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Abstract

In clinical practice, as well as in other areas where interventions are provided, a sequential 

individualized approach to treatment is often necessary, whereby each treatment is adapted based 

on the object’s response. An adaptive intervention is a sequence of decision rules which formalizes 

the provision of treatment at critical decision points in the care of an individual. In order to 

inform the development of an adaptive intervention, scientists are increasingly interested in the 

use of sequential multiple assignment randomized trials (SMART), which is a type of multi-stage 

randomized trial where individuals are randomized repeatedly at critical decision points to a set 

treatment options. While there is great interest in the use of SMART and in the development 

of adaptive interventions, both are relatively new to the medical and behavioral sciences. As a 

result, many clinical researchers will first implement a SMART pilot study (i.e., a small-scale 

version of a SMART) to examine feasibility and acceptability considerations prior to conducting 

a full-scale SMART study. A primary aim of this paper is to introduce a new methodology to 

calculate minimal sample size necessary for conducting a SMART pilot.

1 Introduction

In the medical and behavioral health sciences, researchers have successfully established 

evidence-based treatments for a variety of health disorders. However, even with such 

treatments, there is heterogeneity in the type of individuals who respond and do not respond 

to treatment. Treatment effects may also vary over time (within the same individual): 

a treatment that improves outcomes in the short-run for an individual may not improve 

outcomes longer-term. Further, certain evidence based treatments may be too expensive to 

provide to all individuals; in such cases, health care providers may reserve these treatments 

for individuals who do not respond to less costly alternatives. The converse is also true: 

certain treatments are more ideally suited as maintenance treatments, and may be reserved 

for individuals who respond to earlier treatments in order to sustain improvements in 

outcomes. As a result, clinical researchers have recently shown great interest in developing 

sequences of treatments that are adapted over time in response to each individual’s needs. 

This approach is promising because it allows clinicians to capitalize on the heterogeneity of 
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treatment effect. An adaptive intervention offers a way to guide the provision of treatments 

over time, leading to such individualized sequence of treatments.

An adaptive intervention [1, 2, 3] is a sequence of decision rules that formalizes the 

provision of treatment at critical decision points in the course of care. In other words, an 

adaptive intervention is a guideline that can aid clinicians in deciding which treatment to 

use, for which individuals to use them, and when to use them. Figure 1 depicts a concrete 

example of an adaptive intervention for young children who are initially diagnosed with 

pediatric anxiety disorder.

In this example of adaptive intervention, first, clinicians offer the medication sertraline [4] 

for initial 12 weeks. If the child does not show an adequate response to it at the end of week 

12, the clinician offers to augment the treatment with a combination of the medication 

sertraline and cognitive behavioral therapy [5] for additional 12 weeks. Otherwise the 

clinician would continue the sertraline medication for another 12 weeks. In this adaptive 
intervention, response is defined based on a measure of improvement, for example, based on 

a cut-off of five or less on the Clinical Global Impression-Improvement Scale [6]. Change in 

the Pediatric Anxiety Rating Scale could also be used to define response/non-response [7]. 

An adaptive intervention is also known as an adaptive treatment strategy [8] or a dynamic 
treatment regime [9].

Recently, methodologists introduced a specific type of randomized trial design known as a 

Sequential Multiple Assignment Randomized Trials [1, 10, 11] to inform the development 

of high-quality, empirically-supported adaptive interventions. A SMART is a type of 

multi-stage trial where each subject is randomly (re)assigned to one of various treatment 

options at each stage. Each stage corresponds to a critical treatment decision point. Each 

randomization is intended to address a critical scientific question concerning the provision 

of treatment at that stage; together, these help to inform the development of a high-quality 

adaptive intervention. Lei et al. [1] reviews a number of SMART studies in behavioral 

interventions science. Also, see work by Almirall et al. [10]

An example SMART is provided in Figure 2. This example could be used to develop an 

adaptive intervention for children who are diagnosed with pediatric anxiety disorder. At the 

first stage, there are two treatment options, sertraline medication or cognitive behavioral 
therapy(CBT). Each subject is randomly assigned to one of the initial treatment options 

and the assigned treatment is conducted for the first 12 weeks. At the end of week 12, 

each subject’s response to the treatment is assessed based on Clinical Global Impression­
Improvement Scale [4] and categorized as a responder or as a non-responder. Based on this, 

those who do not respond to the initial treatment are again randomly assigned to one of 

two secondary treatment options: One is a switch strategy whereby the child is switched 

to the stage 1 treatment option they were not offered at first. The second option is the 

combination of both sertraline medication and cognitive behavioral therapy(CBT). For those 

who responded by the end of 12 weeks, continually initial intervention will be used. As with 

stage 1, both stage 2 treatments are provided for 12 weeks.
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In a SMART such as the one shown in Figure 2, research outcomes may be collected 

at the end of week 24 or throughout, from baseline to week 24. Research outcomes 

may be continuous, e.g., Pediatric Anxiety Rating Scale [4] or discrete, e.g., Clinical 
Global Impression-Improvement Scale [4]. Note that the measure of response versus non­

response at week 12 is not necessarily a research outcome. It is purely a criterion to 

categorize participants of the first stage intervention into a group of responders or that of 

non-responders.

