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Abstract

Defining and identifying causal intervention effects for transmissible infectious disease outcomes

is challenging because a treatment – such as a vaccine – given to one individual may affect the

infection outcomes of others. Epidemiologists have proposed causal estimands to quantify effects

of interventions under contagion using a two-person partnership model. These simple conceptual

models have helped researchers develop causal estimands relevant to clinical evaluation of vaccine

effects. However, many of these partnership models are formulated under structural assumptions

that preclude realistic infectious disease transmission dynamics, limiting their conceptual

usefulness in defining and identifying causal treatment effects in empirical intervention trials. In

this paper, we propose causal intervention effects in two-person partnerships under arbitrary

infectious disease transmission dynamics, and give nonparametric identification results showing

how effects can be estimated in empirical trials using time-to-infection or binary outcome data.

The key insight is that contagion is a causal phenomenon that induces conditional independencies

on infection outcomes that can be exploited for the identification of clinically meaningful causal

estimands. These new estimands are compared to existing quantities, and results are illustrated

using a realistic simulation of an HIV vaccine trial.
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1 Introduction

Estimating the causal effect of an intervention can be challenging when the outcome of

interest is contagious [41]. For example, a vaccine intended to prevent infection by a

transmissible disease may reduce the risk of infection in individuals who receive it, and may

reduce transmissibility if a vaccinated individual becomes infected. When study subjects are

embedded in interacting groups among whom the disease may be transmitted, it can be

difficult to separate the effect of one subject’s vaccination on themselves from its effect on

other individuals and the group as a whole. Usually, the estimand of greatest clinical interest

is the effect of an intervention on individual risks of infection, holding all else constant.
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The pursuit of empirically meaningful definitions of population-level causal vaccine effects

has a long history. Greenwood and Yule [19] first described informally the conditions under

which vaccine effects can be estimated. Halloran et al. [24] established some of the first

theory and definitions for clinically meaningful vaccine effects, and subsequent work by

Halloran and colleagues [22, 26, 27] described epidemiological study designs for identifying

these quantities. Halloran and Struchiner [23] gave the first formal definitions of causal

vaccine estimands using notation and assumptions of a modern counterfactual-based causal

inference framework [54]. Hudgens and Halloran [31] and Tchetgen Tchetgen and

VanderWeele [60] showed how this formalism could be applied in empirical randomized

trials of clustered individuals [21, 29]. More recently, researchers have shown that

randomized trials may not measure clinically meaningful intervention effects when infection

can be transmitted within groups [15, 40, 59].

Researchers have described two-person partnership models of infectious disease

transmission for defining more granular, or individual, causal intervention effects.

VanderWeele and Tchetgen Tchetgen [64] introduced a partnership model consisting of two

interacting individuals who may be vaccinated and can transmit the infection to each other.

By limiting the extent of potential disease transmission to two individuals, effects can be

more easily defined in terms of potential outcomes indexed by treatments of both individuals

and the outcome of their partner. The partnership model can accommodate many types of

epidemiological relationship where infectious disease transmission may occur between

indidivudals. The partnership model can accommodate, for example, parent-child

relationships, sibling relationships, needle-sharing partnerships among injection drug users,

or sexual partnerships. While nearly all real-world partnerships occur in the context of a

broader network of epidemiological relationships with others, partnership models may be

useful when pairs are drawn nearly independently from disparate networks, so that pairs

experience independent exposure to infection from outside the partnership. For example, a

study of disease transmission among cohabitating couples chosen from different cities could

plausbly claim that the pairs experienced independent exposure to infection from outside the

relationship.

Using a principal stratification approach, the partnership model permits computations of

bounds for the infectiousness effect [10, 20, 64]. VanderWeele et al. [66] presented a special

case of the partnership model in which one individual is home-bound, and can only be

infected via transmission from the other. The assumed asymmetry in the disease

transmission structure – the home-bound partner cannot be infected from a source external

to the partnership and cannot infect the other partner – makes this model tractable for point

identification of contagion and infectiousness effects by ensuring that interference only

happens in one direction. Interference arises when an individual’s potential outcomes

depend on the treatment status of others [13]. To allow for mutual dependence of

individuals’ potential outcomes on others’ treatments, Ogburn and VanderWeele [43] extend

this approach to allow both individuals to be treated, with transmission occurring only from

one specified individual to the other. However, Ogburn and VanderWeele [42] show using

causal diagrams that transmission complicates application of existing mediation techniques,

requiring additional structural assumptions about the nature of dependence among outcomes

under different forms of interference [6, 44, 55, 57]. Shpitser et al. [57] proposed extensions
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of mediation analysis to symmetric mediation settings, using statistical chain graph models

that do not require a priori fixing the individual whose outcome plays the role of the

mediator within the partnership.

When the outcomes are time-dependent processes – as is often in infectious disease

transmission dynamics – binary outcome indicators and specified time windows may be

used to define outcomes so that the mediation-based approaches may be applied. But these

definitions can complicate identification of causal effects because (i) a repeatedly measured

outcome over time may introduce multiple mediators, and (ii) absence of the outcome at

prior time points as a prerequisite for later measurements induces time-varying confounding.

Existing methods for longitudinal mediation analysis have therefore either focused on

defining “interventional” indirect effects in terms of combined path-specific effects that can

be non-parametrically identified [36, 56, 65, 67, 69], or adopted approaches that avoid

defining nested counterfactuals for time-to-event outcomes [1, 14]. These approaches to

longitudinal mediation share the common prerequisite that the roles of the outcomes within

each partnership are asymmetric.

Statisticians and epidemiologists have developed parallel literature devoted to mathematical

modeling of infectious disease transmission dynamics. This work treats infectious disease

transmission as a dynamic temporal phenomenon: the risk of infection in a given subject

may change over time, as a function of the infection status of their contacts, and covariates.

For example, Rhodes et al. [51] present hazard models of infectious disease transmission in

groups that accommodate individual-level (e.g. treatment) variables with possibly different

effects on susceptibility and infectiousness. Kenah [33, 34] extends these ideas to develop

nonparametric and semi-parametric statistical models for estimating covariate effects under

contagion. Structural transmission modeling has gained wide use in clinical studies of

infectious disease dynamics because it combines mechanistic assumptions about infectious

disease transmission with regression-style covariate adjustment [3–5, 7–9, 46, 61, 62, 68].

In this paper, we take a different approach to define and identify intervention effects in

symmetric two-person partnerships under contagion. We seek to combine approaches from

causal mediation analysis and mathematical modeling of transmission to develop a

nonparametric framework that formalizes the role of time in infectious disease transmission

from a causal perspective. In our construction, either individual can be vaccinated, can be

infected from outside, and can infect the other if infected themselves. An individual’s

treatment (or vaccine status) and covariates may affect both susceptibility to, and

infectiousness of, their infection outcome. We first introduce a generic causal model and

straightforward assumptions that permit non-parametric identification of “exposure-

controlled” and natural “exposure-marginalized” contagion, susceptibility, and

infectiousness effects. Briefly, the contagion effect captures how transmissible the infection

is from an infected individual to an uninfected individual. The susceptibility effect

summarizes the effect of treatment on the infection outcome of individual who receives it.

The infectiousness effect indicates the effect of an individual’s treatment on others’

outcomes, when that individual is infected. We propose a framework that is non-parametric

and imposes no restrictions on the joint distribution of infection times in a partnership.

Before any infections have occurred in a partnership, the potential first infection times are
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conditionally independent, because neither partner can yet transmit the infection to the other.

After the first infection, the time to infection of the remaining susceptible partner is now a

function their partner’s, as well as their own, treatment and covariates. Because the resulting

causal model incorporates this temporally changing structure, it is more complex than

settings considered in other proposals. In particular, the causal effects defined in this paper

differ from the “direct” and “indirect” effects defined using the interference framework

developed by [31] in ways we describe formally. On the other hand, this added complexity

yields straightforward point identification results that cannot be obtained by treating the

infection outcomes of both individuals as simultaneous mediating variables [10, 20, 64].

Lastly, we discuss nonparametric identification under randomization and in observational

settings, compare these estimands to existing quantities proposed by other authors, and

conduct a simulation analysis of a hypothetical HIV vaccine trial to illustrate the estimands.

2 Setting

Consider a population consisting of pairs of individuals, henceforth referred to as

partnerships. Within a partnership, either individual can be infected from an external source

(exogenous to the partnership), and once infected, an individual may internally (endogenous

to the partnership) transmit the infection to their uninfected partner. Label the individuals in

the partnership 1 and 2. In a given partnership, let Ti be the infection time of person i, and let

Y i(t) = 1 T i < t  be the indicator of prior infection at time t. Let Xi be the binary treatment

status of i, and let X = (X1, X2) be the joint binary treatment vector for the partnership. Let

L = (L1, L2) be measured baseline covariates for the two individuals, including shared

covariates for the partnership as a whole. In each partnership, we observe (T1, T2, X1, X2,

L1, L2). In a symmetric partnership, the labels for individuals 1 and 2 may carry meaning

(e.g. in mother-child pairs), or may be arbitrary and interchangeable. We will use the index i
to refer generically to one individual, either 1 or 2, and j to refer to the partner of i.

To describe the causal structure of infectious disease transmission within a partnership, we

consider a decomposition of the infection time Ti that will help us define counterfactual

infection times under different circumstances. Recall that both individuals are uninfected at

baseline, and let Wi be the time to initial infection of i from a source of infection external to

the partnership. If i is the first in their partnership to become infected, then we observe Wi. If

their partner j is infected first, we observe Wj = wj and Wi is censored at time wj. When Wi

is censored by earlier infection of j, let Zi be the additional time to infection of i, beyond the

infection time wj of their partner. Formally, we decompose Ti as follows.

T i =
W i if W i < W j

W j + Zi otherwise. (1)

We emphasize that the decomposition (1) is purely notational, and places no a priori
restrictions on the joint distribution of infection times (Ti, Tj). Instead, (1) shows how

observation of (Ti, Tj) reveals information about these infection waiting times: if Ti < Tj,

then we can determine Wi = Ti, Wj > Ti, and Zj = Tj − Ti. Figure 1 illustrates this

decomposition and motivates the contagion effect presented in Definition 1 below: the
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disease is said to be “contagious” if the distribution of Ti is different from that of Wi, or

equivalently, if prior infection of j (Wj < Wi) changes the conditional distribution of the

remaining time to infection of i (Zi). The definition (1) permits specification of causal

assumptions, outlined below, to capture the way treatments to both i and j may affect

different parts of the waiting times to infection.

In line with existing partnership models, it is assumed throughout that the partnerships are

independent, thereby ruling out transmission between partnerships [31, 53]. Though

partnerships are assumed to be independent, the waiting times Wi and Wj, or Zi and Zj, need

not be identically distributed. The potential for transmission between partners is assumed to

be symmetric – that is, either can infect the other – but the framework accommodates

asymmetries in transmission if the distributions of Wi and Wj, or Zi and Zj, differ.

2.1 Assumptions

In this section, we describe assumptions that are sufficient to identify the causal effects

defined in Section 3 from observable infection time data for each partnership. We state

assumptions for a generic individual i and their partner j. To define potential, or

counterfactual, infection times for individual i, let Wi(x) be the potential value of Wi under

the joint treatment allocation x = (x1, x2). Let Zi(wj, x) be the additional potential time to

infection of i, following the infection of j at time Wj(x) = wj, under joint treatment allocation

x.

Assumption 1 (Exclusion restriction and independence of the initial infection).

