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Abstract

The de Rham-Hodge theory is a landmark of the 20th Century’s mathematics and has had a great

impact on mathematics, physics, computer science, and engineering. This work introduces an

evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric

and topological analysis of evolving manifolds constructed from a filtration, which induces a

family of evolutionary de Rham complexes. While the present method can be easily applied to

close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold

boundaries, which require appropriate analysis and treatment of boundary conditions on

differential forms to maintain proper topological properties. Three sets of unique evolutionary

Hodge Laplacians are proposed to generate three sets of topology-preserving singular spectra, for

which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of

dimensions 0, 1 and 2. Additionally, three sets of non-zero eigenvalues further reveal both

topological persistence and geometric progression during the manifold evolution. Extensive

numerical experiments are carried out via the discrete exterior calculus to demonstrate the

potential of the proposed paradigm for data representation and shape analysis of both point cloud

data and density maps. To demonstrate the utility of the proposed method, the application is

considered to the protein B-factor predictions of a few challenging cases for which existing

biophysical models break down.
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1. Introduction.

The de Rham-Hodge theory reveals that the cohomology of an oriented closed Riemannian

manifold can be represented by harmonic forms. It also holds for an oriented compact

Riemannian manifold with boundary by forcing certain boundary conditions, such as

absolute and relative cohomology [56]. This theory has been proved to be fundamentally

important throughout algebraic geometry. It studies differential geometry and algebraic

topology with partial differential equations (PDEs). The understanding of the de Rham-

Hodge theory requires a variety of contemporary mathematical techniques including

differential geometry, algebraic geometry, elliptic PDE, abstract algebra, topology, et al.

The de Rham-Hodge theory has a wide range of applications, including not only

mathematics, but also graphics/visualization [63, 76], physics/fluids [24], vision/robotics

[29, 44] and astrophysics/geophysics [40, 1]. Among all these applications, most of them

rely upon the Hodge theory result, i.e., the Helmholtz-Hodge decomposition. It is one of the

fundamental theorems in dynamical problems, describing a vector field into the gradient and

curl components.

Due to the orthogonal decomposition, the analysis of vector fields becomes easier since

certain properties such as incompressibility and vorticity of fluid dynamics can be studied on

the orthogonal subspace. Such an orthogonal decomposition was first applied on a finite-

dimensional compact manifold without boundary [32] and then was developed for manifolds

with boundaries [59]. Pushed by the visualization community, the implementation of

orthogonal decomposition integrates a variety of boundary conditions with discrete vector

fields expressed as discrete differential forms into two potential fields and harmonic fields

[76]. The boundary conditions of the decomposition preserve orthogonality. The duality

revealed by tangential and normal boundary conditions provides compact spectral

representations of the Laplace operators in the de Rham-Hodge theory. The spectra of de

Rham-Laplace operators provide a quantitative approach to understanding topological

spaces and geometry characteristics of manifolds and have been applied to biomolecular

modeling and analysis [77]. The development of discrete exterior calculus (DEC) is the

driving force for de Rham-Hodge theory analysis and application [2, 19].

Over half a century ago, Kac asked a famous question, “can one hear the shape of a drum?”

[35]. Zelditch noticed that different drums may be distinguished by imposing restrictions

with analytic boundary [75]. However, the traditional spectral analysis cannot fully resolve

the shape of a drum due to the isospectrum from different geometric shapes. Innovative

theoretical development is required to solve this long-standing spectral geometry problem.

In the last few decades, geometric analysis has made great progress in understanding shapes

that evolve in time. Geometric flows [69] or geometric evolution equations have been

extensively studied in mathematics [62, 30, 42] and many processes by which a curve or

Chen et al. Page 2

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



surface can evolve, such as the Gauss curvature flow and the mean curvature flow.

Numerical techniques based on level sets were devised by Osher and Sethian [53] and have

been extended and applied by many others in geometric flow analysis [68, 15, 21]. More

recently, as the progress in contemporary life sciences, a large number of problems of

unveiling the structure-function relationship of biomolecules and understanding of

biomolecular systems, requires multiscale geometric modeling and analysis [5, 68, 16].

However, compared with the investigations on curves and surfaces, a small amount of

geometric explorations focuses on the evolution of compact manifolds specific to ℝ3 due to

the difficulty of computations. Additionally, it is rare to resolve topology from a nonlinear

geometric PDE. Using a minimal molecular surface model [5], Wang and Wei studied the

topological persistence via the evolutionary profiles of the Laplace-Beltrami flow [66]. As a

result, features of topological invariants are computed from the geometric PDE based

filtration. There has been much effort in pure mathematics to understand the convergence of

Riemannian manifolds in terms of sequences of submanifolds in metric spaces. However, the

involved Gromov-Hausdorff distance can be computationally very difficult.

With the advancements in data development and computational software, persistent

homology has been promoted as a new multiscale approach for data analysis [78, 22]. The

traditional topological approaches describe the topology of a given object without invoking

the metric or coordinate representations. Whereas, persistent homology bridges algebraic

topology and multiscale analysis. The essential difference is that persistent homology

analyzes the persistence of the topological space through a filtration process, which is a

family of simplicial complexes under a series of inclusion maps. Therefore a series of

complexes are constructed based on filtration, which captures topological features changing

over a range of spatial scales and reveals the features’ topological persistence. In some

sense, persistent homology can embed geometric information to topological invariants such

that “birth” and “death” of connected components, rings, or cavities can be monitored by

topological measurements during geometric scale changes. The original idea of varying

scales was introduced by Frosini and Landi [26] and by Robins in 1990s [58]. Edelsbrunner

et al. formulated the persistent homology and developed the first efficient computational

algorithm [23]. Zomorodian and Carlsson generalized the mathematical theory [78].

Persistent homology has stimulated much theoretical development[13, 22, 17, 10, 41, 67].

Among them, the persistent spectral graph generates both topological persistence and

spectral analysis [67]. Persistent homology has been applied to a variety of fields, including

image analysis [14, 55, 60, 6], image retrieval [27], chaotic dynamics verification [43, 36],

sensor network [18], complex network [38, 34], data analysis [51, 64], computer vision [60],

shape recognition [20] and computational biology [74, 72, 71, 28, 37].

One of the first integrations of persistent homology and machine learning was developed for

protein classification in 2015 [9]. Since then, persistent homology has been utilized as one of

the most successful methods for the multiscale representation of complex biomolecular data

[11, 12, 8]. Two other multiscale representations of complex biomolecular data have also

been proposed and found tremendous success in worldwide competitions in computer-aided

drug design [46, 47]. One of them is based on multiscale graphs [52], or more precisely,

multiscale weighted colored graphs [7]. Eigenvalues of the graph Laplacians of multiscale
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weighted colored graphs were shown to provide some of the most powerful representations

of protein-ligand binding interactions [45]. The other representation utilizes the curvatures

computed from multiscale interactive molecular manifolds [48]. The multiscale shape

analysis offers an efficient means to discriminate similar geometries. A common feature

which is crucial to the success of the aforementioned three mathematical data

representations is that they either create a family of multiscale topological spaces, or

generate a family of multiscale graphs, or construct a family of manifolds, indicating the

importance of the multiscale analysis in the representation of complex data with intricate

internal structures.

Inspired by the aforementioned ideas, we introduce an evolutionary de Rham-Hodge method

for data representation. The present evolutionary de Rham-Hodge method is developed by

integrating differential geometry, algebraic topology, and multiscale analysis. It is noted that

the fusion of algebraic topology and multiscale analysis leads to persistent homology, the

combination of differential geometry and multiscale analysis renders manifold convergence

[61], while the union of differential geometry and algebraic topology results in the de Rham-

Hodge theory. For a given dataset, using the evolutionary filtration developed in early work

[66], we construct a sequence of evolving manifolds that lead to a geometry-embedded

filtration under inclusion maps. The evolutionary de Rham-Hodge method is established on

this sequence of manifolds. In general, the evolution of the manifolds can be either

topological persistence which involves topological changes or geometric progression which

does not involve topological changes. We are interested in both the data analysis by

evolutionary Hodge decompositions associated with various differential forms and the data

representations via the evolutionary spectra of de Rham Laplace operators defined on the

sequence of manifolds. The evolutionary spectra reveal both the topological invariants and

the geometric shapes of evolving manifolds. Such an evolutionary spectral analysis has great

potential to “hear the shape of a drum”.

In this work, we concern both close 2-manifolds and compact manifolds in ℝ3 with

boundaries, which require the enforcement of appropriate boundary conditions on

differential forms to ensure topological properties. Much effort has been given to the

understanding and implementation of appropriate boundary conditions for the evolutionary

de Rham-Hodge method, which results in three sets of unique evolutionary Hodge

Laplacians. The multiplicities of the zero eigenvalues of these evolutionary Hodge

Laplacians provide the 0th, 1st, and 2nd persistent Betti numbers. Their non-zero

eigenvalues further portray the geometric shape and topological characteristics of data.

The rest of this paper is organized as follows. Section 2 is devoted to a brief review of the de

Rham-Hodge theory, which includes the topics of the de Rham complex and Hodge

decomposition. Then, the discrete forms and spectra generated by de Rham-Hodge theory

are discussed in Section 2. Readers familiar with the content in the above primer are

recommended to start from Section 3, where the evolutionary de Rham-Hodge method is

formulated. To demonstrate the utility and usefulness of the present method, we present the

evolutionary de Rham-Hodge analysis of geometric shapes in Section 4. The application of

the present method is given to the protein flexibility prediction in Section 5. We consider a
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few cases that are challenging to the existing models in computational biophysics. Finally, a

conclusion is given in Section 6.

2. A primer on de Rham-Hodge theory.

To introduce the evolutionary de Rham-Hodge method, we briefly review the de Rham-

Hodge theory to establish notation. We first discuss differential geometry and de Rham

complex on smooth manifolds before reviewing the Hodge decomposition. Then, we

illustrate the DEC discretization of the de Rham-Laplace operators and analyze their spectra.

2.1. Differential geometry and de Rham complex.

Differential geometry is the study of shapes that can be represented by smooth manifolds of

an arbitrary dimension. A differential k-form ωk ∈ Ωk(M) is an antisymmetric covariant

tensor of rank k on manifold M. Roughly speaking, at each point of M, it is a linear map

from an array of k vectors into a number, which switches sign if any two of the vectors are

swapped. In general, it gives a uniform approach to define the integrals over curves,

surfaces, volumes, or higher-dimensional oriented submanifolds of M. More precisely, the

antisymmetric rank-k covariant tensor linearly maps k edges from the first vertex of each k-

simplex in a tessellation of the k-submanifold into a number, creating a Riemann sum that

converges to an integral independent of the tessellation.

In ℝ3, 0-forms and 3-forms can be recognized as scalar fields, as the antisymmetry permits

one degree of freedom (DoF) per point, whereas 1-forms and 2-forms are considered vector

fields as they require three DoFs per point. Our following discussion is specific to 3-

dimensional (3D) volumes bounded by 2-manifolds in ℝ3.