The SMART study described above can be used to address three key scientific questions 

in the development of an adaptive intervention for pediatric anxiety disorder: (1) ‘Which 

treatment to use in stage 1, medication or CBT?’ and (2) ‘Which tactic is best for non­

responders to stage 1 treatment, switch or augment?’ Both of these questions involve 

randomized comparisons. Question (1) is addressed by comparing outcome measures of 

subgroup A, B and C in the Figure 2 with outcome measures of subgroup D,E and F in 

the Figure 2. Question (2) is addressed by comparing subgroup B and C when medication 

sertraline is stage 1 treatment and subgroup E and F when CBT is stage 1 treatment. 

Lastly, (3) This SMART design could also be used to compare the following four adaptive 
interventions contained within it.

1. First, offer sertraline medication for 12 weeks. If the patient does not respond 

well to initial medication at the end of week 12, augment by initiating a 

combination therapy (sertraline and CBT) for next 12 weeks. Otherwise continue 

with the medication sertraline for another 12 weeks. (Children in subgroups A 

and B provided data for this adaptive intervention.)

2. First, offer sertraline medication for 12 weeks. If the patient does not respond 

well to initial medication at the end of week 12, switch the treatment to CBT 
for next 12 weeks. Otherwise continue with the medication sertraline for another 

12 weeks. (Children in subgroups A and C provided data for this adaptive 
intervention.)

3. First, offer CBT medication for 12 weeks. If the patient does not respond well 

to initial medication at the end of week 12, augment by initiating a combination 

therapy (sertraline and CBT) for next 12 weeks. Otherwise continue with the 

medication CBT for another 12 weeks. (Children in subgroups D and E provided 

data for this adaptive intervention.)

4. First, offer CBT medication for 12 weeks. If the patient does not respond well 

to initial medication at the end of week 12, switch the treatment to sertraline 
medication for next 12 weeks. Otherwise continue with the medication CBT 
for another 12 weeks. (Children in subgroups D and F provided data for this 

adaptive intervention.)

Note that the type of design used for SMART study described in Figure 2 is one of the 

most frequently used design. It has been used in SMART study of adolescent marijuana use 
[12], cocaine dependence [13, 14] and youth with conduct disorders [15]. For more recent 

ongoing SMART studies, visit the website: http://methodology.psu.edu/ra/smart/projects. 
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For detailed data analysis method regarding SMART, see the work of Nahum-Shani et al. 

[11,16].

Despite the advantages of SMARTs, it is fairly new to clinical research. Therefore, 

researchers may have concerns over the feasibility or acceptability of conducting a SMART. 

Feasibility refers to the capability of the investigators to perform the SMART and the 

ability of clinical staff (i.e., staff providing treatment) to treat subjects with the adaptive 
interventions in the SMART. For example, psychologists or psychiatrists delivering the stage 

1 treatments may have concerns about the way non-response is defined; it is important 

to work out these concerns prior to a full-scale SMART study. Acceptability refers to 

the tolerability of the adaptive interventions being studied from the perspectives of study 

participants, as well as the appropriateness of the decision rules from the perspective of the 

clinical staff. For instance, some parents may object to a switch strategy (they may, instead, 

prefer an augmentation or an intensification strategy). If this happens often, investigators 

may re-consider the acceptability of the switch strategy prior to conducting a full-scale 

SMART. In such cases, researchers may conduct SMART pilot study to resolve feasibility 

and acceptability concerns prior to performing the full-scale SMART study.

The design of any study (pilot or full-scale randomized trial) requires researchers to select 

an appropriate sample size in order to conduct the study. In full scale randomized trials 

(including SMARTs), the sample size is typically determined to ensure sufficient statistical 

power to detect a minimally clinically significant treatment effect. For example, in a full 

scale SMART study, such as the one shown in Figure 2, the sample size could be determined 

to provide sufficient power (e.g., 80%) to detect a minimaly clinically significant treatment 

effect between any two of the four embedded adaptive interventions [17].

However, because the primary aim of pilot studies centers on acceptability and feasibility 

considerations, the sample size for pilot studies is not based on statistical power 

considerations [18, 19, 20, 21]. For the SMART pilot study, the goal is to examine feasibility 

and acceptability of conducting a full-scale trial. One approach for selecting a sample size 

achieving this is to observe sufficient number of participants for each subgroup from A 

to E in Figure 2. This is because each subgroup corresponds to a particular sequence of 

treatments and if the investigator does not have an ample amount of participants in each 

group, they cannot detect potential problems regarding feasibility or acceptability of certain 

sequence of treatments prior to conducting full-scale SMART. The primary aim of this paper 

is to introduce a new method which calculates a minimal sample size of SMART pilot study.

