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Abstract

Alzheimer’s disease (AD) and cerebral small vessel disease (cSVD) are the two main causes 

of dementia with blood-brain barrier (BBB) breakdown being a common contributor. Recent 

advances in neuroimaging techniques offer new possibilities to understand how the brain functions 

in health and disease. This includes methods such as dynamic contrast-enhanced magnetic 

resonance imaging (DCE-MRI) which allows the detection of subtle regional changes in the 

BBB integrity. The purpose of this work is to provide a review on the recent DCE-MRI findings 

of subtle BBB leakage focusing on cSVD and AD, including both clinical and pre-clinical 

studies. Despite being widely used and well-established, we also highlight some of the DCE-MRI 

challenges and pitfalls faced in the context of dementia inherent to the subtle nature of BBB 

impairment.

Introduction

Given its unique metabolic needs, the brain is one of the most highly perfused organs in 

the body with 400- and 0.4-mile-long vascular network in humans and mice, respectively 

(Begley and Brightman, 2003; Zlokovic, 2008; Montagne et al., 2017). This represents 

on average one mile of vessels per three grams of human brain tissue and for mice it is 

even denser, with one mile of vessels per one gram of brain tissue. All brain capillaries 

are constantly perfused, and it has been estimated that no neuron is more than 10–20 μm 

away from a capillary (Tsai et al., 2009), which implies that every neuron has its own 

capillary and thus demonstrates the critical relationship between the vascular and neuronal 
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compartments. Importantly, there is increasing evidence supporting the involvement of brain 

vascular dysfunction in the early stages of brain disorders such as Alzheimer’s disease (AD) 

(Montagne et al., 2015, 2017, 2020; van de Haar et al., 2016a, 2016b; Nation et al., 2019; 

Sweeney et al., 2019a) and cerebral small vessel disease (cSVD) (Zhang et al., 2017b; 

Wardlaw et al., 2019). Furthermore, it was recently discovered that vascular cells express 

at least 30 of the top 45 AD risk genes using single-nucleus RNA sequencing on human 

brain samples (Yang et al., 2021), suggesting that the brain vasculature may play a larger 

role in the pathogenesis of dementia than was originally thought. Vascular dysfunction 

can take many forms, involving different cell types comprising the neurovascular unit 

(NVU), and including disruption of the blood-brain barrier (BBB), which plays a vital 

role in maintaining brain functions. Many neuroimaging and biofluid biomarker studies, 

as well as neuropathological studies have revealed the importance of BBB breakdown in 

the development and progression of common dementias, as extensively reviewed elsewhere 

(Sweeney et al., 2018a, 2018b, 2019b)

The most advanced method for investigating quantitatively and regionally subtle BBB 

failure in the living human or rodent brain is dynamic contrast-enhanced magnetic 

resonance imaging (DCE-MRI) using ~1 kDa paramagnetic gadolinium-based contrast 

agents (GBCAs). DCE-MRI method has become more and more available, and the field 

has now moved from the easily measured BBB damage in diseases with large permeability 

leaks (e.g., brain tumors, multiple sclerosis, or strokes), to more subtle disruption in chronic 

vascular disease and dementia. The slow accumulation of GBCAs from the intravascular 

into the extracellular extravascular space of the brain can be measured to determine regional 

BBB permeability, often referred as the blood-to-brain transfer constant, Ktrans. The low 

permeability is in the range of 10−4 to 10−3 min−1, while permeability in tumors is at least 

an order of magnitude higher (i.e., 10−2 min−1). There are several mathematical models to 

compute Ktrans that differ in complexity and assumptions under which they can be applied 

(Barnes et al., 2016). All the pre- and post-processing steps towards quantifying subtle BBB 

Ktrans measurements from DCE-MRI datasets have been summarized elsewhere (Montagne 

et al., 2016; Raja et al., 2018; Thrippleton et al., 2019; Manning et al., 2021).

In this review, we briefly discuss the role of BBB in health and dementia with a focus 

on cSVD and AD. Next, we examine the recent DCE-MRI studies performed in both 

humans and animal models relevant to cSVD and AD pathologies. Finally, we comment on 

the DCE-MRI challenges and pitfalls from image acquisition to data analysis steps in the 

context of low-permeability applications.

