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M I C R O B I O L O G Y

A macroecological description of alternative  
stable states reproduces intra- and inter-host  
variability of gut microbiome
Silvia Zaoli and Jacopo Grilli*

The most fundamental questions in microbial ecology concern the diversity and variability of communities. Their 
composition varies widely across space and time, as a result of a nontrivial combination of stochastic and deter-
ministic processes. The interplay between nonlinear community dynamics and environmental fluctuations 
determines the rich statistical structure of community variability. We analyze long time series of individual human gut 
microbiomes and compare intra- and intercommunity dissimilarity under a macroecological framework. We show 
that most taxa have large but stationary fluctuations over time, while a minority of taxa display rapid changes in 
average abundance that cluster in time, suggesting the presence of alternative stable states. We disentangle inter-
individual variability in a stochastic component and a deterministic one, the latter recapitulated by differences in 
carrying capacities. Last, by combining environmental fluctuations and alternative stable states, we introduce a 
model that quantitatively predicts the statistical properties of both intra- and interindividual community variability, 
therefore summarizing variation in a unique macroecological framework.

INTRODUCTION
Microbial communities are the prototypical complex, high-dimensional, 
ecosystems. Their diversity is astonishing and occurs at all scales, 
with many taxa coexisting in each community and many strains 
within each taxon. Their dynamics is driven by mechanisms operating 
at all temporal scales (1, 2): Gut microbiota composition changes in 
response to diet or other external stimuli on a daily basis (3), and 
with aging through the course of a lifetime (4, 5). Similarly, multiple 
processes determine the variation in composition across hosts, 
ranging from behavioral (6) to genetic factors (7).

This high-dimensional complex space of variation in community 
composition might conceal low-dimensional structures. For instance, 
it has been proposed that community compositions, when com-
pared across hosts, cluster in a few discrete enterotypes character-
ized by specific taxa (8, 9) as the result of life history characteristics. 
These clusters are thought to correspond to different functional 
properties, for instance, summarized in the enrichment of different 
metabolic pathways (8). Their existence and biological significance 
are not broadly accepted. There is evidence that inter-host variation of 
gut community composition is continuous, with the existence of discrete 
types being only apparent as a result of statistical artefacts (10).

The existence of discrete clusters in community composition 
also concerns intra-host variability. The fluctuating composition of 
a host’s community might also cluster around several alternative 
compositions. The long autocorrelation times make it particularly 
challenging to formulate robust statistical methods to infer 
enterotypes (11).

Whether variation is discrete or continuous has important prac-
tical consequences. For instance, if cluster exists, they could provide 
a biomarker of health conditions and target for clinical purposes 
(9, 10). Beyond the health-related applications, there are important 

conceptual consequences. The existence of enterotypes would be an 
evidence that the dynamics of gut microbial communities results in 
alternative stable states, which appear as a consequence of the interplay 
between dynamics and environmental forcing.

Understanding mechanistically the properties of microbial 
communities is especially difficult. Realistic mechanistic models are 
very complex due to their high dimensionality; therefore, it is diffi-
cult to characterize the structure of their dynamic attractor in a 
simple way that allows to make a connection between mechanisms 
and observable properties of the community. This represents one of 
the main challenge to understand quantitatively and mechanistically 
the properties of microbial communities.

Macroecology, which focuses on the statistical patterns of 
community composition, offers a promising strategy to characterize 
quantitatively microbial communities. Recent works have characterized 
the macroecological patterns of community composition (12, 13). 
Under the macroecological lens, community dynamics is characterized 
by large and rapid fluctuations with robust and reproducible statistical 
properties (14–16). These regular patterns are well described by the 
stochastic logistic model (SLM) with environmental noise, which 
assumes that fast environmental fluctuations perturb abundances 
around a taxa-specific carrying capacity (15, 16).