In Section 2, we develop a methodology for calculating a minimal sample size for SMART 
pilot studies that are like the pediatric anxiety disorder SMART presented above. In Section 

3, we verify the result using simulations. We also compare our proposed methodology with 

an pre-existing method [22]. In Section 4, we extend the method in Section 2 to other types 

of SMART designs (the pediatric anxiety SMART described above represents just one type 

of SMART design). In Section 5, we provide a summary and discussions including areas for 

future work.
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2 A method for calculating the sample size for a SMART pilot study

2.1 The Proposed Approach

In this section, we develop a sample size calculator for SMART pilot studies. We first 

develop an approach for the SMART study shown in Figure 2. Note that the method we 

will provide can be used in any area of SMART study whose design is identical to the 

one in Figure 2. Later, in Section 4, we generalize the method for other types of SMART 
designs. The approach provides investigators planning a SMART pilot study a principled 

way to choose a sample size for the pilot study, such that a minimal number of participants 

are observed in subgroups A-F in Figure 2. This is important because if the investigators 

do not observe sufficient number of participants of one particular sequence of treatments, 

the investigator cannot judge whether the sequence of treatments is actually feasible or can 

be accepted. For example, suppose that to examine feasibility and acceptability concerns, 

an investigator wishes to observe at least three participants in each of the subgroups A-F 

in Figure 2: in this case, how many participants should the investigators recruit in the 

study? Because the exact number of non-responders is unknown ahead of the pilot study, a 

probabilistic argument is necessary to answer such a question.

To formalize this idea, we first define some notations. Let N denote the total sample size 

of the SMART pilot study. For simplicity, we assume N is always a multiple of two; later 

we discuss the implications of this. Let m denote the minimum number of participants that 

an investigator would like to observe in subgroups A-F. Let qj denote the anticipated rate of 

non-response to stage 1 treatment where j = SERT or CBT and let q = min(qSERT, qCBT), 

which will be used as a common non-response rate; the implications of using the minimum 

will also be discussed later. Lastly, a lower bound for the probability of the event that each 

subgroup will have at least m number of participants is denoted as k. Note that m, q and k 
are all provided by the investigator planning the SMART pilot. Hence, our goal is to provide 

a formulae for N as a function of m, q and k. More formally, the goal is to find a smallest N 
which satisfies

ℙ( all subgroups A‐F have at leastm participants ) > k .

Using our notation, the above is equivalent to

ℙ MA ⩾ m, MB ⩾ m, MC ⩾ m, MD ⩾ m, ME ⩾ m and MF ⩾ m > k (1)

where MA stands for the number of participants who fall into subgroup A. MB, MC, MD, ME 

and MF are defined in a similar way, respectively. Note that MA, MB, MC, MD, ME and MF 

are all discrete random variables. Next, we re-express (1) as

ℙ MA ⩾ m, MB ⩾ m and MC ⩾ m ⋅ ℙ MD ⩾ m, ME ⩾ m and MF ⩾ m > k . (2)

This is because, by the design of SMART study in Figure 2, any event of MA, MB and MC is 

independent to that of MD, ME and MF. Next let MNS denote the number of non-responders 

out of N who were initially assigned to sertraline medication; and, similarly, let MNC denote 
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the number of non-responders initially assigned to CBT. We first consider the leftmost 

probability term involving MA, MB and MC. Notice the event that MB ⩾ m and MC ⩾ m is 

equivalent to the event that MNS ⩾ 2m . This is because, once the number of non-responders 

of sertraline medication is greater than or equal to 2m, regardless of whether MNS is odd 

or even, both MB and MC would be at least m due to a block randomization[23] with equal 

probabilities. For the case, when MNS is odd, we exclude a participant and proceed the 

second stage randomization. Therefore, we get

ℙ MA ⩾ m, MB ⩾ m and MC ⩾ m = ℙ MA ⩾ m, MNS ⩾ 2m = ℙ N
2 − MNS ⩾ m, MNS ⩾ 2m .

A similar argument can be applied to MD, ME and MF and we have

ℙ MD ⩾ m, ME ⩾ mandMF ⩾ m = ℙ MD ⩾ m, MNC ⩾ 2m = ℙ N
2 − MNC ⩾ m, MNC ⩾ 2m .

Re-expressing (2), our goal is to find the smallest N such that

ℙ N
2 − MNS ⩾ m, MNS ⩾ 2m ⋅ ℙ N

2 − MNC ⩾ m, MNC ⩾ 2m > k (3)

which is equivalent to,

ℙ N
2 − m ⩾ MNS ⩾ 2m ⋅ ℙ N

2 − m ⩾ MNC ⩾ 2m > k . (4)

Now note that

MNS = ∑
i = 1

N/2
Xi, MNC = ∑

i = 1

N/2
Yi,

where Xi = 1 if the ith participant assigned to sertraline medication did not respond well or 

Xi = 0 otherwise. Since the probability of non-response to sertraline is assumed to be q, we 

have that Xn has a Bernoulli distribution with success probability q [24]. Similarly, Yn has 

a Bernoulli distribution with success probability q (recall the assumption that the probability 

of non-response is assumed to be q for both sertraline and CBT). Therefore, MNS and MNC 

have identical distributions, which we denote by the random variable Mq. Further, given the 

result that the sum of independent identically distributed Bernoulli random variables has a 

Binomial distribution [24], we have that

ℙ N
2 − m ⩾ Mq ⩾ 2m

2
> k, (5)

where Mq  Binomial N
2 , q  or, equivalently,
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ℙ N
2 − m ⩾ Mq − ℙ 2m − 1 ⩾ Mq

2
> k (6)

holds as well.