— W i x = W i xi , W i xi ⫫ W j x j |L, and W i xi ⫫ L j|Li, f or all x .

Assumption 1 states that individual i’s initial infection time Wi(x) is invariant to the

partner’s treatment status xj. Hence it may be viewed as a “no-interference” assumption on

Wi, because Wi is the initial infection time from an external source, which can only be

realized when Wi precedes Wj. Further, Wi(xi) is independent of Wj(xj) given (observed)

covariates L. Assumption 1 respects a unique property of infectious disease: neither

transmission nor treatment interference can occur without prior infection.

Assumption 2 (Initial infection exchangeability).—
Zi(w j, x) ⫫ W j(x j) |L, f or all x, w j > 0.

Assumption 2 states that there is sufficient covariate information in L so that the potential

further time to infection Zi(wj, x) when j is infected at wj is conditionally independent of the

potential initial infection time Wj(xj) of j. While this assumption bears similarity to the

assumption of no unobserved confounding between the counterfactual mediator and nested

potential outcome (for the same individual) under the single mediator setting [49, 52], we

note that this assumption relates to counterfactual outcomes for different individuals.

Assumption 3 (Treatment exchangeability).—
W i(xi) ⫫ X |L, and Zi(w j, x) ⫫ X |L, f or all x, w j > 0.
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Assumption 3 means that the potential waiting times Wi(xi) and Zi(wj, x) are independent of

the assigned treatment X within levels of the (observed) covariates L. This assumption prima
facie resembles the conventional unconfoundedness assumptions for the (individual)

exposure-mediator and exposure-outcome relations in mediation analysis. But in this

context, Assumption 3 states that there is no unmeasured confounding between an

individual’s infection times and the joint treatments for both individuals in the same

partnership.

Two additional assumptions, commonly made in the literature when identifying causal

estimands, ensure identifiability of potential infection outcomes from observational data.

Assumption 4 (Consistency).—Wi = Wi(xi), and Zi = Zi(wj, x) under the observed
treatment X = x and infection time Wj = wj, for all x, wj > 0.

Assumption 5 (Positivity).—0 < Pr(Wj < w|Xi = xi, Li = li) < 1 for all w > 0, xi, and li; 0
< Pr(Zj < z|X = x, L = l) < 1 for all z > 0, x and l; and 0 < Pr(X = x|L = l) < 1 for all l.

A final assumption permits identification of certain “cross-world” potential infection

outcomes.

Assumption 6 (Cross-world initial infection exchangeability).—

Zi w j, x ⫫ W j x j′ ∣ L when x = xi, x j and x j′ ≠ x j, for all w j, x, and x j′.

Assumption 6 states that within levels of the observed covariates L, the potential waiting

time of i to infection, after j is infected at wj under treatment xj, is independent of the

potential infection time Wj under a different treatment x j′. Informally, when Assumption 6

holds, after j becomes infected at (some fixed time) wj, the waiting time until i becomes

infected under treatments x = (xi, xj) is independent of the time it would have taken j to be

infected under a different treatment x j′ ≠ x j. We call this assumption a “cross-world”

assumption because it makes explicit a probabilistic relationship between variables that

cannot co-exist in the same realization of the process, namely Zi(wj, x) or W i x j′ .

Finally, let Ti(Wj(xj), x) be the potential outcome for the infection time of subject i, when j
is infected at time Wj(xj) and the assigned treatments are x = (xi, xj). Following the

decomposition (1) and by Assumptions 1–3, we can construct the potential infection time

Ti(Wj(xj), x) as follows:

T i W j x j , x =
W i xi if W i xi < W j x j

W j x j + Zi W j x j , x otherwise.
(2)

The potential infection time with Wj = wj fixed is denoted as Ti(wj, x).

For convenience, define the binary potential infection outcome evaluated at time t,

Y i t; w j, x = 𝟙 T i w j, x < t . We refer to the potential infection time Ti(wj, x) and infection

outcome Yi(t; wj, x) as exposure-controlled potential outcomes because they hold the
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partner’s infection time Wj = wj constant, thereby controlling the exposure to infection

experienced by i. Similarly, we define Y i t; W j x j′ , x = 1 T i W j x j′ , x < t , and refer to

T i W j x j′ , x  and Y i t; W j x j′ , x  as natural potential outcomes because they do not control the

exact infection time wj of the partner, and instead rely on the natural distribution of Wj under

the treatment xj.

The potential infection time decomposition (2) formalizes intuition about the structure of

interference under contagion: there can be no interference without prior infection. When

neither i nor j is infected, the time to infection of i is solely a function of the treatment xi,

and there is no interference within the partnership. This is because the treatment xj of j can

only affect i after j becomes infected. When j is the first to be infected, the remaining time to

infection of i is now a function of both xi and xj, because j has now gained the ability to

transmit to i. This apparent complexity simplifies identification of causal effects, as we show

below.

3 Causal estimands

Contrasts of potential infection outcomes under different treatments x and infection times wj

can yield epidemiologically meaningful causal estimands. In this paper, we express causal

contrasts as differences of average potential infection outcomes. Effect measures on the

hazard ratio, risk ratio, or odds ratio scales may be defined similarly [e.g. 24, 45].

First, the contagion effect captures the change in infection risk in one individual due to a

change in the infection time of their partner.

Definition 1 (Contagion effect).

For w j ≠ w j′ and treatment x = (xi, xj), the controlled contagion effect is

CE t, w j, w j′, x = 𝔼 Y i t; w j, x − Y i t; w j′, x  and the natural contagion effect is

CE(t, x) = 𝔼 Y i t; W j(0), x − Y i t; W j(1), x .

We say that the infection outcome (absent treatment) is “positively contagious” if for all

infection times w j < w j′ with wj < t, the controlled contagion effect under no treatment is

CE t, w j, w j′, 0 > 0. In this way, we interpret contagion, or outcome transmissibility, as a

causal phenomenon that need not depend on treatments: under positive contagion, earlier

infection of one’s partner causes one to become infected earlier, on average. On the other

hand, the natural contagion effect CE(t, x) incorporates features of the treatment effect: it

replaces fixed values of wj and w j′ with their counterfactual distributions Wj(0) and Wj(1)

when j is treated versus untreated, similar to the effect proposed by VanderWeele et al. [66]

for an asymmetric partnership. The natural contagion effect is a “cross-world” estimand

because it integrates the average potential infection outcome 𝔼 Y i t; w j, x = xi, x j  with

respect to the distribution of W j x j′  under a treatment X j = x j′ that cannot arise in the same

realization as Xj = xj. Figure 1 can be reinterpreted in light of Definition 1: positive

Cai et al. Page 7

J Causal Inference. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contagion means that earlier infection of j causes i to become infected earlier, compared to

the infection time of i that would have occurred, had Wj happened later.

The susceptibility effect is of interest in vaccine trials because it summarizes the clinical

effect of an intervention on the individual who receives it, holding the treatment status and

infection time of their partner constant [18, 23, 26]. The susceptibility effect is sometimes

called the “per-exposure effect” because it holds the distribution of exposure to

infectiousness constant [45].

Definition 2 (Susceptibility effect).

For wj > 0 and Xj = xj, the controlled susceptibility effect is

SE t, w j, x j = 𝔼 Y i t; w j, xi = 1, x j − Y i t; w j, xi = 0, x j  and the natural susceptibility effect is

SE t, x j = 𝔼 Y i t; W j x j , xi = 1, x j − Y i t; W j x j , xi = 0, x j .

If the controlled susceptibility effect is negative for every wj and xj, this means that the

treatment is beneficial to the individual who receives it. Note that the natural susceptibility

effect is not a cross-world estimand: it averages potential infection outcomes with respect to

the distribution of Wj(xj), where xj is the treatment under which the infection outcome of i is
realized.

The infectiousness effect summarizes the effect of changing the treatment to j on the

infection risk of i, while holding the treatment to i and the infection time of j unchanged.

Definition 3 (Infectiousness effect).

For wj > 0 and Xi = xi, the controlled infectiousness effect is

IE t, w j, xi = 𝔼 Y i t; w j, xi, x j = 1 − Y i t; w j, xi, x j = 0  and the natural infectiousness effect is

IE t, xi = 𝔼 Y i t; W j(0), xi, x j = 1 − Y i t; W j(0), xi, x j = 0 .

The natural infectiousness effect is a cross-world estimand because the first term in the

contrast specifies that the infection time of j is realized under xj = 0, but the infectiousness of

j subsequently is realized under xj = 1. Several authors have described the natural

infectiousness effect as unidentified even under randomization when only binary infection

outcomes are recorded at follow-up [10, 10–12, 20, 64, 66].

4 Identification of potential infection outcomes

We wish to non-parametrically identify the average potential infection outcome 𝔼 Y i t; w j, x

using observations of pairwise infection times, treatments, and covariates (Ti, Tj, Xi, Xj, Li,

Lj). A preliminary result identifies the distribution of Wi(xi) in Lemma 1 using information

about infection times. The proof is given in the Appendix.

Lemma 1.

Suppose Assumptions 1, 3–5 hold. Then the distribution function of Wi(xi) given Li = li is
identified by
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Fi w ∣ xi, Ii = 1 − exp −∫0
w p Ti = u, T j > u ∣ X = xi, x j , L = li, l j

Pr Ti > u, T j > u ∣ X = xi, x j , l = li, l j
du

for any fixed values of xj, and lj, where p(Ti = u, Tj > u|X = (xi, xj),L = (li, lj)) is the joint
probability density of Ti and survivor function of Tj.

Lemma 1 is a standard distributional identification result in competing risks [2]. Here, Wi

and Wj are competing event times within the same partnership. The distribution of Wi or Wj

is identified utilizing both waiting times in the partnerships, even when the waiting times are

censored due to lost to follow-up or administrative censoring for some partnerships. The

identified distribution function Fi(w|xi, li) is a function of xi and li only, and is invariant to

values of xj and lj. However, in order to identify this function in the presence of the

competing event Wj, particular values of xj and lj must be held constant.

The main result shows that average exposure-controlled potential infection outcomes given

L = l are identified. Proofs are given in the Appendix.

Theorem 1 (Identification of the average exposure-controlled potential infection outcome).

Suppose Assumptions 1–5 hold and x = (x1, x2). For fixed values of wj and t, if wj < t,

𝔼 Y i t; w j, x ∣ L = l = Fi w j ∣ xi, li + 1 − Fi w j ∣ xi, li 𝔼
Y i(t) ∣ T i ≥ w j, T j = w j, X = X, L = l (3)

otherwise, if t ≤ wj, 𝔼 Y i t; w j, x ∣ L = l = Fi t ∣ xi, li .

In Theorem 1, Fi(wj|xi, li) is identified by Lemma 1 using all infection times (including

censored infection times), and 𝔼 Y i(t) ∣ T i ≥ w j, T j = w j, X = x, L = l  is estimated by the

average outcome Yi(t) among observations when Tj = wj, Ti > Tj under X = x and L = l.

The structure of (3) shows that the average exposure-controlled potential infection outcome

is identified by two types of observable events: when i is infected before their partner, and

when i is infected after their partner. In contrast to most work studying causal effect of

vaccine using binary infection outcomes by the end of observation, the causal identification

in (3) is built on observation of infection time, which provides sufficient control for exposure

to infection. Figure 2 shows a causal diagram [48] that captures the causal structure among

the variables in the system outlined by Assumptions 1–5. This causal diagram does not

necessarily represent a causal non-parametric structural equation model (NPSEM). The

approach proposed in this paper is not contingent on having a well-defined joint

(probabilistic) density of the counterfactuals under every possible intervention, whereas,

Shpitser et al. [57] build on NPSEMs that are represented using such causal diagrams.