Blood-Brain Barrier in Health and Dementia

The primary role of the healthy BBB is to keep potentially toxic blood-derived components 

such as cells and pathogens out of the brain (Zlokovic, 2011; Sweeney et al., 2019b). At 

the same time, the BBB regulates the transport of molecules in-and-out of the brain and 

thus controls the chemical composition of the neuronal milieu which is essential for proper 

neuronal function (Zlokovic, 2011; Zhao et al., 2015; Sweeney et al., 2019b). The BBB 

comprises several components including endothelial cells, pericytes, basement membrane, 

astrocyte end feet, neuronal projections and surrounding glial cells, which altogether form 
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the NVU (Figure 1). Pericytes, embedded within the basement membrane, wrap around 

endothelial cells that line the BBB, followed by astrocytic end feet encircling them. The 

BBB links to neurons in a process called neurovascular coupling where alterations in local 

blood flow occur in response to changes in neuronal activity (Abbott et al., 2010). Other 

glial and immune cells such as oligodendrocytes, microglia and perivascular macrophages 

are also in close and sometimes direct contact with the other NVU components allowing 

for intimate crosstalk (Abbott et al., 2010; Procter et al., 2021). Brain endothelial cells 

possess a specialized genetic profile which confer the barriers’ characteristic properties of 

limiting paracellular permeability (Pfau et al., 2021). Brain endothelial cells have indeed 

higher expression of junctional proteins such as adherens junctions (e.g., VE-cadherin), tight 

junctions (e.g., Occludin, Zonula Occludens-1, Claudin-5) and gap junctions, as detailed 

elsewhere (Stamatovic et al., 2016). Of note, tight junctions are important in limiting 

movement of small molecules (<0.8 kDa) across the BBB (Nitta et al., 2003).

In recent years, there is a growing body of evidence for the contribution of BBB breakdown 

in the development and progression of common dementias such as AD and cSVD (Figure 

1), as comprehensively examined elsewhere (Sweeney et al., 2018b, 2019a; Wardlaw et al., 

2019). Just to highlight a few, there is neuropathological evidence of BBB disruption in AD 

and cSVD brains as indicated by loss of pericyte coverage of the brain capillary wall as well 

as perivascular accumulation of blood-derived fibrin(ogen) (Halliday et al., 2016; McAleese 

et al., 2019). Strikingly, a large post-mortem study found that four out of five AD patients 

had signs of vascular pathology (Toledo et al., 2013). There are also biofluid biomarker 

studies providing further evidence of BBB damage being an important feature of dementia 

pathophysiology. For instance, increased levels of the most common biofluid marker of 

BBB breakdown, albumin quotient (Qalb), were found in AD (as reviewed in (Sweeney 

et al., 2019b)). Additionally, cerebrospinal fluid (CSF) levels of soluble platelet-derived 

growth factor receptor-β (sPDGFRβ), a marker of damaged pericytes (Montagne et al., 

2015; Sweeney et al., 2020), were found increased with normal aging (Montagne et al., 

2015) and markedly accelerated as cognition declined (Montagne et al., 2015, 2020; Nation 

et al., 2019; Ding et al., 2020). Interestingly, CSF sPDGFRβ is significantly elevated in 

cognitively unimpaired individuals carrying the E4 variant of apolipoprotein E (APOE) 

APOE4 (Montagne et al., 2020), the major genetic risk factor for AD, hinting that BBB 

disruption may be an early marker of cognitive dysfunction and could be considered 

as a possible driving factor leading to dementia. Besides neuropathological and biofluid 

biomarkers findings, there are now improved neuroimaging methods such as DCE-MRI 

which allows for quantifying subtle and local disruption of the BBB in the living human or 

rodent brain (Raja et al., 2018; Thrippleton et al., 2019). Here, we next summarize the most 

recent publications using DCE-MRI in the context of cSVD and AD, and applied in both 

clinical and pre-clinical settings.

DCE-MRI technique

DCE-MRI collects dynamic T1-weighted MRI images that can monitor the change in signal 

intensity over time. After the collection of some baseline images, a GBCA is injected, 

this increases the signal intensity proportional to the concentration of the contrast agent. 