As a side note, if we have an odd number of participants, it is impossible to assign an 

equal number of participants to each initial intervention. Therefore we set N to be a multiple 

of 2, this is because, by the design of our SMART study in Figure 2, there is a block 

randomization in stage 1 [23]. Setting N as a multiple of 2 allows us to assign equal number 

of participants to two treatment options provided at the first stage. Additionally we use 

a minimum value of the two non-response rate (qSERT,qCBT) as a common non-response 

rate(q). This is because, by using a minimum value of two non-response rates, we will get a 

robust sample size which satisfies (6).

2.1.1 Implementation—For fixed values for m, k and q(i.e., provided by the scientists 

designing a SMART pilot), a suitable value of N can be found by searching for the smallest 

N such that (6) holds true. This is possible because (6) is an inequality with respect to N 
assuming that m, k and q are given. This can be easily accomplished using any computer 

program capable of calculating upper tail probabilities for random variables with Binomial 

distributions(e.g., the pbinom function in R [25]).

Using the implementation outlined above, Table 1 provides values of N for a range of inputs 

of m, k, and q. For example, suppose an investigator wishes that at least 3(m) participants 

are observed in each subgroup with probability greater than 0.8(k), and assumes that the 

common non-response rate is 0.30(q). Based on the Table 1 below, the investigator needs to 

recruit at least 58 participants for the SMART pilot study. Note that in this paper, we provide 

sample sizes for the q values in a range between 0.2 to 0.8 because for the non-response rate 

values below 0.2 or above 0.8, as it may not be feasible to conduct a SMART studies.

2.1.2 A Pre-existing Approach—A similar approach to calculate the sample size for 

SMART pilot studies was first proposed by Almirall et al. [22]. Their proposal centered on 

finding the smallest sample size N which satisfies

ℙ MB > m − 1, MC > m − 1, ME > m − 1 and MF > m − 1 > k .

This differs from our proposed approach, which requires that all six subgroups A-F have 

at least m participants with probability greater than k(see (1)). The use of this objective 

function was based on the argument that in typical SMART studies, the rate of non-response 

is often not very large(i.e less than equal to 0.60). Therefore, in such settings it is highly 

likely that if the condition that the number of participants in subgroups B, C, E and F are 

respectively greater than m — 1 was required, the number of responders in subgroups A and 

D would also be greater than m — 1, respectively.

On top of that the pre-existing method had an assumption that the event: MB > m — 1 & MC 

> m — 1 is equivalent to the event: MNS > 2m — 2, which may not be true. Consider the 
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case when MNS = 2m — 1. If MNS = 2m — 1, either MB or MC should be m — 1, which 

violates the condition given: MB > m — 1 & MC > m — 1. In other words, the condition: 

MB > m — 1 & MC > m — 1 implies that MNS > 2m — 2, but not necessarily in the other 

way around.

Therefore the sample size we get from the pre-existing method will not guarantee that the 

investigator would observe at least m number of people for each subgroup with probability 

greater than k. In next section, we will conduct a simulation study to check validity of the 

pre-existing method by comparing the simulation result of the pre-existing method with that 

of the new method introduced in Section 2.1.

3 Simulation

A simulation experiment is conducted (i) to verify that sample sizes obtained under the 

proposed approach satisfy equation (6) under a variety of realistic values for m, k and q, and 

(ii) to compare the performance of the proposed method with the pre-existing method by 

Almirall et al. [22], described above.

The simulation experiment is conducted in the following way for each combination of values 

of m, k and q.

1. Firstly, the values m, k and q are used to calculate the minimum suggested 

sample size N based on the proposed methodology.

2. Secondly, using this sample size N, we simulate the flow of participants through 

one realization of the SMART shown in Figure 2. Specifically, we divide the 

total sample size(N) by 2. Then by rbinom function [25] in R, we obtain the 

number of responders and non-responders for each pilot SMART simulation, 

which allows us to get the number of participants in each of the subgroups A-E.

3. Thirdly, we check if the number of participants in each subgroup is greater 

than pre-specified m or not. If the condition is met, we count it as a successful 

SMART pilot study. This process is repeated for 10,000 times. In the end, after 

10,000 simulations, we obtain the proportion of successes out of 10,000. This 

represents an estimate of the left-hand side of expression (1), which we take it as 

a true proportion, denoted as ρ, since we are conducting 10,000 times of Monte 
Carlo simulation.

4. Lastly, the proportion(ρ) obtained in previous step is compared with a pre­

specified lower bound for the proportion(k). If this proportion(ρ) is greater than k 
value, we conclude the sample size obtained from the proposed method is valid. 

Otherwise, the proposed sample size is invalid. The Table 2 provides the results 

of this experiment.

Notice that the number of non-responsers could be an odd number. In this case, we subtract 

one from the number of non-responsers and divide by two. Then we use this value to check 

if it is greater than m or not. This is to (i) to get a conservative sample size and (ii) to avoid 

having non integer value of participants in each subgroup. If both values are greater than m, 

then we count this trial SMART pilot as a successful SMART pilot study.
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From the simulation result, we can assess if the sample sizes we get from the proposed 

method, which are in Table 1, are valid or not. For instance, when m = 3, k = 0.80 and 

q = 0.30, we need to have at least 58 participants to conduct a SMART pilot study based 

on the Table 1. Then, from Table 2, we can see that out of 10,000 simulations, roughly in 

8,160 (10,000·0.816) times, the condition that there are 3 or more people in each subgroup 

is satisfied. Since all the values we get from the simulation are greater than corresponding k 
value which is in the left end column, we can say that our new method developed in previous 

section is valid.