If we do not fix the infection time Wj = wj, and instead allow it to take its “natural” value

under a particular treatment to j, we obtain the marginal average potential infection outcome

when L = l as follows.
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Corollary 1 (Identification of average natural/exposure-marginalized potential infection
outcome).

Suppose Assumptions 1–5 hold. Then for x = (xi, xj),

𝔼 Y i t; W j x j , X ∣ L = l = 𝔼 Y i(t) ∣ X =x, L = l . If in addition x j′ ≠ x j and Assumption 6

holds,

𝔼 Yi t; W j x j′ , x ∣ L = l = ∫0
t
𝔼 Yi t; w j, x ∣ L = l dF j w j ∣ x j′ , l j .

where F j w j′ ∣ x j, l j  is given by Lemma 1 and 𝔼 Y i t; w j, x ∣ L = l  by Theorem 1.

Definition 3 and Corollary 1 together show why the natural infectiousness effect is not

identified even under randomization when only binary infection outcomes are recorded at

follow-up [10–12, 20, 64, 66]. The correct marginalization over infection times W j x j′

cannot be computed unless the distribution of W j x j′  is identified as in Lemma 1. The

controlled and natural infectiousness effects are similar to those proposed by Chiba and

Taguri [12], but here the marginalization is over the infection time of j, not their binary

infection outcome.

Finally, by standardization of the potential infection outcome across the distribution of

covariates L, we can identify the average potential infection outcome. Let G(l) be the

distribution function of the joint covariate vector L = l in the population of partnerships.

Then

𝔼 Y i t; w j, x = ∫ 𝔼 Y i t; w j, x ∣ L = l dG(l) (4)

and

𝔼 Y i t; W j x j′ , x = ∫ 𝔼 Y i t; W j x j′ , x ∣ L = l dG(l) (5)

where 𝔼 Y i t; w j, x ∣ L = l  and 𝔼 Y i t; W j x j′ , x ∣ L = l  are given by Theorem 1 and Corollary

1 respectively. Because this paper is focused on nonparametric identification, we leave

discussion of non-parametric statistical estimation of both controlled and natural causal

estimands to the Appendix.

5 Comparison to other infectious disease intervention effects

Statisticians and epidemiologists have proposed a wide variety of estimands summarizing

the effect of interventions for contagious outcomes, often in the two-person partnership

setting. In this section, we evaluate the meaning of alternative definitions of vaccine effect

estimands in the context of the causal effects defined above. We take the controlled

contagion, susceptibility, and infectiousness effects defined above as fundamental

characteristics of the disease transmission process and intervention under study. Whenever
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possible, we characterize the sign, or direction, of alternative effects, as a function of these

primitives. In some cases, where the relationship is complex, we evaluate the alternative

estimands under a null hypothesis, for example when the controlled susceptibility or

infectiousness effect is zero, so that explicit results can be analytically proven. For

simplicity, we omit the role of covariates L in the comparison of estimands.

The “attack rate” of an infectious disease is defined for individuals with treatment x as

ARx(t) = 𝔼 Y i(t) ∣ Xi = x . The ratio of attack rates, sometimes called “relative cumulative

incidence”, is a traditional measurement for the vaccine effect on susceptibility [12, 16, 17,

19, 24–27, 29, 30, 38, 47], defined as VEAR(t) = 1 − AR1(t)/AR0(t). A related estimand,

called the “direct effect”, is a contrast on the difference scale, DE(t) = AR1(t) − AR0(t) when

treatment is randomized within groups [31]. In the symmetric partnership setting, attack

rates ARx(t) that condition only on the treatment to i implicitly marginalize over treatment to

j.

Theorem 2.

Suppose SE(t, wj, xj) = 0 and IE(t, wj, xj) < 0 for all xj and wj > 0. If X = (Xi, Xj) is
positively dependent, then DE(t) < 0 and VEAR(t) > 0; if X is negatively dependent then
DE(t) > 0 and VEAR(t) < 0; and if Xi ⫫ Xj then DE(t) = VEAR(t) = 0. If there is no treatment
effect whatsoever, SE(t, wj, x) = IE(t, wj, x) = 0 for all x and wj > 0, then DE(t) = VEAR(t) =
0 for any joint distribution of X.

In other words, VEAR(t) and DE(t) may or may not recover the sign, or direction, of the

susceptibility effect, depending on the susceptibility and infectiousness effects, and the joint

distribution of X within clusters. Morozova et al. [40] and Eck et al. [15] proved similar

results in a parametric setting under Bernoulli, block, and cluster randomization for the joint

treatment X in clusters or partnerships. Longini et al. [38], Halloran et al. [24], Halloran et

al. [25], Halloran et al. [26] and Rhodes et al. [51] warned that VEAR(t) may be a biased

approximation to the susceptibility effect due to differential exposure to infection between

treated and untreated individuals in clusters. We show simulation examples that result in

biased DE(t) under block randomization in Table 1 and Figure 4(d) below.

Related definitions of the attack rate condition on the treatments to both individuals in the

partnership. The attack rate among individuals with treatment x whose partner has treatment

x′ is ARx, x′(t) = 𝔼 Y i(t) ∣ Xi = x, X j = x′ . The indirect effect is defined as IDE(t) = AR01(t) −

AR00(t) [12, 31], and is equivalent to the difference of the natural infectiousness and

contagion effects defined above:

IDE(t) = 𝔼 Yi t; W j(1), (0, 1) − Yi t; W j(0), 0
= 𝔼 Yi t; W j(1), (0, 1) − Yi t; W j(0), (0, 1) + 𝔼 Yi t; W j(0), (0, 1) − Yi t; W j(0), 0
= − CE(t, (0, 1)) + IE(t, 0) .

The secondary attack rate is the proportion in a cluster infected after being exposed to an

earlier infected individual, formally defined as
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SARx′, x(t) = 𝔼 Y i(t) ∣ T j < t, T i > T j, Xi = x, X j = x′ . The SAR is the average infection status

of i when j is infected during the study before i, under treatments x and x′ to i and j
respectively. Based on the potential pitfalls of SAR, researchers proposed

VEI
net(t) = 1 − SAR10(t)/SAR00(t) as “secondary attack rate for infectiousness” Halloran and

Hudgens [20], Halloran et al. [24, 26, 27, 28, 29], Orenstein et al. [47]. We analyze VEI
net(t)

under the null hypothesis of no infectiousness effect, and show that when the infection is

contagious and there is a susceptibility effect, VEI
net(t) may nevertheless be nonzero. Let

h0(u|0) be the hazard of the potential infection time Wi(0), and let h0(u|1) be the hazard of

Wi(1).

Theorem 3.

Suppose IE(t, wj, 0) = 0, CE t, w j, w j′, 0 > 0 for all 0 < w j < w j′, and h0(u|1) = εh0(u|0) with ε

∈ [0,1), then VEI
net(t) > 0. If SE(t, wj, xj) = 0 for all wj and xj, then VEI

net(t) preserves the

same sign as IE(t, wj, 0). Suppose CE t, w j, w j′, 0 = 0 for all 0 < w j < w j′ and h0(u|1) = εh0(u|

0) with ε ∈ [0,1), then VEI
net(t) > 0.

In other words, when the true infectiousness effect is null, the infection outcome is positively

contagious, and the vaccine has a favorable susceptibility effect prior to the first infection,

VEI
net(t) can nevertheless be nonzero. In a more extreme case, when the true contagion effect

is null, the disease is not transmissible so that the true infectiousness is null; if the vaccine

has a favorable susceptibility effect prior to the first infection, then VEI
net(t) is still nonzero.

Simulation examples show biased VEI
net(t) under a null contagion effect in Tables 1 and 2

below.

A simple explanation shows why VEI
net can behave in unexpected ways: it is not solely a

function of the infectiousness effect. Instead, VEI
net(t) also incorporates reduced exposure to

infection from delaying the infection of partner j due to vaccination, which in fact is the

susceptibility effect on the partner j before the first infection occurs. Therefore, when the

true susceptibility effect is null, VEI
net(t) is only a function of the infectiousness effect and

thus recovers the correct sign of infectiousness effect. From a sightly different perspective,

several authors have also pointed out that VEI
net(t) may suffer from selection bias because it

conditions on post-randomization variables – the infection status of both partners [20, 24–

26, 51]. Specifically, VEI
net(t) relies on the eventual infection outcome of partner j, rather

than the infection time of partner j. Halloran and Hudgens [20] use tools from principal

stratification to derive bounds for the infectiousness effect to correct this selection bias, and

propose a bound estimator CVEI
c(t) for VEI

net(t) under Bernoulli randomization. We analyze

these bounds by simulation below.
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Several authors have recognized that simple comparison of outcomes in treated versus

untreated individuals may not suffice to identify meaningful causal effects for infectious

disease interventions, even under randomization. For example, VanderWeele [63],

VanderWeele et al. [66], Ogburn and VanderWeele [42], and Ogburn and VanderWeele [43]

apply tools from mediation analysis to a simplified partnership model to identify contagion

and infectiousness effects similar to those we have defined above. This “asymmetric

partnership” model focuses on pairs of individuals i and j when i is restricted to be home-

bound, unvaccinated, and may only be infected by their (possibly vaccinated) partner j.
Partner j is randomized to receive treatment or placebo, and may be infected by a source of

infection outside the partnership. In other words, the relative role of the two subjects cannot

be swapped. For example, in a HIV trial of zidovudine, the study units are mother-child

pairs, and only mothers are vaccinated and may transmit HIV to the children, not vice versa

[39]. This is different from the symmetric partnership setting we considered, when both i
and j can be treated and infected by the outside or each other.

To represent this structural assumption in the framework outlined here, we force the

infection time of the home-bound partner, in the absence of infection in their partner, to be

infinite. To this end, let hazard of Wi(0) be h0
i (t ∣ 0) = 0, so that infection of i from an external

source can never occur. These authors define the infectiousness effect as

VEI(t) = 𝔼 Y i t; Y j(1), (0, 1) − 𝔼 Y i t; Y j(1), (0, 0) , which contrasts the infection outcomes of i

when j is treated versus untreated, with j’s infection status Yj(xj) set to the value it would

take if j were treated.

Theorem 4.

Suppose h0
i (t ∣ 0) = 0 for all t > 0. Then VEI(t) = IE(t, 0).

In other words, under the asymmetric setting where i is unvaccinated and cannot be infected

from outside the partnership, VEI(t) is equivalent to the natural infectiousness effect in

Definition 3.

A contagion effect is defined by VanderWeele et al. [66] as

VEC(t) = 𝔼 Yi t; Y j(1), (0, 0) − Yi t; Y j(0), (0, 0) ,

contrasting the infection outcome of i when the infection status of j is set to the value it

would obtain if j were treated versus untreated. Note that this quantity reverses the

difference in the natural contagion effect in Definition 1, as VEC(t) = −CE(t, x). We provide

sufficient conditions for the controlled contagion effect CE(t, u, u′, 0) and VEC(t) (or

equivalently, −CE(t, x)) to behave similarly, that is, to have opposite sign.
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Theorem 5.