Here, we study the intra-host dynamics and inter-host variability 
under a unique macroecological framework using the time series of 
14 individuals. We show that most of the taxa display stationary 
dynamics over the duration of the time series (11), with rapid 
fluctuations around a constant carrying capacity, as predicted by 
the SLM. The nonstable taxa are characterized by discrete shifts of 
the carrying capacity, which occur coordinately in time for several 
taxa. This suggests that the change of community composition in 
time proceeds by discrete changes of the carrying capacities. Notably, 
differences in carrying capacity are also what explain the variability 
across hosts, in combination with independent stochastic fluctuations. 
We finally show that both the intra-host and inter-host variability 
can be quantitatively captured by an SLM modified to include the 
existence of alternative stable states.
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RESULTS
Characterizing long-term community dynamics 
with dissimilarity
The relative abundances of operational taxonomical units (OTUs) 
within a community have wide fluctuations in time (see Fig. 1A). 
In this context, we may ask whether the difference in community 
composition in two snapshots of the same community at different 
times is only due to wide but stationary fluctuations or if, instead, 
the composition changes in time. In the first scenario, abundances 
would fluctuate around constant averages, with constant amplitudes 
(Fig. 1B). In the second scenario, average abundances would change 
in time, either continuously or discretely (Fig. 1C), possibly due 
to jumps between alternative stable states. We can discriminate 
between the two scenarios by looking at a dissimilarity measure 
quantifying how the abundance of each OTU changes over a given time 
lag T. Let us call this dissimilarity (T) (see Materials and Methods). 
In the first scenario (Fig. 1D), (T) for each OTU would show an 
initial increase, over the short time scale of relaxation to station-
arity, and then would reach a plateau at the level of self-dissimilarity 
of a fluctuating random variable, which depends on the amplitude of 
the fluctuations. In the second scenario (Fig. 1E), instead, the dis-
similarity would continue to increase over longer time scales because 
of the abundance getting more and more different from its past self.

Within-individual dissimilarity displays  
two long-term behaviors
We analyzed the time series of 14 individuals’ gut microbial com-
munities from three different datasets (see Materials and Methods). 

In each time series, we compute the dissimilarity i(T) for each 
OTU according to a dissimilarity measure that is not subject to the 
bias introduced by random sampling of the community (see Materials 
and Methods). Examples of curves i(T) obtained for some OTUs 
are plotted in Fig. 2A. Both the short-time and long-time behaviors 
appear to differ widely between OTUs. To assess the significance of 
these behaviors, we compare them with what is expected from a 
null model.

The SLM with environmental noise (17) (see Materials and 
Methods) is known to describe the fluctuations of population abun-
dance and has been recently shown to reproduce several statistical 
properties of abundance fluctuations of microbial species (15, 16). 
In particular, it predicts that the distribution of fluctuations at 
stationarity is a gamma distribution (17), which depends on two 
parameters: Ki, the carrying capacity appearing in the SLM, and i, 
which can be interpreted as the amplitude of environmental noise. 
These two parameters depend on the identity of OTU i. The noise i 
can be expressed in terms of the coefficient of variation of abun-
dances. As a consequence, Taylor’s law on abundance fluctuation 
with exponent 2 (16) implies that i and Ki are not correlated 
across OTUs.

Assuming that the abundance dynamics follows the SLM with 
parameters that remain constant in time, i(T) has an initial increase 
and then reaches a plateau. The height of this plateau can be 
computed analytically as the expected value of i(T) for large T by 
taking the abundances of the OTU at lag T ≫ 1 as independent 
gamma random variables with the same parameters (see Materials 
and Methods). This analytical expectation depends only on the 
parameter i, which can be directly estimated from the data (see 
Materials and Methods). Figure 2B shows that this expected value 
​​​i​ 

∞​​ correlates well across OTUs with the empirical height of the 
plateau, measured as the mean of i(T) over all T > 10 days.
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Fig. 1. Characterizing long-term community dynamics with dissimilarity. 
(A) Examples of relative abundance trajectories with wide short-term fluctuations. 
(B) Relative abundance trajectories with carrying capacity and noise intensity constant 
in time. (C) Relative abundance trajectories with carrying capacity changing in time and 
constant noise intensity. (D) Dissimilarity (T) for varying lag T for the abundance trajec-
tories in (B). (E) Dissimilarity (T) for varying lag T for the abundance trajectories in (C).
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Fig. 2. Dissimilarity indicates that most OTUs have stationary dynamics, but a 
minority has nonstationary behavior. (A) Examples of i(T) curves of individual 
OTUs. (B) Scatter plot of the theoretical prediction for the asymptotic value of i(T) 
for an OTU with noise intensity  against ​​​i​ 