The differential operator (i.e., exterior derivative) dk maps from the space of k-form on

manifold, Ωk(M) to Ωk+1(M). It can be regarded as an antisymmetrization of the partial

derivatives of a k-form. As such, it is a linear map dk : Ωk(M) → Ωk+1(M) that satisfies the

Stokes’ theorem over any (k+1)-submanifold 𝒮 in M:

∫
𝒮

dkωk = ∫
∂𝒮

ωk, (1)

where ∂𝒮 is the boundary of 𝒮 and ωk ∈ Ωk(M) is an arbitrary k-form. Consequently, a key

property of differential operator, dkdk−1 = 0, follows from that boundaries are boundaryless

(∂ ∂𝒮 = 0). This implies that an exact form (image of a (k−1)-form under differential) is

closed (i.e., is in the kernel of differential). The differential operator indeed provides a

unification of a number of commonly used operators in 3D vector field analysis. Depending

on the degree k of differential forms, dk can be regarded as gradient (∇), curl (∇×) and

divergence (∇·) operators for 0-, 1- and 2-forms, respectively, e.g., d0 takes the gradient of a

scalar field (representing a 0-form) to a vector field (representing a 1-form).

With the linear spaces of k-forms treated as abelian groups under addition and the linear

maps d treated as group homomorphisms, they form a sequence that fits the definition of a
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cochain complex as dkdk−1 = 0. This cochain complex of differential forms on a smooth

manifold M is known as the de Rham complex:

0 Ω0(M) d0
Ω1(M) d1

Ω2(M) d2
Ω3(M) d3

0.

Note that d3 maps 3-forms to 4-forms, but k-forms for k > 3 are always zero in ℝ3 due to

antisymmetry.

The Hodge k-star ⋆k (also called Hodge dual) is linear map (and hence also a group

isomorphism) from a k-from to its dual form, ⋆k : Ωk(M) → Ωn−k(M). Due to the

antisymmetry, both k-forms and their dual (n−k)-forms have the same DoF 
n
k

= n
n − k

.

More specifically, for an orthonormal basis (e1, e2, …, en),

⋆k ei1
∧ ei2

∧ ⋯ ∧ eik
= e j1

∧ e j2
∧ ⋯ ∧ e jn − k

, where ∧ denotes the antisymmetrized tensor

product and (i1, …, ik, j1, …, jn−k) is an even permutation of {1, 2, …, n}. The associated

(e1, e2, …, en) is a basis for 1-forms and ei1
∧ ⋯ ∧ eik

 form a basis for k-forms.

As ⋆k and dk can only operate on k-forms, we can omit the superscript of the forms or the

operators when the dimension is clear from the context. The (L2-)inner product of

differential forms for two k-forms α, β ∈ Ωk(M) can be defined as

α, β = ∫
M

α ∧ ⋆ β = ∫
M

β ∧ ⋆ α . (2)

Under these inner products, the adjoint operators of d are the codifferential operators δk:

Ωk(M) → Ωk−1(M), δk = (−1)k ⋆4−k d3−k⋆k for k = 1, 2, 3. In 3D, they can be identified with

−∇·, ∇× and −∇ for δk, k = 1, 2, 3 respectively in vector field analysis. Equipped with

codifferential operators δk, the spaces of differential forms now constitute a bi-directional

chain complex,

Ω0(M)
δ1
d0

Ω1(M)
δ2
d1

Ω2(M)
δ3
d2

Ω3(M) .

Finally, the exterior calculus notations and their counterparts in traditional calculus are

summarized in Table 1. The exterior calculus operations are strictly equivalent to the vector

calculus operation in flat 3-dimensional space. A 0- or 3-form can be identified as a scalar

function f : M ⊂ ℝ3 ℝ, while a 1- or 2-form is identified with a vector field v: M ℝ3.

Thus, we can use f0, v1, v2, or f3 to denote a scalar field f or vector field v regarded as a 0-,

1-, 2-, or 3-form, respectively.

2.2. Hodge decomposition for manifolds.

Hodge theory can be seen as the study of nonintegral parts (cohomology) of (scalar/vector)

fields through the analysis of differential operators. Thus, it is often conveniently and
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concisely described by differential k-forms and the exterior calculus of these forms, as

discussed in the previous section.

We first establish the aforementioned adjointness between the differential and codifferential

operators. Through integration by part and the Stokes’ theorem Eq. (1),

dα, β = α, δβ + ∫
∂M

α ∧ ⋆ β . (3)

Thus, either for a boundaryless manifold (∂M = ∅) or for forms that vanish on boundary (α|

∂M = 0 or ⋆β|∂M = 0), the boundary integral vanishes, i.e., ∫∂M α ∧ ⋆β = 0. In such cases, the

adjointness, 〈dα, β〉 = 〈α, δβ〉, implies that d and δ satisfy the important property of adjoint

operators—the kernel of a linear operator is the orthogonal complement of the range of its

adjoint operator.

If we denote the space of normal forms as Ωn
k = ω ∈ Ωk |ω |∂M = 0  and the space of

tangential forms as Ωt
k = ω ∈ Ωk | ⋆ ω |∂M = 0 , the orthogonal complementarity can be

expressed as Ωk = ker δk ⊕ dΩn
k − 1 and Ωk = ker dk ⊕ δΩt

k + 1. With im dk−1 ⊂ ker dk (based

on the property of the cochain complex dkdk−1 = 0), the complementarity restricted to ker dk

implies

ker dk = ℋk ⊕ dΩn
k − 1, (4)

where ℋk = ker dk ∩ ker δk is the space of harmonic forms, which are defined to be both

closed and coclosed. Substituting the above equation into Ωk = ker dk ⊕ δΩt
k + 1, we obtain

the three-component Hodge decomposition,

Ωk = dΩn
k − 1 ⊕ δΩt

k + 1 ⊕ ℋk . (5)

Thus, any ω ∈ Ωk can be uniquely expressed as a sum of three k-forms from the three

orthogonal subspaces,

ω = dαn + δβt + h, (6)

where αn ∈ Ωn
k − 1, βt ∈ Ωt

k + 1 and h ∈ ℋk. Note that the potentials α and β do not have to be

unique and a variety of gauge conditions can be specified to make them unique.

2.2.1. Boundaryless manifolds.—When ∂M = ∅, Ωk = Ωt
k = Ωn

k, we can establish an

isomorphism between the cohomology (of the de Rham complex described in the previous

section) and the harmonic space, as was developed by Hodge.

In this case, Eq. (4) can be written as

ker dk = ℋk ⊕ im dk − 1 . (7)
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Thus, we can find a unique element in ℋk that corresponds to each equivalence class in the

de Rham cohomology HdR
k = ker dk /im dk − 1 (quotient spaces induced by the de Rham

cochain complex). This bijection implies ℋk ≅ HdR
k , which indicates ℋk is a finite-

dimensional space with its dimension determined by the topology of the manifold.

Moreover, we can identify ℋk as the kernel of a particular second-order differential operator,

the de Rham-Laplace operator, or Hodge Laplacian, defined as Δk ≡ dk−1δk + δk+1dk.

Through the adjointness between d and δ, we have

Δα, α = (dδ + δd)α, α = dα, dα + δα, δα . (8)

Denoting ℋΔ
k ≡ ker Δk, the above equation implies that ℋΔ

k = ker Δk = ker dk ∩ ker δk = ℋk for

boundary-less manifolds.

As a direct consequence, we rewrite Eq. (5) as

Ωk = im dk − 1 ⊕ im δk + 1 ⊕ ℋΔ
k . (9)

The importance of the decomposition lies in that the first two components can be expressed

as the derivatives of some potential functions and the last non-integral part is spanned by the

finite-dimensional harmonic space, whose dimension is determined by the topology of the

domain due to the above-mentioned isomorphism. For example, for Ωk with k = 1, 2, this

decomposition is often recognized as the Helmholtz-Hodge decomposition of vector

calculus in 3D, v1 = ∇f0 + ∇ × u2 + h1 and v2 = −∇f3 + ∇ × u1 + h2.

2.2.2. Manifolds with boundary.—For 3-manifolds with 2-manifold boundary, we

need additional boundary conditions to have a finite dimensional kernel for the Laplacians,

as in this case, ℋ = ker d ∩ ker δ ⊊ ℋΔ. Through integration by part with the boundary, we

have

Δα, α = (dδ + δd)α, α = dα, dα + δα, δα + ∫
∂M

(δα ∧ ⋆ α − α ∧ ⋆ dα) . (10)

Thus, if we can eliminate the boundary integral by restricting the space of forms, the kernel

of Δ will be the intersection of the kernel of d and δ. Indeed, there are a variety of choices to

satisfy boundary conditions, e.g., forcing the support of the differential form to be in the

interior of manifolds. However, an option that is consistent with common physical boundary

conditions is to restrict the differential form α in the decomposition to be tangential to the

boundary ⋆α|∂M = 0 or normal to the boundary α|∂M = 0 as we have required for the

potentials. Then, one natural choice to eliminate both terms in the boundary integral is to

force dα to be tangential when α is tangential and force δα to be normal when α is normal.

In other words, we modify the definition Ωt to be the space of tangential forms with

tangential differential, i.e., αt ∈ Ωt if and only if

Chen et al. Page 8

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



⋆ αt|∂M
= 0,     ⋆ dαt|∂M

= 0. (11)

Similarly, we modify the definition of Ωn to be the space of normal forms with normal

codifferential, i.e., αn ∈ Ωn if and only if

αn|∂M
= 0,    δαn|∂M

= 0. (12)

To illustrate the boundary conditions explicitly, we consider a moving frame, which is

formed at each boundary point by two tangent vectors of the boundary surface t1 and t2 and

the normal vector to the surface n, with the typical convention that they form a right-hand

orthonormal frame with the normal pointing outward. As a 1-form v1 is tangential if ⋆v1(t1,

t2) = v2(t1, t2) = v · (t1 × t2) = v · n = 0, it matches the condition that the corresponding

vector field is tangential to the boundary. Similarly, a 1-form v1 is normal to the boundary, if

v1(ti) = v · ti = 0 for i = 1, 2, thus it is the equivalent to v is normal to the boundary. For a 2-

form v2, its normal (tangential) boundary condition is the same as the tangential (normal)

boundary condition of v1. Therefore, normal (tangential) 2-forms should have their

corresponding vector fields tangential (normal, resp.) to the boundary. Additionally,

tangential 3-forms (normal 0-forms) are zero on the boundary whereas normal 3-forms

(tangential 0-forms) automatically satisfy the boundary condition. In Table 2, we

summarized these choices of the boundary conditions for tangential and normal k-forms in

3D.