Suppose h0
i (t ∣ 0) = 0 for all t > 0 and SE(t, wj, 0) > 0. Then VEC(t) has opposite sign as

CE t, w j, w j′, 0  for 0 < w j < w j′. Suppose h0
i (t ∣ 0) = 0, SE(t, wj, 0) = 0 and CE t, w j, w j′, 0 > 0,

then VEC(t) = 0.

In other words, in the asymmetric partnership setting, −VEC(t) recovers the sign of the true

contagion effect, when the vaccine has a favorable susceptibility effect prior to the first
infection. However, if the true susceptibility effect is null, VEC(t) = 0 regardless of the true

contagion effect.

6 Application: a hypothetical vaccine trial

We simulate observational and randomized trials of a hypothetical HIV vaccine in a large

population of sexual partnerships [25]. We assume individuals are not infected at baseline,

but that either individual may become infected from outside the partnership, and

transmission within partnerships may occur. To parameterize the infection transmission

process, we specify hazard models for the infection times Wi(xi) and Zi(wj, x). This

approach has been employed in extensive prior work on statistical models for time-to-

infection data [25, 32–35, 51]. For a time t > 0, Let the hazard of Wi(xi) given covariates Li

= li be given by

λi
W t; xi, li = α(t)e

β0xi + θ0′ li . (6)

In words, the hazard of infection in an individual whose partner is not infected, is given by a

Cox model with baseline hazard α(t). Following infection of j at time Wj = wj, the remaining

potential infection time Zi(wj, x) given L = l = (li, lj) has hazard

λi
Z t; w j, x, l = λi

W t; xi + γ t − w j e
β1xi + σx j + θ1′ l j + θ2′ li (7)

for t > wj. The coefficients β0 and β1 represent the change in infection risk due to

vaccination of i, and σ represents the change in transmission risk due to vaccination in j
when j is infected. Covariate effects are represented by θ0, θ1, and θ2, and α(t) and γ(t−wj)

are baseline transmission hazards for the external and internal forces of infection

respectively. This specification implies that the external force of infection and

transmissibility are competing risks for infection of i [37, 38, 50]. That is, a susceptible

individual can be infected by a source of infectiousness outside their partnership, or from an

infected partner. We consider three specifications of the baseline transmission hazards for

the external and internal forces of infection: (i) both are time-invariant as in (8)

α(t) = α
γ(t) = γ (8)

, (ii) the external baseline hazard varies seasonally and the internal baseline hazard decays

over time as in (9)
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α(t) = a(1 + sin(2πt + ϕ))
γ t − w j = bexp −ω t − w j

(9)

, to (iii) when the external baseline hazard varies over seasons and the internal baseline

hazard increases first then decreases over time as in (10).

α(t) = a(1 + sin(2πt + ϕ))

γ t − w j = b 1
Γ(k)θk t − t j

k − 1e
−

t − t j
θ

(10)

When the baseline hazards α(t) and γ(t − wj) are time-invariant as specified in (8), the

model reduces to a Markov susceptible-infective process with an external force of infection

[e.g 15, 40]. For any functional forms of the baseline hazards α(t) and γ(t − wj), the hazard

specifications (6) and (7) imply distributions for Wi(xi) and Zi(wj, x), and hence Ti(wj, x),

that obey the required identification Assumptions 1–6.

Subjects in partnerships are endowed with individual characteristics L = (Li, Lj) that may be

correlated. In the randomized trial simulation, the vaccine is randomized in accordance with

a specified distribution – Bernoulli, block, or cluster randomization – without regard to these

traits. Under each randomization design, the marginal treatment probability Pr(Xi = xi) is

1/2. For Bernoulli randomization, Pr(X = x) = 1/4, for block randomization,

Pr(x = x) = 1 ∑i xi =1 /2, and for cluster randomization, Pr(X = (1, 1)) = 1/2 and Pr(X = (0,

0)) = 1/2. In the observational study simulation, we consider a univariate individual covariate

for illustration, and the traits L = (Li, Lj) together determine the joint distribution of vaccine

in the partnership as

Pr Xi = 1 ∣ Li = li = 1

1 + e
−li

where

Li
L j

Normal 0
0 , v

1 ρ
ρ 1

with v > 0. Non-parametric estimation of both controlled and natural causal estimands is

described in detail in the Appendix.

Figure 3 illustrates controlled infection outcomes 𝔼 Y i t; w j, x  over time for different

choices of wj and x under the time-invariant hazard scenario, estimated non-parametrically

with sufficiently large numbers of pairs (N = 100, 000) so as to represent their true values in

the simulation. Estimated controlled infection outcomes area aligned with their true values

Cai et al. Page 15

J Causal Inference. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Figure 3. Contrasts of these potential infection outcomes give the controlled contagion,

susceptibility and infectiousness effects, shown in the lower-right corner of Figure 3.

Tables 1 and 2 show the true values of the natural contagion, susceptibility and

infectiousness effects, and compare these values to the true values of alternative estimands

proposed by other authors, including the direct effect DE(t), the indirect effect IDE(t), the

secondary attack rate infectiousness effect VEI
net(t), and CVEI

c(t) bounds introduced by [20].

All natural or marginal estimands are evaluated at time t = 2 years under each design and

under both time-invariant and time-varying baseline hazards. Estimands that are not

identified under a given design are not evaluated. In Table 1, when the true infectiousness

effect much stronger than the true susceptibility effect, the direct effect DE(t) is positive

(0.06 and 0.08) under block randomization when the disease is contagious, even though the

true susceptibility effect is negative, or beneficial [see, e.g. 15, 40]. Table 2 shows another

simulation setting where DE(t) achieves the same sign as the susceptibility effect when the

true infectiousness effect is on the same scale of the true susceptibility effect. In the three

scenarios without contagion, the disease is not contagious and infection outcomes are

realized independently. Therefore, all “indirect” and “infectiousness” effects should be null.

However, VEI
net(t) is negative (−0.01 and −0.02 in both Table 1 and 2), conflicting with the

fact that the disease is not transmissible (as proved in Theorem 3). The identification interval

CVEI
c(t) has nonzero width, but covers zero.

Figure 4 compares different types of natural susceptibility and infectiousness effects over

time, when both effects are beneficial (negative). In the bottom-right panel of Figure 4, we

show that DE(t) under block randomization can suffer from directional bias.

7 Discussion

We have described a nonparametric framework for identifying causal intervention effects

under contagion in general two-person partnerships. The estimands and identification results

generalize those given in prior work [20, 43, 64, 66], and establish that point identification

of clinically meaningful causal estimands under contagion is possible even when

relationships are symmetric and either individual can be treated. We take a nonparametric

approach that does not ascribe infections to particular sources. Instead, the approach focuses

on the effect of changing treatments or exposure to infections on the expectations of

potential outcomes without information about “who-infected-whom.” We have made no

assumptions about the functional form of infection risks (beyond the independencies and

exclusion restrictions implied by Assumptions 1–6), how the risk of infection to a

susceptible individual changes when their partner becomes infected, or how the vaccine

changes susceptibility or infectiousness over time. The framework respects the logic of

infectious disease transmission: if the outcome is not transmissible, the contagion and

infectiousness effects are zero.

By studying the role of a partner’s infection time in the identification of controlled causal

effects, we can identify causal estimands that are both more fundamental and more directly

linked to the biological effect of a vaccine on infection risk than simple contrasts of infection
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rates. Our results also show that while some crude contrasts can recover causal effects in

restricted settings (e.g. the infectious effect VEI(t) in the asymmetric partnership setting) or

under a particular randomization design (e.g. the direct effect DE(t) under independent

Bernoulli randomization), they may not deliver useful summaries of vaccine effects in more

general situations. Finally, the framework developed in this paper may be useful in settings

beyond infectious disease epidemiology, where symmetric mediated effects are of interest

[e.g. 55, 58].

One important limitation of our identification approach is that the controlled estimands and

cross-world natural estimands require observation of infection times, and not just binary

infection indicators at a follow-up time t. In real-world vaccine trials, it may be unreasonable

to require investigators to measure infection times Ti with precision, as is required by

Lemma 1 and Theorem 1. Instead, cross-sectional infection assessment, follow-up surveys,

or tests for biomarkers of prior infection are commonly used as the primary outcome.

Corollary 1 shows exactly how controlled effects that rely on infection times relate to natural

effects that do not. Attempts to disentangle individual effects from the mediating effects of

treatment to partners using only binary infection outcomes may fail to recover useful

controlled or marginal effects [see, e.g. VEI
net, analyzed by 20]. One exception is the natural

susceptibility effect, which can be estimated by binary outcomes under Bernoulli

randomizations, as shown by Corollary 1.

Finally, while the symmetric partnership setting is useful for conceptualizing, defining, and

identifying causal estimands, real-world vaccine trials usually happen in clusters of varying

sizes. Adapting the setting outlined here to larger clusters results in rapid expansion of the

number of potential outcomes, corresponding to every possible ordering of infections,

necessitating simplifying structural assumptions to reduce the dimensionality of the

problem. One promising avenue for dramatically reducing the number of potential outcomes

without imposing a parametric structure was proposed by Kenah [33, 34]. The idea is that

contagion works by competing risks, where hazards of infection from different sources are

additive. This approach imposes no additional structure on the distribution of the initial time

to infection, but assumes that new infected cluster members always add a competing risk of

infection to the already existing risks of infection for susceptibles.
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A: Proofs

Proof of Lemma 1.

Let fi(w|xi, li) be the density of Wi(xi) when Li = li and let Fi(w|xi, li) be the corresponding

cumulative distribution function. By Assumption 5, 0 < Fi(w|xi, li) < 1 for all w > 0, xi, and

li, so we can write
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f i w ∣ xi, li
1 − Fi w ∣ xi, li

= − d
dw log 1 − Fi w ∣ xi, li .

Then rearranging, we have

Fi w ∣ xi, li = 1 − exp −∫0
w f i u ∣ xi, li

1 − Fi u ∣ xi, li
du

= 1 − exp −∫0
w f i u ∣ xi, li 1 − F j u ∣ x j, l j

1 − Fi u ∣ xi, li 1 − F j u ∣ x j, l j
du

by Assumption 1

= 1 − exp −∫0
w p Wi xi = u, W j x j > u ∣ X = xi, x j , L = li, l j

Pr Wi xi > u, W j x j > u ∣ X = xi, x j , L = li, l j
du

by Assumption 3

= 1 − exp −∫0
w p Wi = u, W j > u ∣ X = xi, x j , L = li, l j

Pr Wi > u, W j > u ∣ X = xi, x j , L = li, l j
du

by Assumption 4

= 1 − exp −∫0
w p Ti = u, T j > u ∣ X = xi, x j , L = li, l j

Pr Ti > u, T j > u ∣ X = xi, x j , L = li, l j
du ,

where xj is any fixed value of Xj and lj is any fixed value of Lj. ⎕

Lemma 2.

Under Assumptions 1–3, Yi(t;wj; x) ⫫ Wj(xj) | L and Yi(t;wj; x) X | L.

Proof of Lemma 2.

Fix a value wj > 0 and let x = (xi, xj). If Wi(xi) < wj, then Ti(wj, x) = Wi(xi) and by

Assumption 1, Wi(xi) ⫫ Wj(xj) | L, so Ti(wj, x) ⫫ Wj(xj) | L. If Wi(xi) > wj then Ti(wj, x) =

wj + Zi(wj, x) and by Assumption 2 Zi(wj, x) ⫫ Wj | L, so Ti(wj, x) ⫫ Wj(xj) | L. Therefore,

since Y i t; w j, X = 1 T i w j, X < t , it follows that Yi(t;wj; x) ⫫ Wj(xj) | L.