∞​​, the empirical average value of i(T) 
for T > 10 days, for individual “bh.” The 1:1 line is plotted as reference. (C) Average 
of (T)/∞ over OTUs, where it is classified as flat (red curve) and increasing (black 
curve), for individual “bh.” Shaded areas represent one SD interval. (D) Percentage 
of OTU whose (T)/∞ is classified as flat in each individual.
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According to the SLM, when normalized by ​​​i​ 
∞​​, all the individual 

curves i(T) should have a plateau at 1. Therefore, if the empirical 
normalized dissimilarity curve of an OTU has a plateau at 1, it 
means that for that OTU, the level of dissimilarity at large time lags 
is consistent with stationary fluctuations of abundance. The 
abundance dynamics of these OTUs can be reproduced with an 
SLM with constant parameters over the observed time interval 
(ranging from 6 months to 1.5 years for the analyzed individuals). 
This behavior is what we observe for most OTUs in each individual.

We classified the normalized dissimilarity curves ​​​​ i​​(T) _ ​​i​ 
∞​ ​​  as either 

“flat” (if they plateau after the initial transient) or “increasing” (if 
they keep increasing; see Materials and Methods) and computed the 
average curves within the two categories (Fig. 2C). The average of 
the flat curves (red line) reaches a plateau of 1, indicating that the 
OTUs falling in this group have a stationary abundance dynamics. 
These stable OTUs are the majority, representing on average 84% of 
the total in each individual (Fig. 2D). Other OTUs do not reach a 
plateau, and their normalized dissimilarity grows over all the 
observed time interval, exceeding the expected value 1 (black line in 
Fig. 2C). For these OTUs, the dissimilarity grows above the value 
expected for stationary abundance dynamics.

These results show that a large part of the OTUs in a gut micro-
bial community fluctuates around a stable average composition on 
a ∼1-year time scale, while a smaller fraction has a nonstationary 
behavior. We explore more carefully the properties of nonstationary 
OTUs in the next section.

It is important to mention two potential caveats to this analysis 
to correctly interpret its results. First, a flat dissimilarity for large 
times is consistent with stationarity but does not imply it. For 
instance, the average and variance of the fluctuations could change 
over time in a coordinated way to produce a constant dissimilarity 
over sufficiently large lags. While this is possible, further analyses 
explained below show that this is not the case. Second, and more 
important, the flatness of dissimilarity is always shown over a finite 
time interval. This means that the behavior of the corresponding 
OTU is consistent with the SLM with constant parameters over that 
interval, but it does not exclude that parameters could change over 
longer time scales.

Nonstationary OTUs are characterized by transitions 
between alternative values of the carrying capacity
If the abundance evolves according to the SLM with constant 
parameters, the dissimilarity (T) reaches a plateau ∞ determined 
by . The dynamics of nonstationary OTUs, for which we observe 
an increasing (T), could potentially still be described by the SLM 
with time-dependent parameters Ki(t) and i(t), which change on 
the time scales of months or years.

Two paradigmatic behaviors could describe the time dependency 
of parameters. The first is a slow variation of the parameters, where 
Ki(t) and/or i(t) change steadily over time. The second one corre-
sponds to rapid transitions to different values of parameters spaced 
out by time windows where parameters are constant. These 
represent two extreme cases, and a mixture of the two could also 
describe the time dependency of parameters.

A visual inspection of the abundance time series of nonstable 
OTUs shows that in many cases there is a sudden jump in the 
relative abundance (see fig. S6, A and B) that can be interpreted as 
a jump in the carrying capacity K, suggesting that the second 
scenario might apply.

We introduced therefore a method, based on a quantity related 
to the Kullback-Leibler divergence, to detect jumps of K in a noisy 
time series (see Materials and Methods). By applying this method, 
we can identify, for each individual, which OTUs present jumps in 
their carrying capacity K. On average, 54% of OTUs with increasing 
slope display sudden jumps in their carrying capacity K. For 10 of 
16 time series, OTUs with jumps of K are overrepresented among 
OTUs with increasing i(T) (P <0.05 according to a hypergeometric 
test; see fig. S6C and table S1). Cases where i(T) is increasing but 
no jump of K is detected can be due to noise in the estimate of i(T) 
or to jumps falling below the detection threshold of our method. 
There are also cases where a jump in K is detected but i(T) is flat. 
These are either cases where the change in K is short-lived or where 
the jump is small. Changes in K would affect the value of i(T) only if 
they are detectable with respect to the everyday abundance fluctuations. 
Examples of all these cases are shown in fig. S8.