In vector field representation, the boundary conditions Eqs. (11) and (12) are equivalent to

the following. The choice of a 1-form in Ωt
1 (a 2-form in Ωn

2) is equivalent to enforcing a

tangential vector field v to have its curl to be normal to the boundary, i.e., adding two

homogeneous Neumann boundary conditions to the (Dirichlet-type) tangentiality,

v ⋅ n = 0,     ∇n v ⋅ t1 = 0,     ∇n v ⋅ t2 = 0. (13)

For a normal vector field v (1-forms in Ωn
1 or 2-forms in Ωt

2), it amounts to adding one

homogeneous Neumann boundary condition derived from the zero divergence on the

boundary to the (Dirichlet-type) orthogonality constraints,

v ⋅ t1 = 0,     v ⋅ t2 = 0,     ∇n(v ⋅ n) = 0. (14)

For an unrestricted function f (tangential 0-forms or normal 3-forms), it amounts to forcing

its gradient to be tangential at the boundary (Neumann-type),

∇n f |∂M
= 0, (15)

and a function f for tangential 3-forms (normal 0-forms) satisfies the homogeneous Dirichlet

boundary condition
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f |∂M = 0. (16)

With these modified boundary conditions, we still have the same Hodge decomposition,

Ωk = dΩn
k − 1 ⊕ δΩt

k + 1 ⊕ ℋk . (17)

This is because dΩn (or δΩt) remains the same regardless of whether Ωn (or Ωt) contains the

additional boundary conditions, as they can be seen as part of the gauge condition that

restricts the potentials but not their differential (codifferential).

As mentioned above, with the boundary, ℋk is no longer finite dimensional or the kernel of

of Laplacians ℋΔ
k . However, if we restrict Δ to Ωt or Ωn and denote the corresponding

operator as Δt and Δn respectively, we can still find finite dimensional kernels ℋΔt
k  and ℋΔn

k

that correspond to ℋk ∩ Ωt or ℋk ∩ Ωn orthogonal to im d and im δ.

In fact, the harmonic space ℋk can be further decomposed into tangential, normal harmonic

forms and exact-coexact harmonic forms ℋk = ℋΔt
k + ℋΔn

k ⊕ dΩk − 1 ∩ δΩk + 1  as

proposed by Friedrichs [25]. Moreover, in flat 3D space, all three subspaces are orthogonal

to each other. The third space can be seen as the infinite-dimensional space of solutions to

Laplace equations in dimension k ± 1 with either normal or orthogonal boundary conditions.

Thus, we can focus on the Laplacian operators that are either tangential or normal for

analysis.

In total, there are 8 different Hodge Laplacians (Δt
k and Δn

k for k = 0, 1, 2, 3) and 8 associated

finite dimensional harmonic spaces. Friedrichs also noted that for manifolds with boundary,

the tangential harmonic spaces are isomorphic to the absolute de Rham cohomology

ℋΔt
k ≅ Hk(M) and the normal harmonic spaces are isomorphic to the relative de Rham

cohomology ℋΔn
k ≅ Hk(M, ∂M). From the dimensionality of the corresponding homology

(Betti numbers) of the manifold M, together with the Hodge duality between ℋΔt
k  and

ℋΔn
3 − k, we can obtain the dimensions of all these harmonic spaces:

βk = dim ℋΔt
k = dim ℋΔn

3 − k. Roughly, speaking, β0 is the number of connected components,

β1 is the number of rings, β2 is the number of cavities and β3 is 0 as M in flat 3D cannot

contain any noncontractible topological 3-sphere.

2.3. Discrete forms and spectral analysis.

In practical applications, the de Rham-Hodge theory is often computed for decompositions

and spectral analysis. In both cases, the discretization of exterior derivatives is required. We

follow one typical discretization of the exterior calculus on differential forms, the discrete
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exterior calculus (DEC) [19]. A major technical aspect is the handling of arbitrarily complex

geometric shapes in 3D. In spectral analysis, the Hodge Laplacian operators and their

boundary conditions are to be implemented such that the key topological property of d ◦ d =

0, which defines the de Rham cohomology, is preserved in the discrete version by DEC in

complex computational domains. First, the domain of differential forms, in this case, a 3-

manifold embedded in 3D Euclidean space is tessellated into a 3D simplicial complex, i.e., a

tetrahedral mesh. Any k-form ω is represented by its integral on oriented k-D elements (k-

simplex) of the mesh, listed as a vector W with the length equaling the number of k-

simplices. More specifically, a discrete 0-form is the assignment of one real number per

vertex, a discrete 1-form is the assignment of one value per oriented edge, a discrete 2-form

is the assignment of one value per oriented triangle and a discrete 3-form is the assignment

of one value per tetrahedron (tet). The choice of orientation per k-simplex is arbitrary since

the antisymmetry of a k-form guarantees that the integral on that k-simplex only changes its

sign.

Now the linear operator dk is represented by a sparse matrix Dk, which is implemented as

the transpose of the signed incidence matrix between k-simplices and (k+1)-simplices, with

the sign determined by mutual orientation. Furthermore, an arbitrary orientation for each k-

simplex is chosen up to an even permutation, which is an order set of k+1 vertices. An

oriented k-simplex is defined as

σ = v0, v1, …, vk . (18)

The boundary operator ∂ is defined as

∂σ = ∑
i = 0

k
( − 1)i v0, v1, …, v i, …, vk , (19)

where v i means that the ith vertex is removed. The discrete boundary operator will take all

the 1-degree discrete lower faces of σ with an induced orientation. Thus the discrete exterior

derivative operator Dk is just a matrix filled with −1, 0, 1. The discrete Hodge star matrices

Sk is just converting primal forms and dual forms by the following equation

1
|σk|∫σk

ω = 1
| * σk|∫* σk

⋆ω . (20)

Thus, the discrete Hodge star operator is a diagonal matrix. This can be seen as the

consequence of the aforementioned Stokes’ theorem, because the integral of dω on each (k
+1)-simplex is exactly the sum of the integral of ω on the boundary of the (k+1)-simplex,

which is the union of its consistently oriented k-simplex faces.

Thus, the defining property in de Rham-Hodge theory Dk+1Dk = 0 is preserved through as

the boundary of the boundary is empty. As shown in Fig. 1, the adjoint operator δk is

implemented as Sk − 1
−1 Dk − 1

T Sk, where Sk is discretization of the L2-inner product between

two discrete k-forms such that W1
k T

SkW2
k is an approximation of ω1

k, ω2
k . In this work, we
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use the lowest order diagonal matrices for Sk for simplicity, but higher-order Galerkin

matrices for k-form basis can be developed with proper treatment on matrix inversion for

better accuracy. Such a discrete Hodge star operator can also be seen as a mapping from a

discrete k-form to a discrete dual (3−k)-form defined on the basis associated with dual

elements of a dual mesh to the tet mesh. Obviously, this field needs more effort from the

computational mathematics community.

With both the differential operators and the Hodge stars discretized, the discrete counterpart

of a Hodge Laplacian Δk is defined as Sk
−1Lk through products and summations of these

matrices following the continuous version, here

Lk = Dk
TSk + 1Dk + SkDk − 1Sk − 1

−1 Dk − 1
T Sk . (21)

The reason that Lk is used frequently as the discrete Hodge Laplacian instead of Sk
−1Lk is its

symmetry. Alternatively, we can also see Lk as the quadratic form on the space of discrete k-

forms, such that WTLkW is an approximation of 〈ω, Δω〉.

In our analysis of volumetric shapes, we conjecture that the evolution of topological and

geometric structures is related not only to the null spaces of Hodge Laplacians, but also to

the general spectra of these operators, in particular, those eigenvalues that are close to zero.

The associated eigen differential forms can be found through a generalized eigenvalue

problem for the discrete Hodge Laplacian and Hodge star operators

LkWk = λkSkWk . (22)

For illustration purpose, we can reformulate Eq. (22) as a regular eigenvalue problem,

LkWk = λkWk, (23)

where Lk = Sk
−1/2LkSk

−1/2 and Wk = Sk
1/2Wk. Then, to partition the spectrum of the modified

discrete Hodge Laplacian, we express it as the sum of two semi-positive-definite matrices,

Lk = Dk
TDk + Dk − 1Dk − 1

T , (24)

where Dk = Sk + 1
1/2 DkSk

−1/2. We can observe that the cohomology structure is maintained as

Dk + 1Dk = 0. Moreover, now the adjoint operator of Dk, in the L2 inner products defined by

the Hodge stars, is simply its transpose Dk
T. Thus, the entire spectrum of Lk can be studied

through the singular value decomposition of the discrete differential operator

Dk = Uk + 1ΣkVk
T, (25)
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where Uk+1 and Vk are orthogonal matrices and Σk is a rectangular diagonal matrix with

non-negative real elements. We can recognize the nonzero spectra of the modified Hodge

Laplacian as the union of the squares of the nonzero entries from Σk and Σk−1, since

Lk = VkΣk
2Vk

T + UkΣk − 1
2 Uk

T . (26)

Note that for 0- or 3-forms, one of the Σ’s contains only zeros.

Based on the Hodge decomposition Eq. (17), we can also notice that the columns of Vk that

correspond to nonzero singular values in Eq. (26) are orthogonal to those of Uk, which

means the entire k-form space is spanned by harmonic forms (eigen form with eigenvalue 0)

and those column vectors of Vk and Uk.

For domains with boundaries, the tangential or normal forms are restricted by Dirichlet

and/or Neumann boundary conditions, which can be implemented by whether to include the

boundary elements or not for Dk. We denote the discrete differential operator for tangential

(normal) k-forms as Dk,t (respectively Dk,n). For the detail on the construction of these

matrices, readers are referred to our previous work [76]. In summary, for the four types of k-

form (k = 0, 1, 2, 3) with two boundary conditions, there are 8 different discrete Hodge

Laplacians (Lk,t and Lk,n) in total, such that

Lk, t = Dk, t
T Sk + 1Dk, t + SkDt, k − 1Sk − 1

−1 Dt, k − 1
T Sk,

Lk, n = Dk, n
T Sk + 1Dk, n + SkDn, k − 1Sk − 1

−1 Dn, k − 1
T Sk .

(27)

Based on the above singular value analysis, the non-zero spectrum of Lk is the union of

squared singular values of Dk and those of Dk − 1. Therefore, for each type of boundary

conditions, the spectra of the four discrete Hodge Laplacians only depend on the singular

spectra of D0, D1 and D2. Furthermore, in Table 2, the same set of boundary conditions is

shared between tangential 1-forms and the normal 2-forms, between tangential 2-forms and

normal 1-forms, between normal 3-forms and tangential 0-forms and between tangential 3-

forms and normal 0-forms. This duality between tangential k-forms and normal (3−k)-forms

is also present in the corresponding operators between these forms, more specifically, the

equivalence exists between D0, t and D2, n
T , D1, t and D1, n

T  and D2, t and D0, n
T . We thus reduce

the 8 different spectra of Hodge Laplacians to 3 distinct sets of different singular spectra. We

denote the set of singular values of D0, t for the tangential gradient eigen field by T, the set of

the singular values of D1, t for the curl eigen field by C and the set of the singular value set of

D2, t for tangential divergent eigen field by N.

Although each of the 8 spectra for Hodge Laplacians defined on smooth manifolds can be

represented by the combination of one or two sets of the T, C and N, the numerical

calculations of the singular values of the equivalent differential operators can deviate from

these due to the different DoFs in the representations for different discrete forms, as well as

the inaccuracy introduced by the approximation of Hodge star and differential operators.
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While the numerically computed singular values of tangential k-forms Dk, t can deviate from

those of normal (3−k)-forms D2 − k, n
T , as the observation in previous work [77], with

increased resolution, the low frequencies converge reasonably well.