To see whether the method discussed in Section 2.1 is an improved version, a simulation 

study is also conducted, in a same manner, for the pre-existing method [22]. As one can 

see in Table 3, pre-existing method failed to prove its validity. Again, this is because of the 

assumptions discussed in the Section 2.1.2.

4 Extensions to other SMART pilot studies

Not all SMART studies will be like the type shown in Figure 2. In the SMART in Figure 2, 

all non-responders were re-randomized at the second stage regardless of the initial treatment 

assignment; i.e., re-randomization to second-stage treatment depended only on response/

non-response status. In a second type of commonly-used SMART design, re-randomization 

at the second stage depends on both initial treatment and response/non-response status. In 

a third type of commonly-used SMART design, both responders and non-responders are 

re-randomized at the second stage. In this section, we extend the methods of Section 2.1 to 

these two types of SMART designs.

4.1 Re-randomization depends on initial treatment and response status

In this section, we consider SMART studies where re-randomization to second-stage 

treatment depends on the choice of initial treatment as well as response/non-response status.

As an example, consider the SMART shown in Figure 3. This SMART study was designed 

to develop adaptive interventions for improving linguistic and social communication 

outcomes among children with autism spectrum disorders who are minimally verbal [26]. 

Specifically, this SMART examined the effects of three adaptive interventions involving 

different provisions of a speech generating device (SGD; a type of Augmentative and 
Alternative Communication Interventions). This SMART was facilitated to answer two 

scientific questions in the context of a behavioral language intervention (BLI) for children 

with autism [27, 28]. Initially, all children were randomized at stage 1 to BLI versus 

BLI+SGD for 12 weeks to answer question (1): Is providing SGD more effective at initial 

stage? At the end of week 12, each participant is categorized as a responder or a non­

responder to stage 1 treatment based on 14 measures including: 7 communication variables 

from natural language sample with blinded assessor and 7 communication variables from 

intervention transcripts [26]. All responders continued on stage 1 treatment for an additional 

12 weeks. All non-responders to BLI+SGD received intensified BLI+SGD. Non-responders 

to BLI were re-randomized to intensified BLI versus BLI+SGD to answer question (2): For 

non-responders to BLI, is providing SGD with BLI as a rescue intervention more efficacious 

than intensifying the initial intervention? Total number of spontaneous communicative 
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utterances, primary outcome of the study, was collected at week 24 with a follow-up 

collection at week 36.

The derivation of the sample size formulae for a pilot study of a SMART of this type is 

similar to the derivation in Section 2.1. One difference in the notation is that in this SMART 
design, there are 5 subgroups, labeled A to E. Our goal is to determine the smallest N which 

guarantees that

ℙ( all subgroups A‐E have at least m participants ) > k

Using arguments similar to those used in section 2.1 (see Appendix A), one can show that 

this inequality is identical to

ℙ N
2 − m ⩾ Mq − ℙ 2m − 1 ⩾ Mq ⋅ ℙ N

2 − m ⩾ Mq − ℙ m − 1 ⩾ Mq
> k .

(7)

Notice that, unlike with the inequality given in equation (6), the left-hand-side of inequality 

(7) does not reduce to the square of a probability. This is due to the imbalance in the 

SMART design shown in Figure 3(only non-responders to one of the initial treatments 

are re-randomized) relative to the design shown in Figure 2(where all non-responders are 

re-randomized). Given k, q, and m, a solution for N in expression (7) can be found using an 

approach that is similar to the one described earlier to solve expression (6). Table 4 provides 

a minimal sample size for the type of SMART designs in Figure 3.

See the work of Kilbourne et al. [29], which employs a SMART of this type to enhance 

outcomes of a mental disorders program.

4.2 Both responders and non-responders are re-randomized

In this section, we consider a third type of SMART design where both responders and 

non-responders are re-randomized. As an example of this type of design, we present a 

study of individuals with alcoholic use disorder. The example SMART design is shown 

in Figure 4. The goal of this SMART study, which is reviewed in greater detail in Lei et 

al. [1], was to develop adaptive interventions for individuals with alcoholic use disorders. 