The changes in signal intensity, along with a T1 map (typically measured right before the 
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DCE scan), are used to calculate a quantitative concentration of contrast agent in the blood 

plasma (Cp) and in the brain tissue, the extracellular extravascular space (Ct). The transport 

between these two compartments can then be modeled mathematically to solve for various 

physiological parameters. The most commonly used model for BBB measurements, the 

Platlak model, has two parameters that are solved for: Ktrans, a transfer constant from the 

blood plasma to the extravascular extracellular space, and Vp, the volume of blood plasma 

(Figure 2).

There are many different techniques to acquire T1-maps and T1-weighted MRI images. To 

our knowledge there has not been a thorough analysis of the tradeoffs or superiority of any 

given technique. The variety of techniques used is likely a significant source of variability 

across studies, a rigorous comparison and consolidation to recommended techniques would 

likely benefit the field. For the dynamic T1-weighted images, spoiled gradient echo (SPGR) 

is by far the most common sequence used, likely because it is the fastest technique. Fast low 

angle shot (FLASH), SPGR, fast spoiled gradient echo (FSPGR), and gradient echo (GRE) 

are generally equivalent. Some papers utilized saturation recovery gradient echo sequences 

or spin echo sequences which are both somewhat slower but can still give high quality DCE 

images.

There were three main categories of T1-mapping techniques utilized by studies in this 

review. Variable flip angle (VFA) typically uses a SPGR sequence with identical parameters 

to the dynamic T1-weighted acquisition. This is repeated generally three to seven times 

with different flip angles. This is a very fast technique for T1 mapping, and by utilizing the 

same sequence type and parameters as the dynamic T1-weighted scan, blood inflow effects 

and artifacts should be similar between the T1 mapping and dynamic sequence. Variable 

repetition time (VTR) techniques also use multiple image acquisitions but with different 

repetition times. These are usually a bit slower than VFA, may have different inflow effects 

across images, but are less sensitive to B1 inhomogeneity which can cause significant errors 

in VFA techniques. Finally, inversion recovery techniques such as TAPIR, fast T1 mApping 

sequence with Partial Inversion Recovery, were utilized in a few studies. These are generally 

a little slower but give high quality T1 maps.

Methods

Search Sources and Selection Criteria

We reviewed the existing literature on DCE-MRI of subtle BBB permeability in aging, 

cSVD, and AD. The literature available on Pubmed was searched from January 1, 2015 to 

May 7, 2021. The following combinations of keywords were searched to be in the title, 

abstract and/or keywords of the article: (Dynamic contrast enhanced MRI) AND (small 

vessel disease): 30 results; (Dynamic contrast enhanced MRI) AND (Alzheimer’s disease): 

29 results; (Dynamic contrast enhanced MRI) AND (aging): 47 results; (Dynamic contrast 

enhanced MRI) AND (dementia): 32 results; (Dynamic contrast enhanced MRI) AND 

(cognition): 68 results. In total, 206 references were obtained.
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Inclusion and Exclusion Criteria

After exclusion of 71 duplicates, a total of 135 references were obtained from the initial 

Pubmed search. Out of 135 references, 96 were rejected as they were out of scope. 

From the 39 remaining publications, 23 were clinical, 3 pre-clinical, 5 methodological 

recommendations, and 8 review articles. In addition, we included 11 recent DCE-MRI 

publications that fit the scope of our review but did not appear at the initial search. These 

include 6 clinical studies, 3 pre-clinical studies, and 2 additional reviews. In total, 50 papers 

were reviewed in this article. See flow diagram in Figure 3. The main findings, sample 

characteristics, and protocol used in the clinical studies are detailed in Table 1 (cSVD; 11 

publications) and Table 2 (normal aging, mild dementia, and AD; 14 publications), while 

pre-clinical studies are detailed in Table 3 (6 publications).