3. Evolutionary de Rham-Hodge method.

In this section, we introduce the evolutionary de Rham-Hodge method to analyze the

topological and geometric properties throughout the evolution of manifolds. We first discuss

the existing data that motivates the present theoretic formulation. Then, we provide the

mathematical description of manifold evolution, followed by the definitions of the associated

persistence and progression. We extend the usual study of cohomology (associated to zero

eigenvalues of Hodge Laplacians) to employing the leading small non-zero eigenvalues to

facilitate the concepts of persistence and progression so that the variations of topological

spaces (β0, β1 and β2) can be traced to the changes in the eigenvalues away from or towards

zero as the geometry evolves.

3.1. Data and their de Rham-Hodge analysis.

Most commonly occurred data are closed manifolds, such as star surfaces, earth surfaces,

brain surfaces, and molecular surfaces. The de Rham Laplace operator can be applied to

compute eigenfunctions and eigenvalues for the geometric shape analysis. Another

interesting type of data includes scalar or vector functions defined on closed manifolds, such

as temperature or ocean currents on the earth’s surface and in compact manifolds with

boundaries, such as the electron densities or electrostatic potentials in proteins or the

magnetic fields around the earth. The Hodge decomposition can be directly applied to these

functions. For smooth scalar functions, surface contours can be specified to generate

compact manifolds with boundaries. The geometric shape analysis via the de Rham Laplace

operator can be carried out. A special class of data is the density distributions, either

obtained from cryogenic electron microscopy (cryo-EM), magnetic resonance imaging

(MRI) or created from quantum mechanical calculations. In this situation, one can render a

family of inclusion surfaces by systematically varying the density isovalues. The de Rham-

Hodge analysis and modeling of this family of inclusion surfaces are the objects of the

present theoretical development.

The evolutionary de Rham-Hodge method developed in this work can also be applied to

point cloud data, such as stars in the universe, atoms in biomolecules, and the output of 3D

scanning processes. In this situation, one can carry out a discrete to continuum map to create

volumetric density functions from point clouds [70, 49]. Then, a family of inclusion surfaces

can be obtained for the evolutionary de Rham-Hodge analysis.

Flexibility rigidity index (FRI) density is a useful tool to construct a continuous density

distribution from a set of discrete point cloud data inputs. By selecting an isovalue from the

FRI density, one can further generate a boundary surface, which composes the 3-manifold

with a 2-manifold boundary. Moreover, one can also use the Gaussian dielectric function to

generate density distributions [31, 65]. FRI density has been shown to be particularly
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straightforward to implement and computationally stable on any point cloud [49] and is

defined by the following position-dependent rigidity (or density) function [70]

ρ(r, η) = ∑
j = 1

N
Φ ‖r−r j‖; η (28)

where r is a point in space, N is the number of particles, rj is the location of a data point j, η
is a scaling parameter and Φ(·; η) is a correlation function, i.e., a real-valued monotonically

decreasing function with the following admissibility conditions

Φ ‖r−r j‖; η = 1,  as ‖r−r j‖ 0,
Φ ‖r−r j‖; η = 0,  as ‖r−r j‖ ∞, (29)

One used families of correlation functions is the generalized exponential functions

Φ ‖r−r j‖; η = exp − ‖r−r j‖/η κ ,    κ > 0. (30)

Here, the weight η is application-dependent, e.g., the multiplication of a scaling parameter

and the van der Waals radius rvdw j
 of the atom at rj for molecular data. In fact, η can be

chosen as anisotropic function to induce a multidimensional persistent homology filtration

[73]. In our numerical tests, we use the generalized exponential function with κ = 2, which

is known as the Gaussian function. A family of 3-manifolds can be defined by a varying

level set parameter (isovalue) c ∈ (0, cmax), where cmax = max ρ(·, η),

Mc = r ∣ ρ(r, η) ≤ cmax − c , (31)

which has the level-set of ρ as its boundary ∂Mc = {r|ρ(r, η) = cmax − c}.

3.2. Manifold evolution.

Hodge theory studies the de Rham cohomology groups of a smooth manifold M and

established the bijection from equivalence classes in a cohomology group to a harmonic

differential form in the null space of the corresponding Hodge Laplacian. While these

harmonic forms associated with the zero eigenvalues in the spectra of Hodge Laplacians

carry some geometric information in addition to the topology, the non-zero spectra provide

richer geometric information than the multiplicity of zero. However, the geometry is not

uniquely determined by the spectra of the Hodge Laplacians (even for planar shapes), as one

cannot hear the shape of a drum [35]. Thus, we propose to extend the study of de Rham-

Hodge theory to a family of smooth manifolds instead of one specific manifold and track the

spectral changes in a sequence of manifolds. Such a family of manifolds controlled by a

continuous filtration parameter is sometimes called the evolution of manifolds embedded in

an ambient manifold, which in our case is the 3D Euclidean space.

The evolution of manifolds is often defined through a smooth map from a basic manifold B
to a family of submanifold {Mc} of an ambient manifold M at a given instant (the value of

parameter c treated as time). More precisely, it is the smooth map F : B × [0, cmax] → M
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such that Fc = F(·, c) is an immersion for every c. The one-parameter family of subsets of M,

{Fc(B)}c≥0 is then called the evolving manifold. However, such a Hodge Lagrangian

description makes it hard to handle topological changes, especially if each mapping is

restricted to be an embedding. Therefore, in this work, we directly use the Eulerian

representation described by Mc in Eq. (31). This level-set bounded volume evolution handles

both the geometric progression and topological changes in a consistent fashion. As Morse

functions are dense in continuous functions, we can assume ρ(r, η) to be a Morse function

without loss of generality, since otherwise, we can use symbolic perturbation to make it a

Morse function. We can regularly sample the interval (0, cmax) at n sample locations,

forming an index set I = {c0, c1, …, cn}, such that none of the parameters are one of the

isolated critical values through symbolic perturbation if necessary. Noting that Mc are only

non-manifold when c is a critical point of the Morse function, the snapshots of the evolving

manifold, {Fc}c∈I, are all manifolds. Thus, they form a filtration of manifold M, with the

inclusion map ℑl, l + 1: Ml Ml + 1 linking each pair of consecutive manifolds and

M0
ℑ0, 1

M1
ℑ1, 2

M2
ℑ2, 3 ⋯

ℑn − 1, n
Mn

ℑn, n + 1, 1
M = Mcmax

.

If cl, cl + p  does not contain any critical points of ρ(r, η) and the largest critical value

smaller than cl is cc, the inclusion map ℑl, l + p: Ml Ml + p is also homotopic to a

homeomorphism from Ml to Ml + p, which can be constructed by moving every point r with

ρ(r, η) > cmax − cc along the gradient integral line of ρ(·, η) to a point r such that

ρ(r, η) − ρ(r, η) = cl + p − cl e
1 −

cl − cc
ρ(r, η) − cmax − cc . When the two parameter values are similar,

one can also see that the above map is nearly isometric since the deformation is close to an

identity map.

When cl, cl + p  contains critical points of the Morse function, there is no smooth

homeomorphism between Ml and Ml + p as the level set through topological changes.

Without loss of generality, we can assume that there is only one critical point, which can be

classified as (local) minimum, 1-saddle, 2-saddle, or (local) maximum, based on the

signature of the Hessian of ρ. As all minima of ρ are at the value of 0, the interval may only

contain the latter three types: if it is a maximum, one 2nd homology generator in Ml will be

mapped to 0 in Ml + p for the mapping induced by the inclusion; if it is a 2-saddle, either Ml

has a 1st homology generator mapped to 0 or Ml + p contains a 2nd homology generator not

in the image of the induced mapping from H(Ml) to H Ml + p ; similarly, if it is a 1-saddle,

either Ml has a 0th homology generator mapped to 0 or Ml + p contains a 1st homology

generator, not in the image of the induced mapping. Through the isomorphisms among the

de Rham cohomology, singularly homology, simplicial homology and simplicial

cohomology, we can use the persistent homology to study the mapping between the de

Rham cohomologies indirectly. However, we found that direct construction can reveal some
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additional insight on the relation and persistence of the harmonic forms across different

manifolds, as we discuss next.

3.3. Persistence of harmonic forms.

3.3.1. Normal harmonic forms.—Drawing an analogy from persistent homology, we

first attempt to construct a homomorphism from closed forms on Ml to closed forms on

Ml + p, i.e., from ker dl to ker dl + p, if we use the subscript l to denote the operator defined

on Ml. For manifolds with boundary, one realizes that this is not possible for tangential

forms through the isomorphism relations to cochain and chain spaces on simplicial

complexes, but rather straightforward for normal forms in the discrete case. More

specifically, we can map k-forms in Ml by setting values for simplices in Ml, p
c = Ml + p\Ml to

0, i.e., a 0-padded k-cochain on Ml + p as the image of a k-cochain on Ml assuming that Ml

has a tessellation that is a subcomplex of the tessellation of Ml + p. The reason that the image

of ωl ∈ ker dl remains in ker dl + p is that the value of dωl + p on any (k+1)-simplex with one

or more faces in ∂Ml is still 0, as ωl|∂Ml
= 0.

However, in the continuous case, setting ω to 0 in Ml, p
c  creates either discontinuity or at least

large δω near the boundary. A smoother extension of the ω from Ml to Ml + p can be defined

by minimizing the Dirichlet energy 〈dω, dω〉+〈δω, δω〉 in Ml, p
c , which leads to simply a

Laplace equation Δω = 0. The boundary of Ml, p
c  is the union of ∂Ml and ∂Ml + p with the

orientation of the former flipped. Recall that when ω is normal to the boundary i.e.,

ωl|∂Ml
= 0, we also impose the condition that δω is normal to the boundary δωl|∂Ml

= 0 . For

the extension, we keep this condition on ∂Ml + p, while on ∂Ml we impose the continuity

instead, ωl + p|∂Ml
= ωl|∂Ml

. Note that the resulting Laplace equation has a finite kernel

identical to that of Δn on Ml, p
c , so we can find a unique solution by forcing the solution to

have 0 projection to this kernel [76].

For instance, if we have a normal 1-form ωl to extend, we can impose the homogeneous

boundary condition for the proxy vector field v on ∂Ml + p as in Eq. (14),

vl + p ⋅ t1 = 0,     vl + p ⋅ t2 = 0,     ∇n vl + p ⋅ n = 0; (32)

whereas on ∂Ml, we use a Dirichlet boundary condition for continuity vl + p = vl, i.e.,

vl + p ⋅ n = vl ⋅ n,     vl + p ⋅ t1 = 0,     vl + p ⋅ t2 = 0. (33)

We denote the map through this harmonic extension as 𝔈l, p, i.e., ωl + p = 𝔈l, p ωl . However,

the minimization of Dirichlet energy does not imply δωl + p = 0 even when δωl = 0.
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Nevertheless, dωl + p = 0 is always possible, since otherwise, one would be able to perform a

Hodge decomposition to find a tangential (k+1)-form βt in Ml, p
c  and remove dωl + p by

subtracting δβt from ωl + p. An alternative is to restrict the extension to minimize 〈δω, δω〉

under the constraint δωl + p = 0 in Ml, p
c , which results in a fourth-order bi-Laplace equation.