Most OTUs displaying nonstationary dynamics are therefore associated 
with rapid jumps between alternative values of K. These sudden jumps 
are not randomly distributed over the time span of the time series. 
We observe that, for individuals where several OTUs have jumps in 
K, the times where transitions happen are localized at specific times 
(see fig. S9). This clustering of transitions suggests that either jumps in 
K are driven by external conditions that affect multiple OTUs at the same 
time or that the interactions between species cause multiple species to 
transition synchronously. A taxonomic analysis revealed no particular 
taxonomic enrichment among nonstationary OTU, suggesting that 
OTUs have a similar likelihood of jumping between states.

The dynamics of OTU abundance within an individual is therefore 
characterized by two main time scales: a short time scale corre-
sponding to rapid fluctuations, which are described by the noise 
term appearing in the SLM, and a larger time scale that characterizes 
the frequency of the transition between alternative values of K.

Dissimilarity between individuals is quantitatively 
reproduced by a combination of stochastic fluctuations 
and different carrying capacities
Within an individual, we found that similarity is determined by 
rapid fluctuations around a constant composition and by occasional 
sudden jumps of the carrying capacity. It is well known that some 
host-specific features of microbiome composition remain stable for 
years (18, 19). In this context, we now investigate the dissimilarity 
between individuals to quantify the role of different sources of 
variation. In particular, we aim at disentangling the contribution of 
stochastic effects that are independent in the two individuals from 
that of reproducible differences between them. Under our frame-
work, the stochastic aspects correspond to the rapid fluctuations of 
abundance, which are statistically independent between hosts. The 
deterministic factors correspond instead to different parameters 
K and  that characterize the dynamics of each OTU in different hosts.

To quantify the importance of the two causes of dissimilarity, we 
compare the empirical dissimilarity with that predicted by the SLM 
under different hypotheses on the sources of variation that are 
present. For each OTU i, we compute the empirical dissimilarity 
between two individual a and b averaged over all lags T, ​​​i​ 

a,b​​. We 
then consider a first null model that includes both sources of variation: 
The dynamics of OTU i is described by the SLM with different pa-
rameters in the two individuals a and b, (​​K​i​ 

a​​, ​​​i​ 
a​​) and (​​K​i​ 

b​​, ​​​i​ 
b​​), which 

are estimated using the full-time series (see Materials and Methods). 
The difference in these parameters between the individuals aims at 
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capturing the host-specific factors that determine community com-
position. The rapid fluctuations are instead determined by the stochastic 
term in the SLM. In Materials and Methods, we obtain an analytical 
prediction for the dissimilarity ​​​i​ 

a,b​​, which matches the empirical 
value with high accuracy (Fig. 3A and fig. S10). This result implies 
that the host-specific aspects of community composition can be 
effectively captured in the variability of the parameters K and .

To assess how much of the dissimilarity is due to the difference 
in K and  between the two individuals and how much to the 
stochastic abundance fluctuations, we consider a hierarchy of four 
null models, which differ in whether K and/or  vary between hosts. 
Figure 3B compares the predictions of these four null models with 
the dissimilarity ​〈 ​​i​ 

a,b​ 〉​ averaged across OTUs.
The simplest scenario of the four is the one where the predicted 

dissimilarity between individuals is only due to stochastic effects, 
i.e., K and  do not differ between individuals. Figure 3B shows that 
stochastic effects alone—as expected—do not fully explain the 
dissimilarity between individuals. They are nevertheless the main 
contributor to the variability between individuals, capturing on 
average 72% of it (see also fig. S11).

Consistent with what is shown in Fig. 3A for individual OTUs, 
Fig. 3B also shows that considering the empirical variability of both 
K and  across hosts fully captures the empirical dissimilarity. On the 
other hand, K and  do not contribute equally to dissimilarity. Consider-
ing only the variation of , while keeping K constant across hosts, 
performs only slightly better than the model with only stochasticity, 
as it explains on average 84% of the dissimilarity. On the opposite, 
keeping  fixed, while K is allowed to vary across host, predicts much 
better the observed dissimilarity, with an average 96% accuracy.