DCE-MRI in cSVD

Cerebral SVD covers a wide array of pathologies involving the dysfunction of the small 

vessels of the brain. Clinical manifestations include stroke, cognitive impairment, or gait 

disturbance. Many studies reported BBB impairment in cSVD patients, particularly in the 

white matter (WM) (Thrippleton et al., 2019). A growing number of neuroimaging studies 

have described subtle BBB breakdown in the living cSVD brain using DCE-MRI technique, 

as summarized in Table 1 and further discussed below.

White matter hyperintensities (WMH) are a common finding in the elderly population and 

a key feature of cSVD. While their pathogenesis remains yet unclear, BBB leakage is the 

most accepted hypothesis. In their 2017 article, Li et al. assessed the BBB permeability 

in a sample of 102 patients with low, medium, or high cSVD burden and found that 

global BBB permeability was associated with higher WMH burden (Li et al., 2017). The 

same year, Wardlaw’s group also found a relationship between BBB permeability and 

WMH burden in a cohort of 201 cSVD patients (Wardlaw et al., 2017). Notably, they 

highlighted the fact that the healthy WM tissue surrounding WMH presented increased BBB 

permeability, suggesting that BBB disruption could precede further extensions of the WMH 

lesions. This result was recently confirmed by Kerkhofs et al. who demonstrated that BBB 

leakage nearing WMH is related to changes in WM diffusivity, an MRI-based diffusion 

marker of tissue degeneration possibly caused by local BBB damage (Kerkhofs et al., 2021). 

Furthermore, Wong et al. observed a negative correlation between cerebral blood flow (CBF) 

and BBB leakage in the tissue surrounding WMH in 27 cSVD patients (Wong et al., 2019).

DCE-based differences in BBB leakage due to normal aging and cSVD may be very subtle 

as illustrated by the work of Zhang et al. who did not observe a significant difference in 

BBB leakage rate (Zhang et al., 2017a). However, leakage extent was found to be higher 

in cSVD patients. Also, Binswanger’s disease (BD) belongs to the cSVD spectrum and is 

characterized by an extensive involvement of WM and impairment of executive functions. 

Differentiating BD from other cSVD-related conditions is often difficult; hence, Rosenberg 

et al. aimed to define more specific biomarkers. Among these, WM BBB permeability was 

found to be increased in BD patients compared to a combined group of patients having 

multiple infarcts, mixed AD/vascular cognitive impairment (vCI), or leukoaraiosis (Huisa et 

al., 2015; Rosenberg et al., 2015).
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A known consequence of BBB disruption is the increasing occurrence of microbleeds 

(Wardlaw et al., 2019). Uchida et al. successfully correlated iron accumulation detected by 

quantitative susceptibility mapping MRI to local BBB leakage in patients with Cerebral 

Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy 

(CADASIL), emphasizing how alternate imaging techniques could support DCE-MRI 

findings (Uchida et al., 2020). Another alternate method would be to measure vessel density, 

diameter, and size from the R2 and R2* relaxation rates upon GBCA injection (Choi et al., 

2020)

In a cohort of older subjects at risk for cSVD, Shao et al. compared DCE-MRI to an arterial 

spin labeling (ASL)-based technique allowing measurement of water permeability across the 

BBB (Shao et al., 2020). Interestingly, they found only few correlations between Ktrans and 

kw, suggesting that the mechanisms regulating the permeability of water or contrast agents 

across the BBB are likely to be different.

DCE-MRI in the AD-continuum

The vascular contribution to AD pathophysiology is increasingly recognized. As such, BBB 

breakdown is considered an important player in the development and progression of the 

most common cause of dementia (Sweeney et al., 2018a, 2018b, 2019b). Thus, it is not 

surprising to see a growing number of DCE-MRI studies performed in the normal aging to 

AD spectrum, as reviewed in Table 2 and examined hereafter.