Since this discussion is mainly for theoretical purposes, we assume the simple harmonic

extension followed by a decomposition to enforce dωl + p = 0 instead of a biharmonic

extension. In Fig. 2 (a), we illustrate the implementation of boundary conditions for the

extension of normal harmonic forms to the interior cavity. In this evolving process, the

outside surface is fixed and the inner cavity shrinks to null in order that the manifold with a

cavity extends into a solid ball. Under the boundary condition Eq. (33) on the interior

surface, the input normal harmonic forms (thin lines) are extended into the cavity, which

also preserve curl-free properties shown as thick lines in Fig. 2 (a).

Note that d𝔈(ω) is a solution to the equation for solving the extension of dω, by the

uniqueness we impose, it must be 𝔈(dω). Thus, we can construct the following commutative

diagram on the de Rham complexes for normal forms on the filtration of M:

which places the de Rham complex in the horizontal direction and the filtration-induced

extensions in the vertical direction.

Now, we can discuss the direct relation of bases of normal harmonic forms induced by 𝔈.

First, ωn ∈ ker dl implies 𝔈l, p ωn ∈ ker dl + p. Thus, there is an injective homomorphism

from ker dl to ker dωl + p. This induces a homomorphism from the cohomology group

ker dl
k /im dl

k − 1 to ker dl + p
k /im dl + p

k − 1, which, through de-Rham isomorphism between

cohomology and harmonic spaces in Ml and Mlp
, is equivalent to a homomorphism from the

harmonic space ℋΔn, l
k  to ℋΔn, l + p

k . Instead of using the mapping between the equivalence

classes, we can actually directly pick the unique harmonic representative

hn ∈ ker dk ∪ ker δk + 1 = ℋΔn
k  for each equivalence class in the cohomology, as we can pick

the closed form that is orthogonal to im dk−1 which is ker δk due to the adjointness between

d and δ. However, for hn ∈ ℋΔn, l
k , its extension 𝔈l, p hn  is not necessarily an element of

ℋΔn, l + p
k . Nevertheless, composed with the simple L2 projection onto the finite dimensional
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normal harmonic space P
ℋΔn, l + p

k , we have the linear map (also a homomorphism)

Ψn, l, p = P
ℋΔn, l + p

k ∘ 𝔈l, p:ℋΔn, l
k ℋΔn, l + p

k .

The map between these two normal harmonic spaces is neither necessarily injective nor

necessarily surjective. In fact, if hn ∈ ℋΔn, l
k  is not in im Ψn,l−1,1, it is said to be born at index

l; if p is the smallest integer such that Ψn,l,p(hn) = 0, it is said to die at index l+p, with a

persistence of p. This is consistent with the persistence of the relative cohomology Hk(M,

∂M) and the (absolute) homology H3−k(M).

3.3.2. Tangential harmonic forms.—As there is a one-to-one correspondence between

tangential k-forms and normal (3−k)-forms, it is indeed sufficient to study the tangential

forms only. For completeness and flexibility in numerical implementation, we provide a

brief discussion on this dual case.

We first note that there is a homomorphism from coclosed forms on Ml to coclosed forms on

Ml + p, i.e., from ker δl to ker δl + p when restricted to tangential forms Ωt(Ml). The same

harmonic extension 𝔈l, p can be obtained through the minimization of the Dirichlet energy

〈dω, dω〉 + 〈δω, δω〉 in Ml, p
c . For tangential forms, ⋆ ωl|∂Ml

= 0, we also impose the

condition that dω is tangential to the boundary ⋆ dωl|∂Ml
= 0 . We keep this condition on

∂Ml + p, on ∂Ml we impose continuity ωl + p|∂Ml
= ωl|∂Ml

 and dωl + p|∂Ml
= dωl|∂Ml

. A

unique solution is again found by forcing it to have 0 projection to the kernel of a mixed-

type boundary condition Laplace equation [76].

To illustrate it with a tangential 1-form ωl, we can impose the homogeneous boundary

condition for the proxy vector field v on ∂Ml + p as in Eq. (13),

vl + p ⋅ n = 0,     ∇n vl + p ⋅ t1 = 0,     ∇n vl + p ⋅ t2 = 0; (34)

whereas on ∂Ml, the Dirichlet boundary condition vl + p = vl is equivalent to

vl + p ⋅ t1 = vl ⋅ t1,     vl + p ⋅ t2 = vl ⋅ t2,     vl + p ⋅ n = 0. (35)

In this case, we can enforce 𝔈l, p ker δl ⊂ ker δl + p. For example, Fig. 2 (b) shows the

extension of tangential harmonic forms from a torus to a solid sphere where both boundary

conditions Eqs. (34) and (35) are applied. The inputs (thick lines) are only circulations

shown in the right chart of Fig. 2 (b), while the extended outputs (thin lines) are tangential

harmonic forms as well. Therefore, we can construct the following commutative diagram on

the de Rham complexes for tangential forms on the filtration of M:
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Similar to the normal form case, through the composition with the simple L2 projection onto

the finite dimensional tangential harmonic space P
ℋΔt, l + p

k , we have a linear map (also a

homomorphism) between the tangential harmonic spaces of different manifolds in the

filtration, Ψ t, l, p = P
ℋΔt, l + p

k ∘ 𝔈l, p:ℋΔt, l
k ℋΔt, l + p

k . If ht ∈ ℋΔt, l
k  is not in im Ψt,l−1,1, it is

said to be born at index l. If p is the smallest integer such that Ψt,l,p(ht) = 0, it is said to die at

index l + p, with a persistence of p. This is consistent with the persistence of the (absolute)

cohomology Hk(M) and the relative homology H3−k(M, ∂M).

3.3.3. Relation among persistent cohomologies under different boundary
conditions.—As discussed in section 2.3, with the duality through Hodge star, there are

only three independent singular spectra T, N and C for the three differential/codifferential

operators (two for gradient operators under tangential or normal conditions and one curl

operator with either tangential or normal boundary condition). The unions of these spectra

produce all the eigenvalues of the eight possible Hodge Laplacians on an arbitrary compact

manifold M embedded in a flat 3D space. Moreover, the intersections of spaces spanned by

left or right singular vectors of singular value 0 for these operators form the tangential and

normal harmonic spaces. Thus, we can restrict our discussion to either normal or tangential

fields without loss of generality.

We now discuss the persistence from the perspective of evolving Hodge Laplacian operators.

Note that the following discussion is to provide theoretical backgrounds for our proposed

use of the evolution of eigenvalues, but not for implementations, since some of the operators

discussed may not be sparse matrices when discretized. Recall that for any two manifolds Ml

and Ml+p in any type of filtration, there is an inclusion map ℑl, p: Ml Ml + p. We call Ml+p

the p-evolution manifold of Ml. We can directly investigate whether a harmonic form in Ml

survived in its p-evolution manifold, by defining a restricted subset Ωp
k Ml  of Ωk(Ml+p) and

using it to define modified differential and codifferential operators on Ml. This restricted

subset is given by

Ωp
k Ml = ω ∈ Ωk Ml + p ∣ dl + p

k ω ∈ 𝔈l, p ker dl
k + 1 . (36)

This space can be equipped with a modified operator dl + p
k  that maps it to Ωk+1(Ml), which is

defined as the compound of dl + p
k  followed by the pullback through the inclusion, i.e.,
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dl + p
k = ℑl, p* ∘ dl + p

k . Assuming that we use normal differential forms, we have dl
k + 1dl + p

k = 0

on Ωp
k Ml  as a result of the definition of the restricted space. For ω ∈ Ωk−1(Ml), we have

dl + p
k − 1𝔈l, p(ω) = 𝔈l, p dl + p

k − 1ω ∈ 𝔈l, p ker dl
k , thus 𝔈l, p Ωk − 1 Ml ⊆ Ωp

k − 1 Ml  for p ≥ 0.

Therefore, we can construct the following the p-evolution differential form diagram

where δl + p
k  denotes the adjoint operator of dl + p

k . Based on this diagram, the p-evolution

Hodge Laplacian Δl, p
k :Ωk Ml Ωk Ml  can be defined on Ml as

Δl, p
k = δl

k + 1dl
k + dl + p

k − 1δl + p
k , (37)

which leads to the definition of the p-evolution harmonic space as

ℋl, p
k = ker Δl, p

k = ker dl
k ∩ ker δl + p

k . The p-evolution (tangential) k-form spectra are the sets

of Δl, p
k  eigenvalues for k = 0, 1, 2, 3. By comparing the p-evolution Laplace operator Δl, p

k

and the Laplace operator Δl, 0
k , the eigenvalues of the unmodified part, δl

k + 1dl
k, are preserved

and the eigenvalues involving the pullback of the restricted operators are varying with p.

Next, we examine the part involving dl + p
k − 1δl + p

k . For any α ∈ ker δl + p
k , and any

β ∈ Ωp
k − 1 Ml , we have 0 = δl + p

k α, β = α, dl + p
k − 1β . For any β ∈ Ωk−1(Ml), we have

δl
kα, β = α, dl

k − 1β = α, dl + p
k − 1𝔈l, p(β) = 0. Therefore, ker δl + p

k ⊂ ker δl
k ⊂ Ωk Ml .

Thus, in terms of persistent cohomology, we may examine the kernel of p-evolution Laplace

operator for the persistence of topological features of Ml in Ml+p. In the perspective of

spectral analysis, this change is reflected in the multiplicity of the eigenvalue 0, which

changes if dim ker δl
k < dim ker δl

k , or remains unchanged when dim ker δl
k = dim ker δl

k . In

the former case, as shown in Fig. 3 (a), multiplicity of 0 (the number of connected

components) is reduced for Δl, p
0 , whereas Δl, p

1  has a new 0 (a tunnel) that is not present in

Δl, p
1 . For the latter case, the inclusion map is homotopic to a geometrical deformation of the

manifold, which implies the same topology. Fig. 3 (d) illustrate an example where the size of

tunnel shrinks and the cohomology groups are isomorphic.

The spectra are continuous when corresponding manifolds are continuously deforming,

since, as discussed above, when the level set values are close, the deformation is close to an

isometric and the eigenvalues of Hodge Laplacian is determined by the metric tensor. In

particular, the smallest non-zero eigenvalues are continuous if the dimension of null space is

stable, but are typically non-differentiable when the multiplicity of eigenvalue 0 is changed.
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The birth of non-zero eigenvalues is the death of topological features, which signals the

death of harmonic basis fields; whereas the birth of zero eigenvalues indicates the birth of

topological features. Moreover, the changes in leading smallest non-zero eigenvalues can

thus indicate possible pending topological changes as well as the geometric properties when

the manifold evolves without topological changes.

For instance, for the l-th manifold of the filtration of λl, i
T , λl, i

C  and λl, i
N  give the

eigenvalues of the T, C and N sets respectively. In particular, the multiplicities of the zero

eigenvalues in λl, 0
T , λl, 0

C  and λl, 0
N  are associated with Betti numbers β0, β1 and β2,

respectively. Additionally, λl, 1
T , λl, 1

C  and λl, 1
N  are the first non-zero eigenvalues, which are

known as the Fiedler values in graph theory, an indicator of how well the graph is connected.

In summary, the correspondence established by the spectral analysis provides us with tools

to investigate both types of manifold evolution, with persistence for topological features and

spectral progression for the geometric properties.

