Calmettes
(ISCB)

2P2I3D Rule of four and machine learning 1683 Academic 52

Asinex PPI Shape analysis with dedicated synthesis 11 439 Commercial 65
ChemDiv PPI 2.0 β-Turn, helix, 3D peptidomimetics 210 000 Commercial 66
ChemDiv Eccentric PPI “Escape from flatland” shape analysis 13 000 Commercial 67
French consortium Fr-PPIChem Machine learning 10 314 Academic 68
Life Chemicals Machine learning Decision Tree (machine learning) 6865 Commercial 69
Life Chemicals Similarity Similarity search 17 410 Commercial 69
Life Chemicals Rule of four Rule of four 3368 Commercial 69
NQuix N/A Molecular mimics of secondary structure

conformations
N/A Commercial 70, 71

Otava Chemicals iPPI Tree Library Decision Tree 1211 Commercial 72
Otava Chemicals iPPI Bayesian Library Similarity search 2637 Commercial 72
Otava Chemicals Peptidomimetic

libraries
α-Helix and β-turn peptidomimetics 2288 Commercial 73
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modulators and use this information to generate targeted/
focussed libraries (Table 3). Three publicly available
databases are TIMBAL20, iPPI-DB7 and 2P2I21.8,21,55 At the
time of writing, TIMBAL contains 8889 small-molecule
protein–protein inhibitors, many of which have been defined
from the ChEMBL database. The iPPI database contains 2378
compounds and allows the arrangement of data through
physicochemical and pharmacological features. Although
these databases present an opportunity to mine for trends in
PPI properties, it is worth noting that they often do not
distinguish between those compounds which have reached
clinical trials compared to those which are only at the
discovery stage. Furthermore, commercial compound
suppliers including Asinex, ChemDiv, LifeChemicals, Otava
Chemicals and NQuix also have PPI focussed libraries. These
libraries use selection criteria and methods like RO4,
similarity analysis, and secondary structure-based design
alongside decision trees and machine learning techniques.
However, using only the RO4 as the selection criterion skews
compounds towards large and more lipophilic compounds,
therefore enriching for compounds that may have a greater
risk of unfavourable pharmacokinetic and pharmacodynamic
properties.53 Furthermore, our analysis showed that although
>80% of PPI drugs on the market adhered to the RO4 in
terms of the number of H-bond acceptors, almost half of
them broke the RO4 parameter associated with the number
of ring systems. Therefore, this suggests that the RO4 is not a
good starting point for a compound library.

Analysis of the physicochemical properties of these
databases had been previously completed for nine of the eleven
databases shown in Table 3.54 This analysis concluded that
most libraries contained compounds compliant with Lipinski's
RO5, ranging from 81% to 92% compliant. This observation
may reflect an intent of library developers in keeping PPI
modulators drug-like. However, as described above, in a
screening library, where one is looking for hit compounds, it is
advantageous to keep molecules well within drug-like
parameters to allow for follow-up medicinal chemistry
optimisation from hit to lead, and from lead to drug.

Another approach may be to utilise fragment screening
against a PPI target. This approach promotes ligand efficient
compounds with a high ligand binding energy per non-
hydrogen atom. In addition, beginning with lower molecular
weight molecules reduces the number of pharmacophoric
elements, giving larger scope for medicinal chemistry
optimisation and can also pinpoint the required interactions
necessary to elicit modulation.55

PPIs have been shown to contain hotspot residues which
contribute to up to 80% of the binding energy.9,20,56,57

Molecular dynamics modelling has suggested that many
existing PPI modulators do not effectively interact with
receptor hotspots, and thus improved hotspot engagement by
ligands could result in higher ligand efficiency and increased
clinical success.58 Hotspots are predominantly hydrophobic
but are often surrounded by O-ring residues, i.e. hydrophilic
residues, which usually form the salt bridges between the

two proteins.20,59 This provides an opportunity to start with a
screening library containing small molecules that incorporate
hydrophobic cores with hydrophilic termini, which may be a
good option. Fragment screens are expected to yield
molecules that take full advantage of PPI hotspots, with many
PPI targets utilising fragment-based discovery methods
including HPV-11 E2:E1, IL2:IL2Rα, MDM2:p53 and BCL-XL:
BAK.60 Notably, based on our analysis, we suggest that efforts
to elaborate fragments into lead compounds should continue
to adhere to the RO5.