Normal Aging

In 2015, Montagne et al. first showed an age-dependent BBB leakage starting in the 

hippocampus in a cohort of 24 healthy individuals ranging from 23 to 91 years of age 

(Montagne et al., 2015), which was further confirmed in a larger cohort of 46 cognitively 

unimpaired participants (Montagne et al., 2019). Another group also observed that global 

BBB impairment was correlated with age (Verheggen et al., 2020a) and cognitive decline 

(Verheggen et al., 2020b) in a sample of 57 healthy elderly individuals. Interestingly, Moon 

et al. investigated gender-related differences in BBB permeability in a sample of 75 elderly 

patients (51 females). They showed that while women are better protected than men with 

regards to age-related BBB disruption thanks to the protective effect of estrogens, they 

are also more sensitive to late BBB disruption in the occipital cortex, where the estrogen 

receptor is more expressed (Moon et al., 2021). Another recent DCE study spotted subtle 

differences between brain regions in a cohort of 35 cognitively normal elderly participants, 

with the lowest and highest Ktrans values in the frontal and occipital WM, respectively(Ha et 

al., 2021). Of note, no differences between left and right hemispheres were detected. Finally, 

enlarged perivascular spaces (EPVS) are a common finding in normal aging, and highly 

increased EPVS load is a feature of both cSVD and AD. In a sample of 109 middle-aged to 

elderly participants, Li et al. found that BBB leakage and EPVS burden were associated in 

the basal ganglia (Li et al., 2019).
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Mild Dementia

Although regional BBB leakage seems to occur during normal aging, Montagne et al. also 

reported that hippocampal BBB disruption worsened as participants’ cognition declined 

(Montagne et al., 2015, 2019). A following study from the same group observed a local 

increase of BBB permeability in the medial temporal lobe (MTL) (including the hippocampi 

and parahippocampal gyri) of 42 patients with mild cognitive impairment (MCI) compared 

to 20 age-matched cognitively unimpaired controls (Nation et al., 2019). Interestingly, the 

authors demonstrated that MTL vascular leakage is an independent, early biomarker of 

cognitive impairment unrelated to amyloid-β (Aβ) and tau pathology, as the positivity for 

the respective CSF biomarkers Aβ42 and phosphorylated tau (pTau) did not affect the results.

Recently, the same authors questioned the relation between APOE4 genotype and BBB 

permeability in a cohort of 245 elderly MCI and cognitively unimpaired participants 

(Montagne et al., 2020). Increased BBB permeability in the MTL was confirmed in MCI 

and further accelerated in APOE4 carriers. Interestingly, cognitively unimpaired individuals 

carrying APOE4 had substantially higher MTL BBB Ktrans values compared non-carriers 

(Montagne et al., 2020), supporting the involvement of BBB dysfunction early in the course 

of AD.

A study by Li et al. showed that BBB leakage in WMH was significantly higher in vascular 

MCI individuals, an uncommon condition where the sole cause for cognitive impairment 

is vascular pathology, when compared to age- and sex-matched healthy controls (Li et al., 

2021). Additionally, Freeze et al. investigated the link between BBB leakage, WMH, and 

processing speed in a cohort of 80 elderly participants, including 34 MCI as well as 14 

AD patients (Freeze et al., 2020). The authors found an association between increased BBB 

permeability in WMH and cognitive impairment suggesting that local BBB breakdown may 

trigger WM lesions which could then explain the reduction in information processing speed 

(Freeze et al., 2020).

Alzheimer’s Disease

In their AD cohort, Freeze et al. found that BBB disruption throughout the whole brain was 

associated with cSVD severity, independently of cognitive status (Freeze et al., 2020). The 

group of Backes recently studied BBB dysfunction in AD using DCE-MRI method. For 

instance, they confirmed the relationship between BBB disruption and early AD in a cohort 

of 33 elderly, whom 9 presented MCI and 7 AD diagnosis. Indeed, AD patients showed 

increased BBB leakage in the whole brain, which worsened with cognitive impairment (van 

de Haar et al., 2016a). In a follow-up study, the same authors also observed a general 

decrease in CBF in the gray matter of early AD patients, which correlated with increased 

BBB leakage in a cohort of 14 MCI/AD and 16 age-matched controls (van de Haar et al., 

2016b, 2017).