4 Evolutionary de Rham-Hodge analysis of geometric shapes.

In this section, we present the application of the proposed evolutionary de Rham-Hodge

method. We demonstrate the spectral analysis with evolutionary de Rham Laplace operators

and illustrate their topological persistence and geometric progression associated with

submanifolds in ℝ3. The evolving manifolds in our studies are generated by applying Eq.

(31) to point cloud datasets with a varying level set c, with a fixed scaling parameter η.

For clarity, the first three examples are simple point sets consisting of few points. The two-

body set has the location coordinates in {(−1.5, 0, 0), (1.5, 0, 0)} and for the four-body and

eight-body sets. We duplicate the two-body set by translating ±1.5 along the y-axis and

duplicate the four-body set by translating ±1.5 along the z-axis respectively. Next, we

present two concrete molecular examples with interesting topological and geometric

features, benzene (C6H6) and fullerene (C60). Lastly, we illustrate a cry-EM data

(EMD-1776) which has interesting properties. We show in these proof-of-concept examples

that the evolution of leading smallest eigenvalues provides additional information to that of

the persistent Betti numbers, which are the same as those of persistent homology analysis.

That is, we propose to extend the evaluation of the manifold evolution from persistent Betti

numbers (i.e., the multiplicity of the zero eigenvalues of evolutionary de Rham Laplace

operators) to a larger subset of the spectra.

4.1. Two-body system.

Our first example illustrates the evolving manifold with a two-body system, in which the

initial two connected components merge into one. In this evolution, only the number of

components persistent β0 changes from 2 to 1, with the other Bettie numbers remain at 0

throughout. As shown in Fig. 4, the two connected components gradually approach each

other as the isovalue grows and eventually touch each other as more volume is enclosed.
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The change in topology can be observed directly from the blue circle plots in Fig. 4, where

persistent β0 is dropped from 2 to 1 when c increased to around 0.6 and the curves for

persistent β1 and β2 remained flat due to the lack of tunnels or cavities in the system.

However, the persistent Betti numbers do not provide any information about the volume

increase of the manifold during the evolution, or the increase in the size of the tube-like

structure between the two blobs around the body centers after they touch. In contrast, the

orange triangles in Fig. 5 show how the first nonzero eigenvalues (Fiedler values) in the

three singular spectra (T, C and N) demonstrated both the topological transition and

geometric progression in the evolving manifold.

First, one may observe that the discontinuity for the Fiedler values of the tangential gradient

fields T coincides with the jump of persistent β0 in Fig. 5 i, whereas the Fiedler values of the

tangential/normal curl fields C and that of the normal gradient fields N are both smooth as

shown in Figs. 5 ii and iii. These behaviors are consistent with the evolution process only

having changes in the number of connected components. More precisely, the multiplicity of

the eigenvalue zero in T is β0 = 2 at the beginning, so the Fiedler values can be seen as the

third eigenvalue, whereas after the merging, it is switched to be the second eigenvalue,

which contributes to the discontinuity in its value. As we will see in later examples, this

behavior for the persistence to be directly observable in the discontinuity of Fiedler values

happening at the same isovalue when the Betti numbers jump to different integers is generic,

which indicates that the birth of non-zero eigenvalue and the death of the harmonic basis are

both linked to the death of topological features (homology generators). Moreover, as the

tube between the two blobs is created, the extreme values of the first oscillation mode can be

placed further apart along the line connecting the two atoms. Thus, λl, 1
T  jumps to a small

value. It grows as the structure becomes stiffer when the narrow tube turns thicker before it

eventually decays again as the entire shape turns softer as a ball with a growing radius. Figs.

5 ii and iii show the smoothness of λl, 1
C  and λl, 1

N  which is consistent with the invariant 1st and

2nd Betti numbers.

4.2. Four-body system.

As another example, we explore an evolution that involves changes in both the number of

components persistent β0 and the number of tunnels β1. With two points added to the two-

body set to form a planar square, the evolving manifold can contain a tunnel for a range of

isovalues, when each of the four components touches two neighbors to form a ring, which

will eventually disappear as the level set value increases to the point that the tunnel in the

middle is filled. During the same process, persistent β0 drops from four to one when

persistent β1 increased to one with the formation of the tunnel, but persistent β0 stays at 1

when persistent β1 changes back to zero with the disappearance of the tunnel. The persistent

Betti number β2 remains unchanged as there is no cavity in the system.

In terms of the geometric measurements, the total volume continuously increases and once

the tunnel appears, the size of the handle dual to the tunnel also increases. Finally, at the

time of disappearing of the tunnel, two concave surfaces are formed on each side of the

blocked tunnel with the concavity decreases with an increasing level set parameter.
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Fig. 7 shows all the Fiedler values varying over time, along with the relevant Betti numbers.

As both β0 and β1 change during the evolution, λl, 1
T  and λl, 1

C  are non-differentiable for this

example. On the other hand, β2 is invariant and thus λl, 1
N  is smooth. Fig. 7 i exhibits a similar

pattern as the two-body case of λl, 1
T . As the volume of the manifold increases, λl, 1

T  decays

until the four components are connected, at which point λl, 1
T  drops to a much smaller value.

After the discontinuity, the increasing handle size leads to an initial growth of λl, 1
T  due to the

increased stiffness of the system, before returning to the decreasing trend as the system

becomes more flexible with the increase in the overall volume. In Fig. 7 ii, one may observe

the difference compared with the first case as we introduce the changes in persistent β1.

When β1 changes from zero to one through the connection of the four components, λl, 1
C  does

not actually change much, because the tangential/normal curl field is not largely influenced

when the handle size is nearly zero. In stark contrast, λl, 1
C  is discontinuous when β1 changes

back down to zero as the hole disappears. The behavior of λl, 1
C  after the discontinuity is

similar to that of λl, 1
T , an initial increase in stiffness and then a decrease again. Moreover, by

comparing Figs. 7 i and ii, we observe that the value of λl, 1
T  starts to decrease just when λl, 1

C

is discontinuous, as the structural change in the tunnel also contributed to the “stiffness” of

the tangential gradients. Finally, Fig. 7 iii shows the smooth Fiedler values λl, 1
N  with an

unchanged persistent β2.

In summary, from the second example, one can notice that λl, 1
C  can reveal the information of

persistent β1 and some geometric properties after the disappearance of the hole. In addition,

the coincidental topological changes, the birth of hole that coincides with the death of a few

connected components, can be distinguished by the spectral functions λl, 1
T  and λl, 1

C .

4.3. Eight-body system.

We constructed the simple eight-body system to analyze the behavior of Hodge Laplacian

spectra with an evolving cavity in the filtration. In this system, not only multiple connected

components and multiple tunnels are involved, but a cavity also appears after the isovalue

reaches a certain level before disappearing eventually. Thus, the dimension-2 Betti number

β2, which measures the number of cavities, changes during this process.

As shown in Fig. 8, the eight symmetric components start as blobs around eight vertices of a

cube. Then they expand as the isovalue increases until they touch each other and form 6

rings, one for each face of the cube. At this point, persistent β0 drops from 8 to 1, when

persistent β1 increases from 0 to 5 (as five of the six tunnels are independent homology

generators). As the level set value increases to the point that the tunnels are filled, persistent

β1 drops back to 0, but persistent β2 increases to 1 as a cavity formed inside the manifold.

The cavity is filled up eventually and persistent β2 drops back to 0.
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In Fig. 9, the Fiedler values as functions of isovalue are shown in Figs. 9 i and ii, which

exhibit similar behaviors as in the first two examples. As in the previous example, the

comparison between Figs. 9 i and ii shows that at c = 0.3 the spectral function λl, 1
T  starts to

decay when λl, 1
C  is discontinuous. Different from the previous examples, the smallest

eigenvalues in iii is no longer differentiable as persistent β2 changes from one to zero near

isovalue 0.5. Fig. 9 iii also indicates that at the isovalue where λl, 1
N  is non-differentiable, λl, 1

C

starts to decrease. Moreover, the simultaneous topological changes, the disappearance of

tunnels and the appearance of the cavity, can be observed in λl, 1
C . The disappearance of the

cavity can be observed from λl, 1
N . From these preliminary results of the evolutionary de

Rham-Hodge method, one may observe that the singular values in different spectra taken as

functions of the isovalue c not only illustrate the changes of topological features of different

dimensions throughout the evolution of the manifold but also reveal the geometric features

in different dimensions. Therefore, empirically, the importance of low frequencies rather

than the multiplicity of the zeroth frequency can already be observed in these simplistic

constructions for features of different dimensionality. In the following, we demonstrate

similar characteristics of spectral functions in two molecular systems.

4.4. Benzene molecule.

Benzene (C6H6) is a small organic chemical compound which consists of six carbon atoms

in a planar hexagon ring and six hydrogen atoms each connected with one carbon atom. In

this system, atoms have different van der Waals radii, one for carbon and another for

hydrogen. The carbon atoms are closer to each other than the hydrogen atoms and form the

benzene ring. Thus, benzene is a perfectly simple yet realistic example to illustrate the

evolutionary de Rahm-Hodge method. With the benzene data, we use η = 0.45 to generate

evolving manifolds.

The first evolving manifold of benzene is generated at η = 0.45. In the beginning, there are

12 components, with each smooth component center around one atom location as shown in

Fig. 10 a. The van der Waals radius of carbon atoms is larger than that of hydrogen atoms, so

the components associated with the carbon atoms are larger. From Fig. 10 b to Fig. 10 c, the

originally separated components of the atoms start to connect pairwise, with a narrow tube

formed between each hydrogen to its bonded carbon and thus, the persistent Betti-0 number

is reduced to 6. The behavior of the manifold is similar to essentially six copies of our first

example, the two-body system, until the six components of Fig. 10 c start to form a

hexagonal ring, as shown in Fig. 10 d . At this point, there are six narrow tubes, one for each

bond between two adjacent carbon atom pairs. As the density function continues to expand,

the hexagonal ring evolves into a round cycle around a tunnel with a shrinking diameter. As

the diameter of the tunnel reduces to zero at some parameter value between those of Fig. 10

g and Fig. 10 h, the noncontractible cycle disappears. During this topological change, the

tiny cycle in the middle of the manifold in Fig. 10 g is filled up to form two concave surface

patches in the middle of the manifold in Fig. 10 h. The final topology of this system remains

as a single component with a volume larger than that of Fig. 10 h.
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Fig. 11 shows the Fiedler values of the T, N and C sets and their relations with the persistent

Betti numbers when seen as a function of varying isovalues. First, for the T set, λl, 1
T  has two

jumps at c = 0.12 and c = 0.22, which divide the λl, 1
T  to three curve segments. Both

discontinuities correspond to the decreases of the persistent Betti 0, from twelve to six and

then to one. As shown in Figs. 11 i, λl, 1
T  cannot only tell the topological changes but also

give some additional information of a continuous portion of the evolution. After c = 0.22,

λl, 1
T  increases first and reaches its maximum at c = 0.9 when the ring just disappears, at

which point the structure (for tangential gradients) starts to grow softer as an expanding blob

instead of a thicker ring. Fig. 11 ii presents the jump of λl, 1
C , which is correlated to the

disappearance of the hole as indicated by the change of Betti-1 number from one to zero.