By the same reasoning, if Wi(xi) < wj, then Ti(wj, x) = Wi(xi) and by Assumption 3, Wi(xi)

⫫ X | L. If Wi(xi) > wj then Ti(wj, x) = wj + Zi(wj, x) and by Assumption 3, Zi(wj, x) ⫫ X |

L. Therefore, since Y i t; w j, X = 1 T i w j, X < t , it follows that Yi(t;wj; x) ⫫ X | L. ⎕
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Lemma 3.

Under Assumptions 1–4, 𝔼 Y i t, w j, x = 𝔼 Y i(t) ∣ W j = w j, X = X .

Proof of Lemma 3.

Fix a value wj > 0 and x = (xi, xj). If Wi(xi) ≥ wj then

𝔼 Yi t, w j, x = Pr Ti w j, x < t by the definition of Yi t, w j, x

= Pr w j + Zi w j, x < t by the definition ofTi w j, x and Wi xi ≥ w j
= Pr Zi w j, x < t − w j
= Pr Zi w j, x < t − w j ∣ W j = w j by Assumption 2

= Pr Zi w j, x < t − w j ∣ W j = w j, X = x by Assumption 3

= Pr Zi < t − w j ∣ W j = w j, X = x by Assumption 4

= Pr Zi < t − W j ∣ W j = w j, X = x

= Pr Zi + W j < t ∣ W j = w j, X = x

= Pr Ti < t ∣ W j = w j, X = x by the definition ofTi
= 𝔼 Yi(t) ∣ W j = w j, X = x by the definition of Yi(t)

If Wi(xi) < wj then

𝔼 Yi t, w j, x = Pr Ti w j, x < t by the definition of Yi t, w j, x

= Pr Wi xi < t by the definition of Ti w j, x and Wi xi < w j
= Pr Wi xi < t ∣ Xi = xi, X j = x j by Assumption 3

= Pr Wi xi < t ∣ W j = w j, Xi = xi, X j = x j by Assumption 1

= Pr Wi < t ∣ W j = w j, X = x by Assumption 4

= Pr Ti < t ∣ W j = w j, X = x by the definition of Ti
= 𝔼 Yi(t) ∣ W j = w j, X = x by the definition of Yi(t)

⎕

Proof of Theorem 1.

The average potential infection outcome when L = l is given by

𝔼 Y i t; w j, x ∣ L = l = 𝔼 Y i t; w j, x ∣ W j = w j, X = x, L = l  by Lemma 2

= 𝔼 Yi t; w j, x ∣ Wi ≤ w j, W j = w j, X = x, L = l Pr Wi ≤ w j ∣ W j = w j, X = x, L = l
+𝔼 Yi t; w j, x ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ W j = w j, X = x, L = l
= Pr Ti w j, x < t ∣ Wi ≤ w j, W j = w j, X = x, L = l Pr Wi ≤ w j ∣ W j = w j, X = x, L = l

+𝔼 Yi t; w j, x ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ W j = w j, X = x, L = l

by the definition of Yi(t; wj, x)
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= Pr Wi xi < t ∣ Wi ≤ w j, W j = w j, X = x, L = l Pr Wi ≤ w j ∣ W j = w j, X = x, L = l
+𝔼 Yi t; w j, x ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ W j = w j, X = x, L = l

by the definition of Ti(wj, x)

= Pr Wi xi < t ∣ Wi ≤ w j, Xi = xi, L = l Pr Wi ≤ w j ∣ Xi = xi, L = l
+𝔼 Yi t; w j, x ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l

by Assumption 1

= Pr Wi < t ∣ Wi ≤ w j, Xi = xi, L = l Pr Wi ≤ w j ∣ Xi = xi, L = l

+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l

by Assumption 4 and Lemma 3

= Pr Wi < t, W j ≤ w j ∣ Xi = xi, l = l

+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l

When t ≥ wj, then

𝔼 Yi t; w j, x ∣ L = l = Pr Wi < t, W j ≤ w j ∣ Xi = xi, L = l
+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l
= Pr Wi ≤ w j ∣ Xi = xi, L = l

+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l
= Fi w j ∣ xi, li + 1 − Fi w j ∣ xi, li 𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l .

Likewise, when t < wj, then

𝔼 Yi t; w j, x ∣ L = l = Pr Wi < t, W j ≤ w j ∣ Xi = xi, L = l
+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, L = l
= Pr Wi < t ∣ Xi = xi, li = li

+𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = x, L = l Pr Wi > w j ∣ Xi = xi, li = li
= Pr Wi ≤ t ∣ Xi = xi, li = li

since 𝔼 Y i(t) ∣ W i > w j, W j = w j, X = x, L = l = 0 when t < wj

= Fi w j ∣ xi, li .
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Proof of Corollary 1.

𝔼 Yi t; W j x j , x ∣ L = l = 𝔼 𝔼 Yi t; W j x j , x ∣ L = l

= ∫0
∞

𝔼 Yi(t; u, x) ∣ W j = u, X = x, L = l dF j u ∣ x j, li by Assumption 1

= ∫0
∞

𝔼 Yi(t) ∣ W j = u, X = x, L = l dF j u ∣ x j, li by Lemma 3 and Assumption 4

= 𝔼 Yi(t) ∣ X = x, L = l .

Likewise, when x = (xi, xj) and x j′ ≠ x j,

𝔼 Yi t; W j x j′ , x ∣ L = l = 𝔼 𝔼 Yi t; W j x j , x ∣ L = l

= ∫0
∞

𝔼 Yi(t; u, X) ∣ W j = u, X = x, L = l dF j u ∣ x j′ , li by Assumption 1

= ∫0
∞

𝔼 Yi(t) ∣ W j = u, X = x, L = l dF j u ∣ x j′ , li by Lemma 3 and Assumption 4

⎕

Lemma 4.

When SE(t, wj, xj) = 0, then Fj(t|xj) = Fj(t|1 − xj) and

𝔼 Y i(t) ∣ Xi = 1, X j = x j = 𝔼 Y i(t) ∣ Xi = 0, X j = x j , for all xj ∈ {0,1} and t ≥ 0.

When SE(t, wj, xj) = IE(t, wj, xi) = 0, then 𝔼 Y i(t) ∣ Xi = 0, X j = 1 = 𝔼 Y i(t) ∣ Xi = 0, X j = 0 .

When SE(t, wj, xj) = 0 and IE(t, wj, xi) < 0, then

𝔼 Y i(t) ∣ Xi = 0, X j = 1 < 𝔼 Y i(t) ∣ Xi = 0, X j =0 .

Proof of Lemma 4.

First we prove Fj(t|xj) = Fj(t|1−xj), for all xj ∈ {0, 1} when SE(t, wj, xj) = 0.

F j t ∣ x j = Pr W j x j < t = Pr T j wi = ∞, xi, x j < t by the definition of
T j wi, x j, xi

= 𝔼 Y j t; wi = ∞, x j, xi by the definition of Y j u; wi, x j, xi
= 𝔼 Y j t; wi = ∞, x j′, xi since SE t, w j, x j = 0
= Pr W j x j′ < t = F j t ∣ x j′ .

(11)

Second, we prove 𝔼 Y i(t) ∣ Xi = 1, X j = x j = 𝔼 Y i(t) ∣ Xi = 0, X j = x j  for all xj ∈ {0,1}, if

SE(t, wj, xj) = 0.
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𝔼 Y i(t) ∣ Xi = 1, X j = x j = ∫
0

∞
𝔼 Y i(t) ∣ W j = u, Xi = 1, X j = x j dF j u ∣ x j by

Assumption 1

= ∫
0

∞
𝔼 Y i t; u, xi = 1, x j dF j u ∣ x j by Lemma 3

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j dF j u ∣ x j since SE t, w j, x j = 0

= 𝔼 Y i(t) ∣ Xi = 0, X j = x j .

(12)

Third, by (11), we prove 𝔼 Y i(t) ∣ Xi = 0, X j = 1 = 𝔼 Y i(t) ∣ Xi = 0, X j = 0 , if SE(t, wj, xj) =

IE(t, wj, xi) = 0.

𝔼 Y i(t) ∣ Xi = 0, X j = 1 = ∫
0

∞
𝔼 Y i(t) ∣ W j = u, Xi = 0, X j = 1 dF j(u ∣ 1) by

Assumption 1

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 1 dF j(u ∣ 1) by Lemma 3

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 0 dF j(u ∣ 1) since IE t, w j, xi = 0

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 0 dF j(u ∣ 0)by11

= ∫
0

∞
𝔼 Y i(t) ∣ W j = u, Xi = 0, x j = 0 dF j(u ∣ 0) by Lemma 3

= 𝔼 Y i(t) ∣ Xi = 0, X j = 0 .

(13)

Fourth, by (11), we prove 𝔼 Y i(t) ∣ Xi = 0, X j = 1 < 𝔼 Y i(t) ∣ Xi = 0, X j = 0 , if SE(t, wj, xj) = 0

and IE(t, wj, xi) < 0.
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𝔼 Y i(t) ∣ Xi = 0, X j = 1 = ∫
0

∞
𝔼 Y i(t) ∣ W j = u, Xi = 0, X j = 1 dF j(u ∣ 1) by

Assumption 1

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 1 dF j(u ∣ 1) by Lemma 3

< ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 0 dF j(u ∣ 1) since IE t, w j, xi < 0

= ∫
0

∞
𝔼 Y i t; u, xi = 0, x j = 0 dF j(u ∣ 0) by11

= ∫
0

∞
𝔼 Y i(t) ∣ W j = u, Xi = 0, x j = 0 dF j(u ∣ 0) by Lemma 3

= 𝔼 Y i(t) ∣ Xi = 0, X j = 0 .

(14)

⎕

Proof of Theorem 2.

Given the conclusions from (12) and (14), we have

DE(t) = 𝔼 Yi(t) ∣ Xi = 1 − 𝔼 Yi(t) ∣ Xi = 0

= 𝔼 Yi(t) ∣ Xi = 1, X j = 1 Pr X j = 1 ∣ Xi = 1

+ 𝔼 Yi(t) ∣ Xi = 1, X j = 0 Pr X j = 0 ∣ Xi = 1

− 𝔼 Yi(t) ∣ Xi = 0, X j = 1 Pr X j = 1 ∣ Xi = 0 − 𝔼 Yi(t) ∣ Xi = 0, X j = 0 Pr X j = 0 ∣ Xi = 0

= 𝔼 Yi(t) ∣ Xi = 0, X j = 1 Pr X j = 1 ∣ Xi = 1

+ 𝔼 Yi(t) ∣ Xi = 0, X j = 0 Pr X j = 0 ∣ Xi = 1

− 𝔼 Yi(t) ∣ Xi = 0, X j = 1 Pr X j = 1 ∣ Xi = 0 − 𝔼 Yi(t) ∣ Xi = 0, X j = 0 Pr X j = 0 ∣ Xi = 0

by (12) in Lemma 4

= 𝔼 Y i(t) ∣ Xi = 0, X j = 1 Pr X j = 1 ∣ Xi = 1 − Pr X j = 1 ∣ Xi = 0
+ 𝔼 Y i(t) ∣ Xi = 0, X j = 0 Pr X j = 0 ∣ Xi = 1

− Pr X j = 0 ∣ Xi = 0
= 𝔼 Y i(t) ∣ Xi = 0, X j = 1 Pr X j = 1 ∣ Xi = 1

− Pr X j = 1 ∣ Xi = 0
+ 𝔼 Y i(t) ∣ Xi = 0, X j = 0 1 − Pr X j = 1 ∣ Xi = 1

− 1 − Pr X j = 1 ∣ Xi = 0
= 𝔼 Y i(t) ∣ Xi = 0, X j = 1 − 𝔼 Y i(t) ∣ Xi = 0, X j = 0

⋅ Pr X j = 1 ∣ Xi = 1 − Pr X j = 1 ∣ Xi = 0

(15)
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Note by (14) in Lemma 4, we have the first term at the last line of (15) being negative. The

sign of DE(t) then depends only on the treatment assignment mechanism, which leads to the

following conclusions for DE(t).