For non-PPI drugs, different physicochemical properties
are acceptable for different molecular targets. In a study by
Morphy,61 on average, the molecular weight of ligands
increases for ligands targeting transporters, ion channels,
monoamine GPCRs, oxidases, kinases, nuclear receptors,
proteases, transferases and peptide GPCRs. This has recently
been expanded to include PPI inhibitors.28 Unsurprisingly,
PPI inhibitors displayed the highest average mean MW out of
all the drug classes. Furthermore, on average, low clog P
values were observed for proteases and ion channels
compared to ligands for nuclear receptors and PPI inhibitors.
This reflects the physical nature of these proteins, i.e. nuclear
receptor binding sites are notoriously hydrophobic and, as
described above, PPI hotspots are also hydrophobic.

As described above, there have been attempts to delineate
PPIs into classes. Specifically, there are narrow groove-like
interfaces such as those seen with BCL-XL:BAX, and those
which are wide and flat, as seen with IL2:IL2Rα.9 An affinity
analysis of PPI inhibitors with respect to their type of
interface showed that most inhibitors bound to the narrow
interfaces compared to the wide interfaces.18 Therefore,
careful analysis of PPI interface properties should also be an
important feature of a PPI drug discovery campaign. Optimal
targets will likely be narrow and/or contain small hotspot
regions which can be readily covered by a small molecule.

Another option would be to take advantage of the plasticity
of a PPI interface. There are examples where PPI modulators
have been shown to take advantage of conformational changes
which can occur when two proteins interact, binding to a
dynamic pocket.32 An example of this is BILH434 inhibition of
the human papillomavirus 11 E2 transcription factor.
Specifically, the E2 transcription factor interacts with the E1
helicase and DNA. BILH434 stops this interaction by binding to
the E1 enzyme in a deep hydrophobic pocket generated
through a conformational change of residues at the interface
region.34 A similar phenomenon was observed in the IL-2 PPI
inhibitor SP4206. Normally the IL2 interaction surface with
receptor α appears flat. However, in the presence of SP4206, a
pocket which is occupied by the inhibitor is observed.35 This
method was successfully utilised for the XIAP:SMAC PPI
interface. Specifically, a tetrapeptide derived from SMAC (AVPI)
was conformationally constrained via the fusion of two amino
acids, leading to a greater potency of this tetrapeptide.36

Similar considerations to conformation were applied in
structure-based design to generate non-peptide,
conformationally constrained, SMAC mimetics.37 One of these
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mimetics, xevinapant, is in clinical trials. These examples
highlight that reducing rotatable bonds may be an area of
improvement for future PPI inhibitor design. However, the
identification of such pockets is a non-trivial task, in many
cases difficult, both computationally and experimentally.62

Finally, orthosteric modulators may be a drug discovery
opportunity for PPI inhibition. Although PPI interfaces are
often large, orthosteric inhibitors that disrupt the interaction
do not necessarily need to be large. Instead they could
strongly bind via cryptic orthosteric pockets away from the
interface to disrupt the complementarity and prevent protein
association.63 The benefit for PPIs is that complete
disruption may not be required, as merely disrupting the
equilibrium may be sufficient for a therapeutic effect.64

Conclusion

The notion that PPIs are an undruggable target continues to
be challenged by new drug successes, especially as new drugs
arise from structure-based rational design and fragment
screening. However, the number of PPIs in the human
proteome is vast, and the number of PPIs which have been
modulated by small molecules remains negligible. Therefore,
targeting PPIs represents an exciting and mostly untapped
opportunity in drug discovery.

Here we analysed the physicochemical characteristics of
approved PPI modulators. PPI modulators in clinical trials
and experimental PPI modulators were investigated. We show
that the majority of PPI modulators in recent years display
properties that are more aligned with orally bioavailable
small molecules than with PPI drugs that are currently on
the market. We believe that these properties need to be
tighter (clogP to <3.5, MW <500, TPSA <100, HBD <3, and
RB <6) to allow for successful lead-to-drug optimisation,
providing a margin for the physicochemical properties'
inflation during the final steps of absorption, distribution,
metabolism and excretion toxicity (ADMET) optimisation.
Furthermore, incorporating fragment-based strategies and
knowledge about the target PPI properties, such as hotspot
analysis and dynamics of complex formation, will further
improve our ability to drug PPIs.
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