After the jump, λl, 1
C  also increases slightly first and decays in the end. There is no cavity

involved, so the spectral function shows a steady progression for the C set as in our four-

body example. One difference from that example is the finer grid used in the calculation, in

order to handle the initial small components for the hydrogen atoms.

4.5. Buckminsterfullerene.

The buckyball (C60) has a beautiful structure composed of sixty carbon atoms. It has twenty

hexagons and twelve pentagons that resemble the pattern on a soccer ball, which has a rich

structure with both geometric symmetries and topology features. With our continuous

density function, at certain values of η, the manifold evolution covers all the possible values

of the persistent Betti-1 number allowed by the symmetry. However, it is difficult to cover all

the topological space for a density function associated with a single kernel size η. Thus we

propose to use a multiscale (with a few different kernel sizes) analysis of the manifold

evolution. By using different η’s to capture different sets of snapshots for the evolving

manifolds, we can compare the spectra across different kernel sizes η as well as different

control parameters c. We use the buckyball as an example for the multiscale analysis of

manifold evolution and demonstrate how the spectra provide information on the evolution of

their topological spaces and geometric features.

For kernel scaling parameter η = 0.5 × rvdw, the manifold evolution starts with 60

components as shown in Fig. 12 a. The components start the expansion, each around the

position of one carbon atom and merge into larger connected components if they share a

common pentagon in the skeleton structure as shown in Fig. 12 b. This leads to the changes

in persistent β0 (from 60 to 12) and persistent β1 (from 0 to 12). Fig. 12 c shows the

snapshot right after the appearance of twenty hexagonal holes. Next, each hole starts to

shrink. As each pentagonal hole has a smaller size than that of a hexagonal hole, we observe

in Fig. 12 c to Fig. 12 d, the pentagonal holes disappear before the hexagonal holes also

disappear. Simultaneous to the disappearance of hexagons, a cavity is created. In Fig. 12 e

after the formation of the cavity, both the outer surface and the inner surface contain

numerous regions of concavity and gradually, the shape evolves to resemble a slightly

dented thick spherical shell.
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For analysis of this evolution, Fig. 13 illustrates the eigenvalues and Betti numbers versus

the isolvaue c. Fig. 13 i gives the Fiedler values (smallest eigenvalue) of the T set and β0.

This Betti number has two drops, from 60 to 12 and then to 1. Within each interval of

isovalues with the same persistent Betti number, λl, 1
T  is changing smoothly as expected from

our discussion on homeomorphic shapes with a slowly evolving metric. Fig. 13 ii presents

the information that the Fiedler values of the C set can offer. For the interval, c ∈ [0.16, 0.5],

persistent β1 remains at 31 and the continuous decrease in λl, 1
C  shows that the geometric

structure is “softer” for the curl fields as the handles grow thicker. Similarly, for intervals

within which persistent β1 equals to 19 or 1, λl, 1
C  is a smooth function within each interval

but is discontinuous at the boundary of these intervals where the topology transitions. The

Fiedler values of the N set are given in Fig. 13 iii, which, although mostly smooth, also has

changed in slope at isovalues associated with changes in connected components and tunnels.

As the examples become more complex, the spectral functions also exhibit richer structure,

with the advantage of indicating both topological persistence and geometric progression.

For large and dense point sets as in this fullerene, the shape of the manifold evolution is

heavily influenced by the kernel size η. To show the importance of multiscale analysis, we

create a second evolution with η = 0.8 × rvdw and generate the snapshots in Fig. 14. For the

initial isovalue, as seen in Fig. 14 a, the manifold consists of twelve pentagonal components.

Unlike the evolution with η = 0.5 × rvdw, which contains pentagonal holes alongside

hexagonal holes, here the pentagonal components are already with the holes filled before the

hexagonal holes are even formed. Thus, the two evolutions cannot find a homeomorphism

between their stages even if any isovalues are allowed, which implies that they can reveal

different information regarding the system. As the components connect, twenty rings show

up as in Figs. 14 b and 14 c, with decreasing diameters for increasing isovalues. Once the

cavity is formed, the large inner surface shown in Fig. 14 d starts to contract and the

manifold ends up as a solid ball in Fig. 14 e. As for the spectral functions, Fig. 15 shows

three plots of the Fiedler values of the T, C and N sets and the persistent Betti numbers

against the isovalues, respectively. Since the components connect right after first two

snapshots, Fig. 15 i shows the drop of λl, 1
T  in the third snapshot as persistent β1 changes from

12 to 1. The Fiedler values λl, 1
T  then increases before starting to decrease when persistent β1

drops to 0 when the system can be seen as a shell growing softer with thicker membrane

instead of a structure growing stiffer with thicker supporting handles. Similarly, there are

only a few snapshots for the evolving manifold to have rings as they are quickly filled up. In

Fig. 15 ii, the Fiedler values λl, 1
C  already decreases quickly before plunging to a small

number at the point when holes disappear. During the period of the inner surface contracting

and outer surface expanding, λl, 1
C  increases first as the structure grows stiffer for curl fields

and then grows softer eventually near the very end of the manifold evolution. In the last plot

of Fig. 15, λl, 1
N  slightly increases at beginning and then decreases smoothly. The

disappearance of the cavity is captured at the end of snapshots, thus there is a non-

differentiable point at end of this spectral function. We see in this evolution again, that the
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progression of the manifold evolution can be observed in the spectral functions as well as the

topological transitions.

5. Application.

In this section, we present two examples to demonstrate the usefulness of the proposed

evolutionary de Rham-Hodge method in biological applications. The first example shows the

protein flexibility analysis by applying the evolutionary de Rham-Hodge method and the

second analyzes the cryo-EM density map by using persistent spectra and topology.

5.1. Protein flexibility analysis.

We apply the proposed evolutionary de Rham-Hodge method to biomolecular flexibility

analysis. Protein flexibility is strongly correlated protein functions, such as structural

support, catalyzing chemical reactions and allosteric regulation. It can be measured by many

experimental approaches, such as X-ray crystallograph and nuclear magnetic resonance

(NMR) in terms of B-factors or Debye-Waller factors. Qualitative prediction of protein B-

factors is important for understanding protein structure-function relationship. Many

biophysical models, such as Gaussian network model (GNM) [4], anisotropic network

model (ANM) [3] and FRI [70] have been developed in the past for such a prediction. Most

of these methods are based on the graph network composed by selecting Cα carbon atoms as

nodes and connections between nodes as edges. However, existing approaches encounter

many challenges for many macromolecules involving multiscale interactions. In the present

study, we consider a few challenging test cases to demonstrate the utility and performance of

the proposed evolutionary de Rham-Hodge method.

The evolutionary de Rham-Hodge method evaluates a manifold generated by Eq. (30) based

on Cα carbon atoms and the B-factor at the i-th atom estimated by Lk in Eq (26) is given by

Bk, i
EDH = ∑

l
al∑

j

1
λl, j

k ωl, j
k ri ωl, j

k ri
T,     ∀λl, j

k > 0, (38)

where al are parameters determined by a primitive machine learning algorithm (i.e., linear

regression) for filtration parameter l. In our computation, discrete eigen fields ωl, j
k  are

vectors of mesh points. Here, ωl, j
k ri  is computed by the interpolation of a neighborhood

around i-th atom with a cutoff radius d. In our test, we use the grid spacing of mesh

tetrahedron 1.6 Å, the cutoff radius d = 4.0 Å and η = 2.72 Å. For a comparison, we

consider the standard method, GNM, with its cutoff distance of 7 Å. In Fig. 16, predicted B-

factors of three proteins (PDB IDs: 1CLL, 2HQK and 1V70) are presented together with

their experimental results. In our method, 10 isovalues of equal spaces from 0.1 to 1 are

calculated. The B-factors of Cα atoms predicted from the evolutionary de Rham-Hodge

(EDH) method are more close to the experimental ones than those from GNM. Especially,

Fig. 17 shows the flexibility of calmodulin of 1CLL obtained by experiment and theoretical

predictions. Clearly, by a comparison with experimental results, EDH predictions are

significantly better than those of GNM. Moreover, an advantage of evolutionary de Rham-

Hodge method is that one can simply increases the number of isovalues to provide more
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geometry deformation information and attain better results. As shown in Table 3, the

increase of the number of snapshots on the same interval delivers better predictions. The

proposed EDH method outperforms other existing methods.

5.2. Evolutionary de Rham-Hodge analysis of cryo-EM density map.

Cryo-electron microscopy (cryo-EM) is a power method for analyzing the structures of

biological systems. Cryo-EM density maps are generated by bombarding samples by

electron beams at cryogenic temperatures to improve the signal-to-noise ratio (SNR) and

constructed from a large number of 2D images using computational methods. The projection

(thin film) specimen scans collected from many different directions comprise the basis of

cryo-EM images. A major advantage of cryo-EM is that it provides the image of specimens

in a native environment without the need to grow crystals and another advantage is its

capability of providing 3D mapping of entire cellular proteomes together with their detailed

interactions at nanometer or subnanometer resolution [50, 57, 39]. After illustrating the

evolutionary de Rham-Hodge analysis for the FRI density functions of known structures, we

further consider a realistic cryo-EM data, EMD-1776, which is for eye lens chaperone

alphaB-crystallin forms [54]. Here, we reveal the evolutionary spectra and persistent

topology associated with the manifold evolution of EMD-1776 density map. Figure 18

depicts the surfaces extracted with different isovalues of EMD-1776. The isovalues for

Figures 18 a–b are 0.14, 0.10, 0.07 and 0.04, respectively. Betti numbers in these Figures are

given as β0 = 12, β1 = 0 and β2 = 0 in Figure 18 a; β0 = 4, β1 = 4 and β2 = 0 in Figure 18 b;

β0 = 1, β1 = 13 and β2 = 0 in Figure 18 c; β0 = 1, β1 = 9 and β2 = 0 in Figure 18 d. In Figure

19, the eigenvalues and Betti numbers of each filtration of the EMD-1776 system are

presented. Note the filtration is generated by controlling the isovalue of cryo-EM data. The

index shown for x-axis is calculated by subtracting the isovalue from the largest isovalue, in

which the filtration has an inclusion relation. Similar to aforementioned results, eigenvalues

illustrates the persistence of Betti number, but also depicts the geometry shape changing. In

Figure 19 i, it shows that the eigenvalue λl, 1
T  encounters discontinuity when the Betti-0

decreases from 12 to 4 and from 4 to 1. In Figure 19 ii, the eigenvalue λl, 1
C  is discontinuous

when the Betti-1 decreases from 13 to 9. This behavior is consistent with those of our earlier

observations.