1. If the treatment assignment is positively correlated (Pr(Xi = c, Xj = c) > Pr(Xi =

c) Pr(Xj = c) for c ∈ {0, 1}), we have:

Pr X j = 1 ∣ Xi = 1 − Pr X j = 1 ∣ Xi = 0

=
Pr X j = 1, Xi = 1

Pr Xi = 1 −
Pr X j = 1, Xi = 0

Pr Xi = 0

=
Pr X j = 1, Xi = 1 Pr Xi = 0 − Pr X j = 1, Xi = 0 Pr Xi = 1

Pr Xi = 1 Pr Xi = 0

=
Pr X j = 1, Xi = 1 1 − Pr Xi = 1 − Pr X j = 1, Xi = 0 Pr Xi = 1

Pr Xi = 1 Pr Xi = 0

=
Pr X j = 1, Xi = 1 − Pr X j = 1, Xi = 1 Pr Xi = 1 − Pr X j = 1, Xi = 0 Pr Xi = 1

Pr Xi = 1 Pr Xi = 0

=
Pr X j = 1, Xi = 1 − Pr X j = 1 Pr Xi = 1

Pr Xi = 1 Pr Xi = 0

≥ 0

(16)

Thus, DE(t) < 0.

2. If the treatment assignment is independent (Pr(Xi = c, Xj = c) = Pr(Xi = c) Pr(Xj

= c) for c ∈ {0, 1}), then by similar arguments of (16), we have Pr(Xj = 1|Xi =

1)−Pr(Xj = 1|Xi = 0) = 0. Thus, DE(t) = 0.

3. If the treatment assignment is negatively correlated (Pr(Xi = c, Xj = c) < Pr(Xi =

c) Pr(Xj = c) for c ∈ {0, 1}), then by similar arguments of (16), we have Pr(Xj =

1|Xi = 1)−Pr(Xj = 1|Xi = 0) < 0. Thus, DE(t) > 0.

When IE(t, wj, xi) = 0, following (13) and (15) in Lemma 4, we have

𝔼 Y i(t) ∣ Xi = 0, X j = 1 = 𝔼 Y i(t) ∣ Xi = 0, X j = 0  and thus DE(t) = 0.

Similar arguments apply for VEAR(t). ⎕

Proof of Theorem 3.

We evaluate the sign of VEI
net by analyzing SAR00(t) − SAR10(t).

VEI
net(t) = 1 −

SAR10(t)
SAR00(t) =

SAR00(t) − SAR10(t)
SAR00(t)
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First, we analyze the sign of VEI
net under a null true infectiousness effect, when the infection

outcome is positively contagious and vaccine has a favorable effect prior to first infection

through h0(u|1) = εh0(u|0), for ε ∈ [0,1).

SAR10(t) − SAR00(t)

= 𝔼 Yi(t) ∣ T j < t, Ti > T j, Xi = 0, X j = 1 − 𝔼 Yi(t) ∣ T j < t, Ti > T j, Xi = 0, X j = 0

=
∫ 0

t 𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 1) 1 − Fi(u ∣ 0) dF j(u ∣ 1)

Pr W j < t, Wi > W j ∣ X = (0, 1)

−
∫ 0

t 𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 0) 1 − Fi(u ∣ 0) dF j(u ∣ 0)

Pr W j < t, Wi > W j ∣ X = (0, 0)

by applying the law of total probability

= ∫
0

t
𝔼 Y i(t) ∣ W j = u, W i > u, X = (0, 1)

1 − Fi(u ∣ 0) dF j(u ∣ 1)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 1)

− ∫
0

t
𝔼 Y i(t) ∣ W j = u, W i > u, X = (0, 0)

1 − Fi(u ∣ 0) dF j(u ∣ 0)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

= ∫
0

t
𝔼 Y i(t) ∣ W j = u, W i > u, X = (0, 0)

1 − Fi(u ∣ 0) dF j(u ∣ 1)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 1)
−

1 − Fi(u ∣ 0) dF j(u ∣ 0)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 0)
.

(17)

By IE(t, wj, 0) = 0 and Lemma 3 To ease the notation in Equation (17), we denote

𝔼 Y i(t) ∣ W j = u, W i > u, X = (0, 0) = k(u). Denote g(u ∣ 1) =
1 − Fi(u ∣ 0) dF j(u ∣ 1)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 1)

 and

g(u ∣ 0) =
1 − Fi(u ∣ 0) dF j(u ∣ 0)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

, and G(u ∣ 1) = ∫ 0
ug(s ∣ 1)ds and G(u ∣ 0) = ∫ 0

ug(s ∣ 0)ds. Then

by integration by parts, (17) can be re-written as follows:

SAR10(t) − SAR00(t) = ∫0
t
k(u)[g(u ∣ 1) − g(u ∣ 0)]du

= k(u)[G(u ∣ 1) − G(u ∣ 0)] 0
t − ∫0

t
(G(u ∣ 1) − G(u ∣ 0))dk(u) .

By their definitions, we have G(0|1)−G(0|0) = 0 and G(t|1)−G(t|0) = 0, and thus

k(u)[G(u ∣ 1) − G(u ∣ 0)] 0
t = 0. In other words, the sign of SAR10(t) − SAR00(t) only depends

on the sign of G(u|1) − G(u|0) and dk(u) for all u > 0. First, we can show that dk(u) < 0 for 0

≤ u < t. For 0 ≤ u < u′ < t, we have
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k(u) =
𝔼 Y i(t) ∣ W j = u, X = (0, 0) − Fi(u ∣ 0)

1 − Fi(u ∣ 0) by Theorem 1

>
𝔼 Y i(t) ∣ W j = u′, X = (0, 0) − Fi(u ∣ 0)

1 − Fi(u ∣ 0) by CE t, u, u′, (0, 0) > 0

=
𝔼 Y i(t) ∣ W j = u′, X = (0, 0) − Fi u′ ∣ 0 + Fi u′ ∣ 0 − Fi(u ∣ 0)

1 − Fi(u ∣ 0)

=
k u′ 1 − Fi u′ ∣ 0 + Fi u′ ∣ 0 − Fi(u ∣ 0)

1 − Fi(u ∣ 0) by Theorem 1

≥
k u′ 1 − Fi u′ ∣ 0 + Fi u′ ∣ 0 − Fi(u ∣ 0) k u′

1 − Fi(u ∣ 0) by k u′ ≤ 1

=
k u′ 1 − Fi(u ∣ 0)

1 − Fi(u ∣ 0) = k u′ .

(18)

Next, we analyze the property of G(u|1) − G(u|0) for ∀u > 0. Denote H0(u) = ∫ 0
uh0(s ∣ 0)ds.

Given h0(u|1) = εh0(u|0) with ε ∈ [0,1), we can write out G(u|0) and G(u|1) in terms of h0(u|

0) as follows.

G(s ∣ 1) =
∫ 0

s 1 − Fi(u ∣ 0) dF j(u ∣ 1)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 1)
=

∫ 0
s ε ⋅ h0(u ∣ 0)e

−ε ⋅ H0(u)
e

−H0(u)
du

∫ 0
t ε ⋅ h0(v ∣ 0)e

−ε ⋅ H0(v)
e

−H0(v)
dv

=
∫ 0

s ε ⋅ h0(u ∣ 0)e
−(ε + 1) ⋅ H0(u)

du

∫ 0
t ε ⋅ h0(v ∣ 0)e

−(ε + 1) ⋅ H0(v)dv = 1 − e
−(ε + 1)H0(s)

1 − e
−(ε + 1)H0(t)

G(s ∣ 0) =
∫ 0

s 1 − Fi(u ∣ 0) dF j(u ∣ 1)
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 1)
= 1 − e

−2H0(s)

1 − e
−2H0(t)

(19)

From (19), we observe that G(s|1) and G(s|0) only differ by the terms in front of H0. Treat

G(s|1) and G(s|0) as functions of ε, and we can re-express them as G(ε) = 1 − e
−(ε + 1)H0(s)

1 − e
−(ε + 1)H0(t)

and G(1)=1 − e
−2H0(s)

1 − e
−2H0(t) , given ε < 1. Then, if G(ε) is a decreasing function of ε, we have G(u|

1) − G(u|0) ≤ 0.

∂
∂ε G(ε)

=
H0(u)e

−(ε + 1)H0(u)
1 − e

−(ε + 1)H0(t)
− H0(t)e

−(ε + 1)H0(t)
1 − e

−(ε + 1)H0(u)

1 − e
−(ε + 1)H0(t) 2

(20)
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Divide the numerator of (20) by a positive constant H0(t)H0(u)e
−(ε + 1) H0(u) + H0(t)

. We then

have if e
(ε + 1)H0(u) − 1

H0(u) ≤ e
(ε + 1)H0(t) − 1

H0(t)  for u < t, then G(u|1) − G(u|0) ≤ 0. Treat

e
(ε + 1)H0(t)

− 1
H0(t)  as a function of u, given 0 ≤ u < t. We have,

∂
∂u

e
(ε + 1)H0(u)

− 1
H0(u) =

(ε + 1)H0(u)e
(ε + 1)H0(u)

− e
(ε + 1)H0(u)

+ 1
H0(u) 2

=
(ε + 1)H0(u) − 1 + e

−(ε + 1)H0(u)

H0(u) 2e
(ε + 1)H0(u) by e

−(ε + 1)H0(u)
≥ 1 − (ε

+ 1)H0(u)

≥ 0.

(21)

Combining (20) and (21), we have G(u|1) − G(u|0) ≤ 0.

In summary, we can see that

SAR10(t) − SAR00(t) = k(u)[G(u ∣ 1) − G(u ∣ 0)] 0
t − ∫0

t
(G(u ∣ 1) − G(u ∣ 0))dk(u) < 0

Thus, VEI
net(t) = 1 −

SAR10(t)
SAR00(t) =

SAR00(t) − SAR10(t)
SAR00(t) > 0.

Next, we analyze the sign of VEI
net(t) under a null true susceptibility effect.