DCE-MRI in pre-clinical models relevant to dementia

As MRI is becoming more accessible, DCE method is also increasingly applied in a variety 

of rodent models that are relevant to dementia (see Table 3).
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Pericyte Deficiency

Pericytes are a major component of the BBB, especially at the capillary level where the 

smooth muscle layers are lacking (Procter et al., 2021). Pericytes wrap around endothelial 

cells that line the BBB, and their dysfunction is thought to play a critical role in aggravating 

dementia (Sweeney et al., 2019b; Uemura et al., 2020). Analyses of post-mortem brains and 

CSF samples provided substantial evidence supporting early pericyte loss in AD (Baloyannis 

and Baloyannis, 2012; Sagare et al., 2013; Sengillo et al., 2013; Miners et al., 2018), 

mild dementia (Montagne et al., 2015, 2020; Nation et al., 2019), stroke (Yemisci et al., 

2009; Hall et al., 2014), and cSVD (Ghosh et al., 2015; Montagne et al., 2018). Using 

DCE-MRI in a chronic mouse model of pericyte deficiency, Montagne et al. reported a 

global and age-dependent increase in BBB permeability with the highest Ktrans values found 

in WM structures (Montagne et al., 2018). Also, they observed CBF reduction and EPVS 

in the WM of young pericyte-deficient mice, which are common findings in the aged 

brain (Montagne et al., 2018). In another model of acute pericyte ablation, the same group 

reported a substantial circulatory failure with acute BBB disruption and reduced CBF in 

the cortex and hippocampus, followed by rapid neuronal loss (Nikolakopoulou et al., 2019). 

These pre-clinical results emphasize the role of pericytes in BBB homeostasis and promote 

the use of DCE-MRI to detect subtle BBB changes in the living rodent brains.

Amyloid Models

Although several studies found increased BBB permeability to gadolinium contrast agent in 

rodent models of AD (Montagne et al., 2017), Dickie et al. failed to observe BBB Ktrans 

changes in old TgF344-AD rats compared to wildtype controls but did find an increase 

in water permeability (Dickie et al., 2021). It suggests that old TgF344-AD rats do not 

develop BBB breakdown with loss of tight junction proteins as one would assume, but 

rather show an increase in water exchange rate that is facilitated by dedicated water channel, 

predominantly aquaporin-4 (AQP4) in astrocytes and aquaporin-1 (AQP1) in endothelial and 

mural cells. Of note, it is important to clarify that Kw and Ktrans are measuring two very 

different processes, one being the water exchange rate across the BBB and the other one the 

BBB permeability to gadolinium contrast (Shao et al., 2020).

As shown in humans carrying APOE4 (Montagne et al., 2020), the same group found that, 

compared to APOE3, APOE4 accelerates BBB breakdown, loss of CBF, neuronal loss, 

and behavioral deficits independently of Aβ using aged APOE knock-in mice crossed with 

5xFAD mice (Montagne et al., 2021). Such results support that BBB disruption may occur 

earlier than anticipated in AD and be an early contributor to the pathogenesis of the disease, 

thus emphasizing the need for appropriate methods to detect subtle BBB leakage in humans.

Vascular Risk Factors

Several conditions related to lifestyle are associated with BBB disruption. Wang et al. 

found a sharp increase of BBB Ktrans measured in the cortex and hippocampus of aged 

spontaneously hypertensive rats compared with controls (Wang et al., 2018). Similarly, 

diabetes increased BBB leakage in the cortex, hippocampus, and thalamus of aged rhesus 

monkeys (Xu et al., 2017). While BBB disruption occurring due to normal aging cannot be 
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prevented, moderating the lifestyle factors known to affect vessel wall integrity could delay 

the occurrence of clinical consequences.

DCE-MRI Challenges and Pitfalls in Dementia

The small amounts of leakage that occur in cSVD and AD bring the inherent difficulty 

of detecting and quantifying very small signal changes in DCE-MRI. This is a significant 

technical challenge, but steady progress is being made in identifying and mitigating the 

various challenges. Here we highlight some of the principal challenges that can prevent 

accurate data. For a more thorough review of the technical challenges, recommended 

acquisition, and processing steps, see the recent review by (Thrippleton et al., 2019).

Motion

Patient motion is a significant concern over the course of a 10–20-minute DCE acquisition. 