6. Conclusion.

While persistent homology has had tremendous success in data science and machine

learning via a multiscale analysis, it does not capture geometric progression when there are

no topological changes. In contrast, although de Rham-Hodge theory provides a

simultaneous geometric and topological analysis, it lacks multiscale information. We

introduce an evolutionary de Rham-Hodge method to offer a unified multiscale geometric

and topological representation of data. The evolutionary de Rham-Hodge method is applied

to analyze the topological and geometric characteristics through the evolution of manifolds

which are a family of 3D multiscale shapes constructed from an evolutionary filtration

process. In addition to exactly the topological persistence that would be obtained from

persistent homology, the analysis of the evolutionary spectra of Hodge Laplacian operators
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portrays geometric progression. Specifically, appropriate treatments of the Hodge Laplacian

boundary conditions give rise to three unique sets of singular spectra associated with the

tangential gradient eigen field (T), the curl eigen field (C) and the tangential divergent eigen

field (N). The multiplicities of the zero eigenvalues corresponding to the T, C and N sets of

spectra are exactly the persistent Betti-0 (β0), Betti-1 (β1) and Betti-2 (β2) numbers one

would obtain from persistent homology. Using discrete exterior calculus in close manifolds

or compact manifolds with boundary, we show that investigating the first non-zero

eigenvalues, i.e., Fiedler values, of the T, C and N sets of evolutionary spectra unveil both

the persistence for topological features and the geometric progression for the shape analysis.

For a proof-of-concept analysis, the evolutionary de Rham-Hodge method is applied to a few

benchmark examples, including the two-body system, four-body system, eight-body system,

benzene (C6H6) and buckminsterfullerene (C60). Extensive numerical experiments

demonstrate that the present evolutionary de Rham-Hodge method captures the multiscale

geometric progression and topological persistence of data.

The proposed evolutionary de Rham-Hodge method provides a solid foundation for a wide

variety of applications, including shape analysis, image processing, computer vision, pattern

recognition, computer aided design, network analysis, computational biology and drug

design. As a proof-of-concept, we demonstrate the proposed de Rham-Hodge modeling and

analysis by the B-factor prediction of a few challenging cases for which the conventional

methods encountered difficulties. By using both eigenfunctions and eigenvalues at various

scales, we show that the present evolutionary de Rham-Hodge method outperforms existing

methods in computational biophysics for protein flexibility analysis. Since the evolutionary

de Rham-Hodge method can reveal both topological persistence and geometric progression,

it will offer a powerful multiscale representation of data for machine learning, including

deep learning.

Finally, the present evolutionary de Rham-Hodge method opens new opportunities in further

theoretical developments in differential geometry, such as the introduction of multiscale

analysis to Riemannian connection, tensor bundle, characteristic class, index theory, and K-

theory.
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Figure 1.
Discrete de Rham cohomology; Dk is the combinatorial operators such that Dk+1Dk = 0; Sk

is the discrete Hodge stars.
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Figure 2.
Illustration of normal and tangential harmonic field extensions. Thick lines are the inputs

and thin lines are the extended outputs. Left charts in both (a) and (b) show harmonic fields

and their extensions while right charts give meticulous detail of interior parts. (a) Normal

harmonic forms. A solid ball with a cavity extends inward to a solid ball without cavity. The

outside surface is fixed. (b) Tangential harmonic forms. A torus extends to a solid ball.
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Figure 3.
Persistence and progression on benzene.

Chen et al. Page 37

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4.
Snapshots of evolving manifold with the two-body system. a, b, c and d are snapshots from

the beginning to the end. b and c show the transition of the Betti-0 number from 2 to 1.
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Figure 5.
Eigenvalues and Betti numbers vs isovalue (c) of the two-body system with η = 1.19 and

max(ρ) ≈ 1.0. i shows the smallest eigenvalues of the T set. The drops at c = 0.6 correspond

to snapshots in Figs. 4 b and c. ii and iii show the smallest eigenvalues of the C and N sets

respectively.
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Figure 6.
Snapshots of evolving manifolds with the four-body system. a is the initial point of four

components; b and c show the transition of a ring formed and the persistent Betti-0 number

changes from 4 to 1. g and h show the vanishing of the ring and the persistent Betti-1

number changes from 1 to 0.
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Figure 7.
Eigenvalues and Betti numbers vs isovalue (c) of the four-body system with η = 1.19 and

max(ρ) ≈ 1.2. i shows the smallest eigenvalues of the T set. At near c = 0.80, the persistent

Betti-0 number changes from 4 to 1. ii shows the smallest eigenvalues of the C set. At

around c = 1.02, the persistent Betti-1 number changes from 1 to 0. iii shows the smallest

eigenvalues of the N set.
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Figure 8.
Snapshots of evolving manifold with the eight-body system. a presents the initial state with

eight components. b and c show the formation of 6 tunnels when the persistent Betti-0

number changes from 8 to 1 and the persistent Betti-1 number changes from 0 to 5. d and e
illustrate that a cavity appears, so the persistent Betti-1 number drops to 0 and the persistent

Betti-2 number increases to 1. f shows a solid volume without cavity. The gray planes cut

manifolds to create cross-section views to illustrate the process of the formation of cavity as

shown in b’, c’, d’ and e’.
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Figure 9.
Eigenvalues and Betti numbers vs isovalue (c) of the eight-body system with η = 1.53 and

max(ρ) ≈ 1.1. i shows the Fiedler values of the T set and persistent Betti-0 numbers. ii shows

the Fiedler values of the C set and persistent Betti-1 numbers. iii illustrates the comparison

of λl, 1
C  and persistent β2.
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Figure 10.
Manifold evolution of benzene with η = 0.45 × rvdw. a through h are snapshots from the start

to the end. a and b show the transition of the persistent Betti-0 number from 12 to 6. c and d
show the formation of a ring; The Betti-0 number changes from 6 to 1 and remains at one to

the end, whereas the Betti-1 number changes from zero to one. d, e, f and g illustrate the

deformation of the hexagonal tunnel to a round tunnel. From g to h, the ring disappears and

the Betti-1 number changes from 1 back to 0.
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Figure 11.
Eigenvalues and Betti numbers vs isovalue (c) of the benzene system with η = 0.45 and

max(ρ) ≈ 1.1. i shows the smallest eigenvalues of the T set. The drops at c = 0.12 correspond

to snapshots in Figs. 10 a and b. The drops at c = 0.22 correspond to snapshots in Figs. 10 c

and d. ii shows the smallest eigenvalue of the N set. The drops at c = 0.9 correspond to

snapshots in Figs. 10 g and h. iii shows the smallest eigenvalues of the C set.
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Figure 12.
Illustration of fullurene (C60) manifold evolution with η = 0.5 × rvdw. a presents sixty

components around carbon atom positions. a and b show that the components connect if

they share a pentagonal hole and persistent β0 changes from 60 to 12 and persistent β1

changes from 0 to 12. c shows the hexagonal holes are formed, resulting in the change of

persistent β0 to 1 and persistent β1 to 31. (There are 32 rings, but only 31 are independent in

terms of homology.) c and d show that the 12 pentagonal rings disappear and the persistent

Betti-1 number drops from 31 to 19. d and e show that the 20 hexagonal rings disappear and

a cavity forms inside, so that persistent β1 drops to 0 and persistent β2 increases to 1. The

vertical plan cuts the manifolds that gives an illustration of cavity in d’ and e’.
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Figure 13.
Eigenvalues and Betti numbers vs isovalue (c) of the fullurene (C60) system with η = 0.5 ×

rvdw and max(ρ) ≈ 1.3. i gives the Fiedler values of the T set and persistent β0. ii presents

the comparison of λl, 1
C  and persistent β1. iii shows the Fiedler values of the N set and

persistent β2.
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Figure 14.
Illustration of fullurene (C60) manifold evolution with η = 0.8 × rvdw. a shows 12 initial

solid pentagonal components. b and c show the formation and contraction process of the 20

rings. d is the snapshot right after the formation of the cavity. e shows the final stage as a

solid ball of this example.
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Figure 15.
Eigenvalues and Betti numbers vs isovalue (c) of the fullurene (C60) system with η = 0.8 ×

rvdw; maxρ ≈ 2.5. i gives the Fiedler values of the T set and persistent β0. ii presents the

comparison of λl, 1
C  and persistent β1. iii shows the Fiedler values of the N set and persistent

β2.
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Figure 16.
Experimental and predicted B-factor values plotted per residue (PDB IDs: 1CLL, 2HQK and

1V70). EXP: experimental values; EDH: evolutionary de Rham-Hodge (10 isovalues)

method predicted values; GNM: Gaussian network method predicted values.
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Figure 17.
The structure of calmodulin (PDB ID: 1CLL) visualized in Visual Molecular Dynamics

(VMD) [33] and colored by experimental B-factors (left), EDH (10 isovalues) predict B-

factors (middle) and GNM predicted B-factors (right) with red representing the most flexible

regions.
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Figure 18.
Illustration of surfaces extracted with different isovalues for EMD-1776. The isovalues for a,

b, c and d are 0.14, 0.10, 0.07 and 0.04, respectively. In a, β0 is 12 and β1 and β2 are 0; In b,

β0 = 4, β1 = 4 and β2 = 0; In c, β0 = 1, β1 = 13 and β2 = 0; In d, β0 = 1, β1 = 9 and β2 = 0.

Chen et al. Page 52

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 19.
Eigenvalues and Betti numbers vs filtration of the EMD-1776 density map. The filtration

goes from 2.68 (the largest isovalue (0.28) subtract by 0.14) to 2.78 (the largest isovalue

(0.28) subtract by 0.04). i gives the Fiedler values of the T set and persistent β0. ii presents

the comparison of λl, 1
C  and persistent β1. iii shows the Fiedler values of the N set and

persistent β2.
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Table 1.

Exterior (odd rows) vs. traditional (even rows) calculus in ℝ3. f0, v1, v2 and f3 stand for 0-, 1-, 2- and 3-forms

with their components stored in either a scalar field f or vector field v.

order 0 order 1 order 2 order 3

form f 0 v1(a) v2(a, b) f3(a, b, c)

f v · a v · (a × b) f [(a × b) · c]

d df 0 d v 1 d v 2 df 3

(∇f)1 (∇ × v)2 (∇ · v)3 0

⋆ ⋆f0 ⋆v1 ⋆v2 ⋆f3

f 3 v 2 v 1 f 0

δ δf 0 δ v 1 δ v 2 δf 3

0 (−∇ · v)0 (∇ × v)1 (−∇f)2

∧ f0 ∧ g0 f0 ∧ v1 f0 ∧ v2, v1 ∧ u1 f0 ∧ g3, v1 ∧ u2

(fg)0 (fv)1 (fv)2, (v × u)2 (fg)3, (v · u)3
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Table 2.

Boundary conditions of tangential and normal form

type f 0 v1 v2 f 3

tangential unrestricted v · n = 0 v ‖ n f|∂M = 0

normal f|∂M = 0 v ‖ n v · n = 0 unrestricted

Discrete Continuous Dyn Syst Ser B. Author manuscript; available in PMC 2021 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 56

Table 3.

Pearson correlation coefficients in B-factor predictions using GNM, mGNM and EDH for four proteins. Here,

mGNM stands for multiscale GNM with two different kernels [70]. N
Cα is the number of residues. In cases of

EDH, three different isovalue sets are applied with 10, 20 and 40 points of equal spaces on the interval of [0.1,

1.0].

PDB ID N
Cα GNM[70] mGNM[70] EDH (10) EDH (20) EDH (40)

1CLL 292 0.261 0.763 0.789 0.797 0.850

1V70 105 0.162 0.750 0.754 0.772 0.858

2HQK 216 0.365 0.833 0.854 0.880 0.886

1WHI 122 0.270 0.484 0.640 0.711 0.794
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