SAR10(t) − SAR00(t)

= ∫0
t
𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 1)

1 − Fi(u ∣ 0) dF j(u ∣ 1)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 1)

−∫0
t
𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 0) −

1 − Fi(u ∣ 0) dF j(u ∣ 0)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

by (17)
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= ∫0
t

𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 1) − 𝔼 Yi(t) ∣ W j = u, Wi > u, X = (0, 0)

.
1 − Fi(u ∣ 0) dF j(u ∣ 0)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

by SE(t, wj, xj) = 0 and (11)

= ∫0
t 𝔼 Yi(t) ∣ W j = u, X = (0, 1)

Pr Wi > u ∣ W j = u, X = (0, 1)
−

𝔼 Yi(t) ∣ W j = u, X = (0, 0)

Pr Wi > u ∣ W j = u, X = (0, 0)

1 − Fi(u ∣ 0) dF j(u ∣ 0)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

= ∫0
t 𝔼 Yi(t) ∣ W j = u, X = (0, 1)

Pr Wi > u ∣ Xi = 0
−

𝔼 Yi(t) ∣ W j = u, X = (0, 0)

Pr Wi > u ∣ Xi = 0

1 − Fi(u ∣ 0) dF j(u ∣ 0)

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

by Assumption 1

= ∫0
t

𝔼 Yi(t) ∣ W j = u, X = (0, 1) − 𝔼 Yi(t) ∣ W j = u, X = (0, 0)
1 − Fi(u ∣ 0)

Pr Wi > u ∣ Xi = 0
dF j(u ∣ 0)

. 1
∫ 0

t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

= ∫0
t IE(t, u, 0) 1 − Fi(u ∣ 0)

Pr Wi > u ∣ Xi = 0
dF j(u ∣ 0) ⋅ 1

∫ 0
t 1 − Fi(v ∣ 0) dF j(v ∣ 0)

Thus, VEI
net(t) has the same sign as the true infectiousness effect, when the true susceptibility

effect is null.

Third, we analyze the sign of VEI
net(t) in the case of no contagion, when the true

susceptibility effect is beneficial. First, CE t, w j, w j′, 0 = 0 for all 0 < w j < w j′ implies IE(t, wj,

0) = 0.

IE t, w j, xi = 𝔼 Yi t; w j, xi, x j = 1 − Yi t; w j, xi, x j = 0

= 𝔼 1 Wi xi < t − 1 Wi xi < t = 0

Following the same proof for the first case except replacing the second line of (18) by an

equal sign, we know VEI
net(t) > 0. ⎕

Proof of Theorem 4.

Given h0
i (t ∣ 0) = 0, we have Fi(s ∣ 0) = 1 − e

−∫ 0
s h0

i (u ∣ 0)du
= 0 for Wi(0).
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𝔼 Yi t; Y j x j′ , 0, x j ∣ h0
i (t ∣ 0) = 0 = 𝔼 Yi t; Y j x j′ , 0, x j ∣ Wi(0) = ∞

by Fi(s|xi) = 0 for ∀s > 0

= 𝔼 Yi t; 1 W j x j′ < t , 0, x j ∣ Wi(0) = ∞

given Y i x j′ = T j x j′ < t  and T j x j′ = W j x j′  when Wi(0) = ∞

= 𝔼 Y i t; W j x j′ , 0, x j ∣ W i(0) = ∞
= 𝔼 Y i t; W j x j′ , 0, x j ∣ h0

i (s ∣ 0) = 0
(22)

Thus, by the definition of VEI(t) and IE(t, xi), we have:

VEI(t) = 𝔼 Yi t; Y j(1), (0, 1) − Yi t; Y j(1), (0, 0) ∣ h0
i (s ∣ 0) = 0

= 𝔼 Yi t; W j(1), (0, 1) − Yi t; W j(1), (0, 0) ∣ h0
i (s ∣ 0) = 0 = IE t, 0 ∣ h0

i (s ∣ 0) = 0

Thus, VEI is equivalent to the natural infectiousness effect under the asymmetric

partnership. ⎕

Proof of Theorem 5.

Given h0
i (t ∣ 0) = 0, we have 𝔼 Yi t; w j, x ∣ L = 1 .

VEC(t) = 𝔼 Yi t; Y j(1), (0, 0) − 𝔼 Yi t; Y j(0), (0, 0)

= 𝔼 Yi t; W j(1), (0, 0) − 𝔼 Yi t; W j(0), (0, 0)

by Equation (22)

= ∫0
∞

𝔼 Yi t; w j, (0, 0) dF j w j ∣ 1 − ∫0
∞

𝔼 Yi t; w j, (0, 0) dF j w j ∣ 0

by Corollary 1

= ∫0
∞

Fi w j ∣ 0 + 1 − Fi w j ∣ 0 𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = (0, 0) d F j w j ∣ 1 − F j w j ∣ 0

by Theorem 1

= ∫0
∞

𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = (0, 0) d F j w j ∣ 1 − F j w j ∣ 0
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by Fi(t|xi) = 0 for ∀t > 0

= ∫0
t
𝔼 Yi(t) ∣ Wi > w j, W j = w j, X = (0, 0) d F j w j ∣ 1 − F j w j ∣ 0

since 𝔼 Y i(t) ∣ W i > w j, W j = w j, X = (0, 0) = 0 for wj > t

= ∫0
t
k w j d F j w j ∣ 1 − F j w j ∣ 0

by the definition of k(u) in the proof of Theorem 3

= k w j F j w j ∣ 1 − F j w j ∣ 0 0
t − ∫0

t
F j w j ∣ 1 − F j w j ∣ 0 dk w j

by integration by parts

By the definition of k(u) and Fj(u|xj), we know k(t) = 0 and Fj(0|1) − Fj(0|0) = 0, and thus

k w j F j w j ∣ 1 − F j w j ∣ 0 0
t = 0 If SE(t, wj, x) > 0, we have Fj(wj|1) − Fj(wj|0) > 0. If CE(t,

u, u′, (0, 0)) > 0 for 0 ≤ u < u′< t, dk(u) < 0 as shown in the the proof of Theorem 3. Thus,

we have the following conclusions.

When SE(t, wj, x) > 0, VEC(t) has the opposite sign as CE(t, u′, u, (0, 0)).

If SE(t, wj, x) = 0 and CE(t, u, u′, (0, 0)) > 0, we have VEC(t) = 0. ⎕

Figure 5:

The choice of ε in the estimation of 𝔼 Y i t; xi, x j, w j  with sample size n = 100, 000 under the

constant hazards α(t) = 0.2, γ(t) = 10 and coefficients e
β0 = e

β1 = 0.2 and eσ = 0.5. Figure on

the left shows the estimation of 𝔼 Y i t = 2; xi = 1, x j = 1, s = 1  and its corresponding MSE

under different choices of ϵ, and Figure on the right shows the estimation of

𝔼 Y i t = 1.5; xi =0, x j = 0, s = 1  and its corresponding MSE under difference choices of ϵ.
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B: Statistical estimation

B.1 Statistical estimation for the controlled potential outcomes in

Theorem 1

In Theorem 1, for t < wj, the estimation of 𝔼 Yi t; w j, x ∣ L = 1  is achieved by the estimation

of Fi(wj|xi, li) by Lemma 1, which follows the standard technique of estimating distribution

of time-to-event data in competing risks. For t ≥ wj, the estimation of 𝔼 Y i t; w j, x ∣ L = 1  is

achieved by the estimation of Fi(wj|xi, li) by Lemma 1 and the estimation of

𝔼 Y i(t) ∣ T i ≥ w j, T j = w j, X =X, L = 1 . Let ϵ be a small positive number, then

𝔼 Yi t Ti ≥ w j, T j = w j, x = x, L = 1 = limε→0𝔼 Yi t w j − ε < T j < w j + X = x, L = 1 .

Therefore, we estimate 𝔼 Y i(t) ∣ T i ≥ w j, T j = w j, X = x, L = l  by averaging Yi(t) among

observations when Tj falls into a narrow region around wj under X = x and L = l. With finite

samples of observations, if ϵ is chosen too small, sample size for the estimation becomes

smaller and variance gets bigger; if the ϵ is chosen too big, the selected observations no

longer approximate Tj = wj well enough so that the estimation is more biased. The ϵ should

be chosen to minimize the MSE of the estimation.

We choose ϵ = 0.1 in the estimations of controlled potential outcomes in Figure 3 when t ≥
wj with sample size N = 100, 000 (under the constant hazard scenario α(t) = 0.2 and γ(t) =
10 with beneficial susceptibility effect β1 = 0.3 and infectiousness effect β2 = 0.5), as it

gives the smallest (or almost smallest) MSE for most observational times under different

treatments and partner’s infection time. Figure 5 illustrates the estimations of

𝔼 Y i 2; xi = 1, x j = 1, w j = 1  and 𝔼 Y i 1.5; xi = 0, x j = 0, w j = 1  as well as their MSEs for the

choice of ϵ among ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}, and ϵ = 0.1 gives the

smallest MSE for the estimation.

Figure 6:
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The choice of ε in the estimation of 𝔼 Y i t; xi, x j, W j x j′  with sample size n = 100, 000 under

the constant hazards α(t) = 0.2, γ(t) = 10 and coefficients e
β0 = e

β1 = 0.2 and eσ = 0.5.

Figure on the left shows the estimation of 𝔼 Y i t = 2; 0, 0, W j(1)  and its corresponding MSE

under different choices of ε, and Figure on the right shows the estimation of

𝔼 Y i t = 2; 0, 1, W j(0)  and its corresponding MSE under difference choices of ϵ.

B.2 Statistical estimation for the natural potential outcomes in Corollary 1

From Corollary 1, 𝔼 Y i t; xi, x j, W j x j  can be estimated by the average of Yi(t) when X = x.

For the identification of cross-world natural potential outcomes when x j′ ≠ x j,

𝔼 Y i t; xi, x j, W j x j′  is estimated with the help of the estimation of F j w j ∣ x j′, l j  by Lemma 1

and the estimation of 𝔼 Y i t; w j, x ∣ L = l  in Theorem 1, which requires a proper choosing of

ε again.

We illustrate examples of estimating cross-world natural potential outcomes of

𝔼 Y i t = 2; 0, 0, W j(1)  and 𝔼 Y i t = 2; 0, 1, W j(0)  with sample size N = 1, 000, 000 under the

constant hazard scenario (α(t) = 0.2 and γ(t) = 10) with beneficial susceptibility effect (β1 =

0.3) and infectiousness effect (β2 = 0.5). We show their estimations as well as the MSEs

under the choice among ϵ ∈ {0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2} in Figure 6, and ϵ =

0.1 gives the smallest MSE for the estimations.

B.3 Covariate adjustment for controlled and natural potential infection

outcomes in Equations (4)–(5)

For the adjustment of covariates in Equations (4)–(5), the estimation is achieved by

estimating (controlled or natural) potential outcomes by Theorem 1 and Corollary 1, and

then integrate it over the estimated empirical distribution of the covariates.