This SMART was used to answer three scientific questions regarding the use of naltrexone 

medication (NTX) [30], an opioid receptor antagonist, for the management and prevention 

of relapse among individuals with alcohol use disorder. All participants were provided 

NTX medication as a stage 1 treatment. Non-response to NTX was measured on a weekly 

basis. Participants were randomized initially to two different definitions for non-response to 

NTX–a lenient versus a more stringent definition–to answer the question (1): What extent 

of weekly drinking activity is best regarded as non-response? The lenient definition of 

non-response was defined as having five or more heavy drinking days per week, whereas 

the stringent definition of non-response was defined as having two or more heavy drinking 

days per week. Participants identified as non-responders to NTX were re-randomized to 

the combination of combined behavioral intervention (CBI) [31, 32], medical management 
(MM) [33] versus to the combination of NTX, CBI and MM. This randomization answers 
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the question (2): What type of treatments would be useful for subjects who do not respond 

well to NTX? If participants had not been identified as non-responders by week 8, they were 

said to be responders to stage 1 intervention. Responders were re-randomized to the NTX 
versus to the combination of NTX and telephone disease management (TDM) to answer the 

question (3): What type of treatments would be effective for reducing the chance of relapse 

among people who responded well to NTX? Primary outcomes included the percentage of 

heavy drinking days and percentage of drinking days of the last two months of the study.

The variables m, k, and q are defined as in Section 2.1 (see the Appendix B). In this type of 

SMART, there are 8 subgroups, labeled A through H. In addition, randomization occurs both 

for responders and non-responders. Our goal is to find a smallest N which satisfies

ℙ( all subgroups A‐H have at least m participants ) > k

In Appendix B we show that the above equation is true if and only if

ℙ N
2 − 2m ⩾ Mq − ℙ 2m − 1 ⩾ Mq

2
> k, (8)

As you can see in expression (8), unlike in expression (7), since the design is perfectly 

symmetric we have two identical probability terms multiplied each other. In addition, unlike 

expression (6), instead of m, 2m was subtracted from N
2  . This is because, for the type of 

SMART designs described in Figure 4, responders were also randomized. For more detailed 

explanation on how this influences the method, see Appendix B. Again, given m, k and q, 

a solution for N in expression (8) can be found using an approach that is similar to the one 

described earlier to solve expression (6). Table 5 provides a minimal sample size for the type 

of SMART design in Figure 4.

A number of other SMART studies are similar to the type shown in Figure 4. These studies 

include a SMART for developing an adaptive reinforcement-based behavioral intervention 

for woman who are pregnant and abusing drugs [34]; a SMART study aimed at developing 

an adaptive intervention involving individual and family-delivered cognitive behavioral 

therapy among children with depression; and a SMART designed to develop an adaptive 

intervention for children with autism spectrum disorders who are minimally verbal. All three 

of these studies are currently in the field.

5 Discussion

This manuscript presents pilot sample size calculators for three of the most common types 

of sequential multiple assignment randomized trial (SMART) designs. As stated in the 

introduction, researchers use SMARTs to inform the development of adaptive interventions. 
More specifically, SMART designs can be used to address critical scientific questions 

that need to be answered in order to construct high-quality adaptive interventions. Over 

the last 15 years, SMART designs have become more popular among clinical and health 

service researchers. However, some researchers may have concerns regarding the feasibility 
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of conducting a full scale SMART or the acceptability of the treatments or adaptive 

interventions embedded in a SMART design. Such researchers may choose to conduct a 

smaller-scale pilot SMART prior to conducting a full-scale SMART. Specifically, a SMART 
pilot study is a small scale version of a full scale SMART study, where the primary purpose 

is to examine the acceptability and feasibility issues. See the following papers for more 

detailed explanations and concrete examples of SMART pilot studies [15, 22, 35].

This paper develops an approach for determining the minimum sample size necessary 

for conducting a pilot SMART. The number of participants for SMART pilot study 

should be enough to address concerns in feasibility and acceptability of full-scale SMART 
study. The paper introduces one way to operationalize this, which is to ensure that each 

subgroup corresponding to sequence of treatments to observe some minimum number(m) 

of participants. This approach was used to select the sample sizes for two recent SMART 
pilot studies: 1) SMART for developing an adaptive intervention for adolescent depression 

[35], 2) SMART for adolescent conduct problems [15]. Further, the methods are developed 

for three of the most commonly used types of SMART designs. Finally, we compare our 

proposed method with the pre-existing, related method to calculate a sample size for a 

SMART pilot [22] and explain how the proposed methodology is an improvement on the 

pre-existing one. In addition, the characteristics of the methodologies developed in this 

paper were examined thoroughly via Monte Carlo simulation. Specifically, for each type 

of SMART design, 10,000 simulation SMART pilot studies were conducted with different 

combinations of values of m,k and q via statistical software R. In all possible combinations 

of m,k and q, the simulation study supported that the condition imposed on the sample 

size(N) was met.

The method may be conservative in that, based on the way the rate of non-response is 

elicited from the scientist, the method may suggest a sample size that is as large or larger 

than the sample size actually needed to meet the constraint. Specifically, our proposed 

approach elicits the minimum value of the non-response rates to first-stage treatments. 

This was done to minimize the burden on the investigator of having to guess/provide two 

non-response rate. In settings where the two non-response rates differ, using the minimum 

for both may lead to conservative sample size requirements, relative to a method which 

uses both of two different non-response rates. For the future work, one can possibly develop 

a new methodology to calculate minimum sample size for a SMART pilot using two 

non-response rates. Also one can further investigate, in which circumstances (i.e. which 

combinations of m, k and q), a method that uses two non-response rate values results in 

substantially small sample size than the method introduced in this paper.

Some suggestions on choosing values for m, k and q are provided in this paragraph. 