Even small changes in head position can cause changes in tissue type in a given voxel, 

particularly at parenchyma-CSF boundaries. These changes show up as gradual increases 

or decreases in signal intensity. This will bias measured Ktrans values higher or lower, 

even causing Ktrans to have negative values. Figure 4 shows an example of a measured 

percent signal change over 12 minutes DCE acquisition without any contrast injection, so 

the expected signal change is zero. Images are shown with and without motion correction 

co-registration algorithms, and show signal changes up to 25% near CSF boundaries. These 

changes occur even though there is minimal motion (<0.5 mm of displacement in any 

direction) but are almost entirely corrected with co-registration. Motion correction with co­

registration is recommended for all DCE studies (Thrippleton et al., 2019), and more recent 

publications have demonstrated errors in fit parameters of >200% in some voxels including 

many negative Ktrans values from even low motion that are almost entirely corrected with 

co-registration (Bernal et al., 2021). We have found co-registration is more effective when 

a brain mask is applied first, as scalp motion can be independent of brain motion and DCE 

measurements in the scalp are usually of little interest.

Signal Drift

Small amounts of signal intensity drift over time can be a significant source of error as they 

can be comparable to the amount of signal intensity change from the contrast agent (Barnes 

et al., 2016). A frequent cause of signal drift is temperature changes of the MRI hardware 

and electronics. In animal acquisitions this can be caused by thermal support systems for 

the animal (particularly blowing warm air into the bore), and care should be taken to 

achieve a steady temperature and not make adjustments for the entirety of the acquisition. 

In humans, newer wide bore systems (70 cm bore diameter) are more susceptible to heat 

transfer from the gradients, and gradient heavy sequences (such as diffusion tensor imaging) 

can potentially cause heating and signal drift after they are run (as the gradients cool). Signal 

drift is very system-dependent and therefore it is recommended to acquire some datasets 

without contrast injection to evaluate any signal drift on the scanner that will be used. If 

signal drift is a problem on a particular system, it can be monitored and corrected to some 

extent with constant signal intensity phantom added to the field of view (Barnes et al., 

2016; Thrippleton et al., 2019). This is usually a water tube dopped with a small amount of 
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gadolinium contrast agent. Care should be taken to make sure the phantom is large enough 

that the signal can be reliably measured, so small movements are not mistaken for signal 

drift.

Vascular Input Function

The measurement of the vascular input function is a critical step that can have a large effect 

on the final Ktrans values. It can be challenging to make accurate measurements for a variety 

of reasons including: motion artifacts of the flowing blood, small size of vessels causing 

partial volume errors, inflow of fresh blood that has seen few radiofrequency (RF) pulses 

and hasn’t reached steady state, and insufficient temporal resolution to accurately measure 

the first pass of the contrast bolus. While each of these can be a source of considerable error, 

most can be minimized by simple acquisition choices. A coronal acquisition, measuring 

in the superior sagittal sinus (SSS), and a slow contrast agent injection (greater than the 

temporal resolution) generally gives good results. The coronal acquisition exposes the blood 

to many RF pulses ensuring it will reach steady state, as the 2D excitation slab will extend 

through the neck, and possibly to the heart depending on the angle of the slab (Thrippleton 

et al., 2019). Measuring in the SSS minimizes the flow speed and associated artifacts 

compared to arterial measurements. The blood in the SSS has also been exposed to more 

RF pulses traveling through the brain, so is more likely to achieve steady state. The SSS 

is also relatively large and stationary so will minimize partial volume errors. The venous 

measurements have been shown to be very similar to arterial measurements and are largely 

just shifted by 5–7 seconds (Sourbron et al., 2009; Foottit et al., 2010). For acquisitions with 

temporal resolution greater than 7 seconds there will be little measurable difference. Finally, 

injecting the contrast agent over a longer duration will minimize errors in measuring the first 

pass of a bolus injection (Manning et al., 2021).

Conclusion

DCE-MRI underlined the occurrence of local, subtle, and progressive BBB leakage in aging. 