We approximate the joint distribution of covariates G(l) empirically by dividing the space of

L into small bins of size Δ × Δ. The probability of L in one bin centered around (ci, cj) is

estimated by Pr ci − Δ
2 < Li < ci + Δ

2 , c j − Δ
2 < L j < c j + Δ

2 = 1
N ∑i1

ci − Δ
2 < Li < ci + Δ

2 , c j − Δ
2 <L j < c j + Δ

2

. The size of Δ should be

chosen to minimize the MSE of the estimations. Within each bin centered, for example the

one around (ci, cj), we estimate 𝔼 Y i t; w j, x ∣ Li = ci, L j = c j  and

𝔼 Y i t; X, W j x j ∣ Li = ci, L j = c j  by Theorem 1 and in Corollary 1, respectively. Finally, we

integrate 𝔼 Y i t; w j, x ∣ Li = ci, L j = c j  and 𝔼 Y i t; W j x j , x ∣ Li = ci, L j = c j  over the

estimated empirical distribution of G(l) by:

Cai et al. Page 32

J Causal Inference. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



𝔼 Yi t; w j, x = ∑
ci, c j

𝔼 Yi t; w j, x ∣ Li = ci, L j = c j Pr ci − Δ
2 < Li < ci + Δ

2 , c j − Δ
2 < L j < c j + Δ

2

𝔼 Yi t; W j x j , x =

∑
ci, c j

𝔼 Yi t; W j x j , x ∣ Li = ci, L j = c j Pr ci − Δ
2 < Li < ci + Δ

2 , c j − Δ
2 < L j < c j + Δ

2

We illustrate the estimation of 𝔼 Y i t = 2; xi = 1, x j = 1, w j = 1  and

𝔼 Y i t = 2; xi = 0, x j =0, W j(0)  with one covariate for each individual, so L = (Li, Lj), with

sample size n = 1, 000, 000 under the constant hazards α(t) = 0.2, γ(t) = 10 and coefficients

e
β0 = e

β1 = 0.2 and eσ = 0.5. In our simulation, the covariates are generated by

Li
L j

Normal 0
0 , v

1 ρ
ρ 1

so that the majority of them fall into (−4,4). Therefore, we separate the covariates space into

bins from −4 to 4 by Δ as well as the 4 left regions at the corners. Specifically, the space of

(Li, Lj) are separated into bins of ci − Δ
2 , ci + Δ

2 × c j − Δ
2 , c j + Δ

2 , where

c j, c j ∈ −4 + Δ
2 , − 4 + 3Δ

2 , …, 4 − 3Δ
2 , 4 − Δ

2 , as well as (−∞, −4] × (−∞, −4], (−∞, −4] × (4,

∞), (4, ∞) × (−∞, −4], and (4, ∞) × (4, ∞) at the corners.

We show the estimations of 𝔼 Y i t = 2; xi = 1, x j = 1, w j = 1  and

𝔼 Y i t = 2; xi = 0, x j =0, W j(0)  as well as MSE under the choice among Δ ∈ {0.005, 0.01,

0.05, 0.1, 0.2, 0.5, 1, 1.5, 2} in Figure 7, and Δ = 0.1 gives the smallest MSE for the

estimations.

Figure 7:
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The choice of Δ in the estimation of natural potential outcomes with sample size n = 1, 000,

000 under the constant hazards α(t) = 0.2, γ(t) = 10 and coefficients e
β0 = e

β1 = 0.2 and eσ =

0.5. Figure on the left shows the estimation of 𝔼 Y i 2; 0, 0, W j(0)  and its corresponding MSE

under different choices of Δ among Δ ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}, and Figure on

the right shows the estimation of 𝔼 Y i 3; xi = 1, x j = 1, W j(1)  and its corresponding MSE

under difference choices of Δ among Δ ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2}.
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Figure 1:
Illustration of contagion in a two-person partnership. At left, when subject 2 becomes

infected first (W2 < W1), then W1 is censored, and Z1 is the remaining time to infection of

subject 1. At right, when subject 1 is infected first (W1 < W2), then W2 is censored, and Z2

is the remaining time to infection of subject 2. Informally, the outcome is said to be

“contagious” when the distribution of Ti is different from that of Wi.
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Figure 2:
Causal graphical model for infection outcomes in a two-person partnership, under

Assumptions 1–5. Covariates L1 and L2 may be dependent within partnerships, and

covariates of both subjects may affect the joint treatments (X1, X2). The initial infection

times W1 and W2 are functions of individual covariates and treatments alone by Assumption

1, and thus no arrows exist from Xj to Wi or from Lj to Wi. Subsequent waiting times Z1 and

Z2 are functions of treatments and covariates of both subjects, and the infection time of the

first infected subject. From the decomposition of the infection time (1), the latent additional

infection time Zi and the (possibly latent) time Wi are relevant to exclusive cases of

realization of Ti, so they are no arrows between them. The overall infection time Ti is

determined by Wi, Wj and Zi, as specified in (1).
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Figure 3:
Illustration of average controlled potential infection outcomes under different values of the

infection time wj and joint treatment x, under time-invariant baseline hazards α(t) = 0.2 and

γ(t − wj) = 10 and coefficients e
β0 = e

β1 = 0.3 and eσ = 0.5. Contrasts of potential outcomes

in (a), (b) and (c) show the controlled contagion effect, the infectiousness effect, and the

susceptibility effect evaluated at different times, shown together in (d).
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Figure 4:
Comparison of different natural infectiousness and susceptibility effects. Figure a) compares

different natural infectiousness effects – natural infectiousness effect IE(t, xi = 0), crude

infectiousness effect VEI
net(t), the infectiousness defined in mediation analysis VEI(t) and

bounds identified by principal stratification – when both true susceptibility effect and true

infectiousness effect are beneficial (eβ = 0.3, eσ = 0.5). Similarly, Figure b) shows the same

comparison of multiple natural infectiousness effects as in Figure a) when the true

infectiousness effect is much stronger than the true susceptibility effect (eβ = 0.4, eσ = 0.01).

Figure c) shows the comparison of different types of natural susceptibility effect – the

natural susceptibility effect SE(t, 0), the crude susceptibility effect DE(t) under Bernoulli,

Complete, and Cluster randomization – when both true susceptibility effect and true

infectiousness effect are beneficial (eβ = 0.3, eσ = 0.5) as in Figure a). Likewise, Figure d)

shows the same comparison of multiple natural susceptibility effects when the true

infectiousness effect is much stronger than the true susceptibility effect (eβ = 0.4, eσ = 0.01).

All four graphs are under constant baseline hazards α(t) = 0.2 and γ(t) = 10.
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Table 1:

Simulation results showing true values of the natural contagion, susceptibility, infectiousness effects, and

alternative estimands defined by Hudgens and Halloran [31], Halloran and Hudgens [20], and VanderWeele et

al. [66]. Estimands are evaluated under six different scenarios - (i) constant hazards with α = 0.2 and γ = 10 in

(8), (ii) constant hazards without contagion with α = 0.2, γ = 0 in (8), (iii) time-varying hazards with a = 0.4,

b = 25 and w = 0.5 in (9), (iv) time-varying external hazard without contagion with a = 0.4, b = 0 and w = 0.5

in (9), (v) time-varying hazards with a = 0.2, b = 40, k = 1.5 and θ = 3 in (10), and (vi) time-varying hazard

without contagion with a = 0.2, b = 0, k = 1.5 and θ = 3 in (10), respectively. The effect of vaccination is the

same across all scenarios with e
β0 = e

β1 = 0.4 and eσ = 0.01. The individual covariates (li, lj) are correlated

with ρ = 0.1 and coefficients of e
θ0 = e

θ1 = e
θ2 = 0.95.

 Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEI
net(t) CVEI

c(t)

Constant hazards

 Observational 0.12 −0.14 −0.19 −0.16 −0.20 −0.70 -

 Bernoulli 0.12 −0.14 −0.19 −0.16 −0.20 −0.70 (−0.73, −0.66)

 Block - - - 0.06 - - -

 Cluster - - - −0.39 - - -

Constant hazards without contagion

 Observational 0.00 −0.18 0.00 −0.18 0.00 −0.01 -

 Bernoulli 0.00 −0.18 0.00 −0.18 0.00 −0.01 (−0.25, 0.19)

 Block - - - −0.18 - - -

 Cluster - - - −0.18 - - -

Time-varying external and decreasing internal hazards

 Observational 0.12 −0.14 −0.20 −0.21 −0.22 −0.51 -

 Bernoulli 0.12 −0.14 −0.20 −0.21 −0.22 −0.51 (−0.53, −0.50)

 Block - - - 0.08 - - -

 Cluster - - - −0.50 - - -

Time-varying external and decreasing internal hazards without contagion

 Observational 0.00 −0.28 0.00 −0.28 0.00 −0.02 -

 Bernoulli 0.00 −0.28 0.00 −0.28 0.00 −0.02 (−0.43, 0.36)

 Block - - - −0.28 - - -

 Cluster - - - −0.28 - - -

Time-varying external and increasing-then-decreasing internal hazards

 Observational 0.10 −0.16 −0.17 −0.17 −0.18 −0.64 -

 Bernoulli 0.10 −0.16 −0.17 −0.17 −0.18 −0.64 (−0.62, −0.39)

 Block - - - 0.02 - - -

 Cluster - - - −0.37 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion

 Observational 0.00 −0.18 0.00 −0.18 0.00 −0.01 -

 Bernoulli 0.00 −0.18 0.00 −0.18 0.00 −0.01 (−0.43, 0.36)

 Block - - - −0.18 - - -
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 Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEI
net(t) CVEI

c(t)

 Cluster - - - −0.18 - - -
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Table 2:

Simulation results showing true values of the natural contagion, susceptibility, infectiousness effects, and

alternative estimands defined by Hudgens and Halloran [31], Halloran and Hudgens [20], and VanderWeele et

al. [66]. Estimands are evaluated under six different scenarios - (i) constant hazards with α = 0.2 and γ = 10 in

(8), (ii) constant hazards without contagion with α = 0.2, γ = 0 in (8), (iii) time-varying hazards with a = 0.4,

b = 25 and w = 0.5 in (9), (iv) time-varying external hazard without contagion with a = 0.4, b = 0 and w = 0.5

in (9), (v) time-varying hazards with a = 0.2, b = 40, k = 1.5 and θ = 3 in (10), and (vi) time-varying hazard

without contagion with a = 0.2, b = 0, k = 1.5 and θ = 3 in (10), respectively. The effect of vaccination is the

same across all scenarios with e
β0 = e

β1 = 0.4 and eσ = 0.5. The individual covariates (li, lj) are correlated with

ρ = 0.1 and coefficients of e
θ0 = e

θ1 = e
θ2 = 0.95.

 Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEI
net (t) CVEI

c(t)

Constant hazards

 Observational 0.14 −0.18 −0.01 −0.20 −0.14 −0.04 -

 Bernoulli 0.14 −0.18 −0.01 −0.20 −0.14 −0.04 (−0.08, 0.02)

 Block - - - −0.04 - - -

 Cluster - - - −0.36 - - -

Constant hazards without contagion

 Observational 0.00 −0.22 0.00 −0.22 0.00 −0.01 -

 Bernoulli 0.00 −0.22 0.00 −0.22 0.00 −0.01 (−0.39, 0.19)

 Block - - - −0.22 - - -

 Cluster - - - −0.22 - - -

Time-varying external and decreasing internal hazards

 Observational 0.15 −0.18 −0.01 −0.23 −0.15 −0.03 -

 Bernoulli 0.15 −0.18 −0.01 −0.23 −0.15 −0.03 (−0.04, 0.00)

 Block - - - −0.03 - - -

 Cluster - - - −0.44 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion

 Observational 0.00 −0.34 0.00 −0.34 0.00 −0.02 -

 Bernoulli 0.00 −0.34 0.00 −0.34 0.00 −0.02 (−0.64, 0.36)

 Block - - - −0.34 - - -

 Cluster - - - −0.34 - - -

Time-varying external and increasing-then-decreasing internal hazards

 Observational 0.12 −0.21 −0.02 −0.22 −0.13 −0.08 -

 Bernoulli 0.12 −0.21 −0.02 −0.22 −0.13 −0.08 (−0.21, 0.07)

 Block - - - −0.08 - - -

 Cluster - - - −0.36 - - -

Time-varying external and increasing-then-decreasing internal hazards without contagion

 Observational 0.00 −0.22 0.00 −0.22 0.00 −0.01 -

 Bernoulli 0.00 −0.22 0.00 −0.22 0.00 −0.01 (−0.64, 0.36)

 Block - - - −0.22 - - -
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 Treatment CE(t, 0) SE(t, 0) IE(t, 0) DE(t) IDE(t) VEI
net (t) CVEI

c(t)

 Cluster - - - −0.22 - - -
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