Concerning q: Existing data from previous studies (not necessarily a previous SMART 
study) are often used to obtain estimates of q. Typical values of non-response rates for 

SMART ranges from 0.3 to 0.7. Concerning m: In many cases, we have found that 

investigators are interested in observing between 3 and 5 participants for each subgroup 

of a pilot SMART. Note that for typical pilot studies, resources, including the maximum 

number of participants that could be afforded in a pilot study, are often limited. And 

observing between 3 to 5 people for each subgroup is typically enough to assess feasibility 
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and acceptability issues regarding adaptive interventions. Concerning k: typical values range 

from 0.8 to 0.95.

This manuscript provides a way to choose a sample size for a pilot SMART, to examine 

feasibility and acceptability concerns before conducting a full scale SMART study. Another 

possible approach is to choose a sample size so that investigators may observe an estimate 

of response/non-response rate with pre-specified amount of precision. Researchers may want 

to adopt this approach to estimate non-response rate. By using the estimate of non-response 

rate, researchers can implement the methodologies described in the paper. For instance, 

suppose we want a sample size N which allows us to estimate non-response rate(q) within 

the margin of error of 0.1 with significance level 0.05. Then, we estimate q by the proportion 

of non-responders among total sample (q) . Since the number of non-responders follows a 

Binomial distribution with parameters q and N [24, 36], after some calculation, we get N = 

100. Note that the above example is just to illustrate another way to calculate sample size for 

pilot study. In this way, one can come up with an alternative way to develop a sample size 

calculator for SMART pilot study. For more detailed technical explanation, see Appendix C.
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Appendix

A Appendix A

Here, we provide a mathematical derivation of equation (7). All the variables used here are 

defined in a similar way as in Section 2.1. Recall that what we want to calculate is the 

smallest N such that

ℙ( all subgroups A‐E have at least m participants ) > k

holds. Using mathematical expression, one can write it as

ℙ MA ⩾ m, MB ⩾ m, MC ⩾ m, MD ⩾ m and ME ⩾ m > k .

By the independence of the group with behavioral language intervention and the group with 

both

behavioral language intervention and speech generating device, the above is same as

ℙ MA ⩾ m, MB ⩾ m and MC ⩾ m ⋅ ℙ MD ⩾ m, ME ⩾ m > k .
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Let MNB denote the number of non-responders of behavioral language intervention. Note 

that the event: MB ⩾ m and MC ⩾ m is same as the event: MNB ⩾ 2m due to a block 

randomization with equal probabilities [23]. Therefore we get

ℙ MA ⩾ m, MB ⩾ m and MC ⩾ m = ℙ N
2 − MNB ⩾ m, MNB ⩾ 2m .

Let MNBS denote the number of non-responders of the initial intervention which involves 

both behavioral language intervention and speech generating device. Then,

ℙ MD ⩾ m, ME ⩾ m = ℙ N
2 − MNBS ⩾ m, MNBS ⩾ m

Therefore we find the smallest N, which satisfies

ℙ N
2 − MNB ⩾ m, MNB ⩾ 2m ⋅ ℙ N

2 − MNBS ⩾ m, MNBS ⩾ m > k,

One can re-write above as

ℙ N
2 − Mq ⩾ m, Mq ⩾ 2m ⋅ ℙ N

2 − Mq ⩾ m, Mq ⩾ m > k,

where Mq follows a Binomial distribution with size parameter N
2  and probability parameter 

q. Re-arranging Mq, we have

ℙ N
2 − m ⩾ Mq ⩾ 2m ⋅ ℙ N

2 − m ⩾ Mq ⩾ m > k,

which is analogous to

ℙ N
2 − m ⩾ Mq − P 2m − 1 ⩾ Mq ⋅ ℙ N

2 − m ⩾ Mq − P m − 1 ⩾ Mq > k .

Appendix

B Appendix B

Here, we provide a mathematical derivation of equation (8). All the variables used here are 

defined in a similar way as in Section 2.1. Recall that what we want to calculate is the 

smallest N such that

ℙ( all subgroups A − H have at least m participants ) > k

holds. Using mathematical expression, one can write it as
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ℙ MA ⩾ m, MB ⩾ m, MC ⩾ m, MD ⩾ m, ME ⩾ m, MF ⩾ m, MG ⩾ m and MH ⩾ m > k .

By design, we know that the group with the lenient definition of non-response and the 

group with the stringent definition of non-response are independent. Therefore, the above 

expression is same as,

ℙ MA ⩾ m, MB ⩾ m, MC ⩾ m and MD ⩾ m ⋅ ℙ ME ⩾ m, MF ⩾ m, MG ⩾ m and MH ⩾ m > k

Let MNL denote the number of non-responders for the initial intervention with lenient 

definition of non-response. Similarly we define MNS as the number of non-responders 

for the initial intervention with stringent definition of non-response. Our next step is to 

re-express above expression in terms of MNL, MNS and N. Note that the event: MC ⩾ m and 

MD is same as the event: MNL ⩾ 2m . In addition, the event: MA ⩾ m and MB ⩾ m is same 

as the event: N
2 − MNL ⩾ 2m . Analogous arguments can be applied to the event involving 

subgroup E through H. Therefore we get,

ℙ MA ⩾ m, MB ⩾ m, MC ⩾ m and MD ⩾ m = ℙ N
2 − MNL ⩾ 2m and MNL ⩾ 2m

and

ℙ ME ⩾ m, MF ⩾ m, MG ⩾ m and MH ⩾ m = ℙ N
2 − MNS ⩾ 2m and MNS ⩾ 2m .