One of the plausible causal links to cognitive impairment and dementia is through the 

passage of blood-derived neurotoxic compounds from the blood to brain tissues, causing 

progressive damage in strategic regions such as the WM and medial temporal lobe. The 

integrity of the BBB depends on the cohesion of all its components, especially at the 

capillary level which represents the largest surface for blood contact. Pericytes are found 

on the whole vascular tree and are key actors in the regulation of vasomotricity and BBB 

permeability. APOE4 genotype leads to faster BBB disruption, which could prevent waste 

removal and trigger amyloid-related pathologies such as AD. Inter-regional differences, as 

well as gender-related differences in the development of BBB disruption may lead to a more 

precise interpretation of the experimental results. Pre-clinical transgenic models, as well 

as clinical cohorts, have helped to connect vascular aging to cognitive impairment and led 

to important insights on the physiology and disease processes. However, detecting earlier 

stages of BBB breakdown is challenging and may require additional technical innovations 

in DCE-MRI acquisition and processing techniques. Alternate methods evaluating the water 

permeability of the BBB does not necessarily correlate with DCE-MRI, thus emphasizing 
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the complexity of the exchanges occurring across the BBB and the need for additional 

studies to understand these mechanisms.
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Highlights

• BBB breakdown is a major driving force in dementia pathology.

• DCE-MRI is the most advanced method to investigate BBB leakage in the 

living human and rodent brain.

• Many different DCE-MRI techniques and imaging processing methods exist.

• Detecting subtle BBB breakdown using DCE-MRI can be challenging.
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Figure 1. Blood-brain barrier in health and dementia.
A simplified neurovascular unit (NVU) diagram showing a healthy blood-brain barrier 

(BBB) with the interactive cellular network at the level of brain capillaries that comprises 

endothelial cells, pericytes, basal membrane, and astrocyte end-feet (top panel). In dementia, 

changes to endothelial cells and pericytes lead to loss of function and BBB breakdown 

with loss of tight junction proteins (bottom panel). Subtle extravasation of Gadolinium 

(Gd) contrast can be detected using dynamic contrast-enhanced magnetic resonance imaging 

(DCE-MRI) in both living cerebral small vessel disease (cSVD) and Alzheimer’s disease 

(AD) participants. Subsequent damage then occurs to the surrounding brain cells such as 

astrocytes, neurons, and oligodendrocytes contributing to pathology and cognitive decline 

(Figure created using Biorender.com).
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Figure 2. DCE-MRI and BBB assessment.
DCE-MRI is used to measure BBB integrity by measuring the concentration of gadolinium 

contrast agent over time in the blood plasma (Cp) and in the brain tissue (Ct). These 

measured concentrations are then used to calculate the blood-to-brain transfer coefficient 

(Ktrans) and the blood volume (vp) using the Patlak mathematical model (Figure created 

using Biorender.com).
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Figure 3. Flow Diagram of literature search.
Recent research articles and reviews (January 1, 2015 - May 7, 2021) focusing on 

blood-brain barrier (BBB) permeability measured by dynamic contrast-enhanced magnetic 

resonance imaging (DCE-MRI) in normal aging, cerebral small vessel disease (cSVD) or 

Alzheimer’s disease (AD) were recovered from Pubmed search. In addition to the 39 articles 

retrieved from the systematic search, 11 additional articles highly relevant to our focus 

were added (green boxes), leading to a total of 50 reviewed papers. Research articles were 

categorized into three tables: Tables 1 and 2 summarize DCE-MRI studies performed in 

cSVD participants (11 publications) and in the AD continuum [including normal aging, 

mild cognitive impairment (MCI), and AD participants] (14 publications), respectively; 

Table 3 summarizes pre-clinical DCE-MRI studies in animal models relevant to dementia (6 

publications). *Some studies have occurrences for several conditions.
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Figure 4. Dynamic contrast-enhanced magnetic resonance imaging and motion correction.
Dynamic contrast-enhanced (DCE) protocol acquisition without contract injection shows 

percent signal change calculated from a linear fit over time (top images). Left image 

is the ‘without motion correction’ and shows signal changes up to 25%, particularly at 

cerebrospinal fluid (CSF)-tissue interface, due to small motions of subjects’ head. Right 
image is the same dataset after motion correction, which shows almost all signal change is 

eliminated. Bottom graphs show calculated brain motion relative to the first image along the 

three principal axis (A-P, anterior-posterior; R-L, right-left; I-S, inferior-superior). Even <0.5 

mm of motion can induce significant signal changes (Images courtesy of SRB).
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