Therefore our goal is to find a sample size N, which satisfies

ℙ N
2 − MNL ⩾ 2m and MNL ⩾ 2m ⋅ ℙ N

2 − MNS ⩾ 2m and MNS ⩾ 2m > k

One can re-write above as

ℙ N
2 − Mq ⩾ 2m, Mq ⩾ 2m ⋅ ℙ N

2 − Mq ⩾ 2m, Mq ⩾ 2m > k,

where Mq follows a Binomial distribution with size parameter N and probability parameter 

q. Then one can further simplify as

ℙ N
2 − 2m ⩾ Mq ⩾ 2m ⋅ ℙ N

2 − 2m ⩾ Mq ⩾ 2m > k,

where the above is equivalent to

ℙ N
2 − 2m ⩾ Mq − P 2m − 1 ⩾ Mq

2
> k .
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Appendix

C Appendix C

In this section, we provide technical explanation of finding sample size using margin 

of error. Recall that the number of non-responders follows a Binomial distribution with 

parameters q and N [24, 36]. One can show that q , a proportion of non-responders among 

total sample, is an unbiased estimate of q and its variance and standard deviation are below 

[37]:

Var(q) = q(1 − q)
N sd(q) = q(1 − q)

N .

Then the goal is to find a sample size N which satisfies

2 ⋅ q(1 − q)
N = 0.1.

However, since we do not know the true value of q, we instead use 1
2  as a value of q to find 

conservative sample size of N [36, 38]. By solving above formula after plugging in 1
2  to q, 

we have

1
N = 0.1 N = 100.
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Figure 1: 
An example adaptive intervention for pediatric anxiety disorder patients
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Figure 2: 
An example SMART for pediatric anxiety disorder patients
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Figure 3: 
An example SMART for Children with Autism

Kim et al. Page 21

SIAM Undergrad Res Online. Author manuscript; available in PMC 2021 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: 
An example SMART for alcoholic patients
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Table 1:

Minimal sample size of SMART pilot study based on the proposed method

Range of q : 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 0.80 m = 3 88 58 42 34 28 32 50

k = 0.80 m = 4 112 74 54 42 36 42 64

k = 0.80 m = 5 136 90 66 52 44 50 76

k = 0.90 m = 3 100 64 48 36 32 38 60

k = 0.90 m = 4 126 82 60 46 40 48 74

k = 0.90 m = 5 150 98 72 56 48 56 86
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Table 2:

Simulation table of the sample sizes based on the proposed method

Range of q : 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 0.80 m = 3 0.807 0.816 0.821 0.860 0.809 0.810 0.815

k = 0.80 m = 4 0.810 0.828 0.814 0.820 0.834 0.844 0.821

k = 0.80 m = 5 0.811 0.825 0.820 0.835 0.838 0.830 0.813

k = 0.90 m = 3 0.911 0.902 0.921 0.903 0.931 0.912 0.910

k = 0.90 m = 4 0.906 0.911 0.921 0.913 0.925 0.920 0.912

k = 0.90 m = 5 0.903 0.906 0.915 0.918 0.926 0.902 0.901
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Table 3:

Simulation table of the sample sizes based on the pre-existing method

Range of q : 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 0.80 m = 3 0.633 0.662 0.623 0.616 0.475 0.194 0.000

k = 0.80 m = 4 0.650 0.664 0.650 0.672 0.549 0.353 0.000

k = 0.80 m = 5 0.675 0.691 0.678 0.641 0.592 0.000 0.000

k = 0.90 m = 3 0.790 0.780 0.766 0.803 0.769 0.401 0.000

k = 0.90 m = 4 0.796 0.822 0.818 0.813 0.786 0.000 0.000

k = 0.90 m = 5 0.821 0.820 0.831 0.841 0.806 0.459 0.000
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Table 4:

Minimal sample size of SMART pilot study for nonverbal children with autism

Range of q : 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 0.80 m = 3 78 52 38 30 28 32 50

k = 0.80 m = 4 100 66 48 38 34 42 64

k = 0.80 m = 5 122 80 60 48 42 50 76

k = 0.90 m = 3 90 58 42 34 30 38 60

k = 0.90 m = 4 114 74 54 42 38 48 74

k = 0.90 m = 5 138 90 66 52 46 56 86
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Table 5:

Minimal sample size of SMART pilot study for alcoholic patient

Range of q : 0.20 0.30 0.40 0.50 0.60 0.70 0.80

k = 0.80 m = 3 88 58 42 36 42 58 88

k = 0.80 m = 4 112 74 54 46 54 74 112

k = 0.80 m = 5 136 90 66 56 66 90 136

k = 0.90 m = 3 100 64 48 40 48 64 100

k = 0.90 m = 4 126 82 60 50 60 82 126

k = 0.90 m = 5 150 98 72 60 72 98 150
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