These results imply that the difference in community composition 
between individuals can be explained by considering the combination 
of independent stochastic effects, as modeled by the SLM, and 
deterministic factors. The latter can be captured by differences in 
the carrying capacity Ki of OTUs in the two hosts.

The SLM with alternative stable states reproduces  
inter- and intra-host variability
The parallel between the long-time dynamics within an individual, 
characterized by discrete transitions of the carrying capacity K, and 

the difference between individuals, whose deterministic part is 
largely determined by differences in the carrying capacity, suggests 
the possibility to formulate a dynamical model capturing both.

We assume that each OTU has a characteristic, host-independent, 
value of the carrying capacity, ​​​K ̄ ​​ i​​​. Within an individual, the actual 
carrying capacity of an OTU at a given time is ​​K​ i​​  = ​​ K ̄ ​​ i​​ ​, where  is 
a Lognormal random variable with average 1. The value of the 
carrying capacity is kept constant over time, until a transition happens 
to a new value ​​​K​ i​​ ′ ​  = ​​ K ̄ ​​ i​​​ ′ ​​ obtained by drawing a new value of the 
random variable . Similarly, the values of the carrying capacity in two 
different individuals are obtained with the same model by considering 
independent realizations of the random variable . This model aims 
at capturing the statistical properties of the values of Ki, within and 
across hosts. The strong assumption is that the fluctuations within 
and across hosts can be captured under the same framework.

Important free parameters of this model are the variances of the 
random variable , which determine how much Ki varies over time 
and across hosts. In the Supplementary Materials, we estimate 
empirically the values of the variance of  across hosts for each indi-
vidual OTU. The results show that the variances do not differ much 
across OTUs and are statistically compatible (see fig. S4). We therefore 
choose the variance of  to be OTU independent, obtaining a model 
with no free parameter, as both the ​​​K ̄ ​​ i​​​s and the variance of  can be 
estimated directly from the data.

To test whether this model can reproduce the statistical properties 
of the dynamics within an individual and the differences between 
individuals, we used it to simulate the abundance time series of each 
individual and compared the results with those obtained from the 
empirical time series.

We simulated the abundance time series of each individual accord-
ing to an SLM with carrying capacity that jumps according to a Poisson 
process and assumes new values according to the model described 
above (see Materials and Methods). Repeating on these simulated 
data the analysis performed on empirical data, we find that the intra-
individual dissimilarity behaves very similarly to the empirical one 
(Fig. 4A). Moreover, by fixing for each individual the average number 
of OTUs for which a jump happens in the observation window according 
to the empirical observations, the percentages of OTUs with in-
creasing dissimilarity are similar to the empirical ones (see fig. S13).
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Fig. 3. Dissimilarity between individuals is explained by independent stochastic fluctuations and differences in carrying capacities. (A) Comparison of the 
observed dissimilarity ​​​i​ 

a,b​​ of OTU i between the two individuals “am” and “bh,” with its theoretical expected value computed with the individual parameters estimated 
for each individual. Each point represents an OTU. (B) Comparison between the average over OTUs of the empirical dissimilarity between individuals a and b, ​〈 ​​i​ 

a,b​ 〉​, with 
its theoretical expected value computed using either the individual parameters estimated for each individual or the same parameters for both individuals (see legend). In 
the latter case, the parameters are set to the average of the individuals’ parameters. Each point corresponds to a pair of individuals from the same dataset. The 1:1 line is 
shown as reference.
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The analysis of dissimilarity between hosts reveals that it can be 
fully captured by considering the difference in the values of K and . 
We therefore consider the correlation of these two parameters within 
hosts (for two separate windows of time) and across hosts as a relevant 
statistical feature of the dynamics that our model should reproduce. 
Figure 4B reports the empirical values of the correlations (see also 
fig. S14). In agreement with what we found previously, the carrying 
capacities are more correlated within host than between, indicating 
that their values contribute substantially to the dissimilarity between 
individuals. On the other hand, the values of  are much less correlated 
within individuals and their correlation does not differ greatly between 
and within hosts, in agreement with the observation that variability 
in  does not contribute much to dissimilarity across individuals. 
Therefore, these correlations fully summarize the results of Fig. 3B.

The model accurately predicts all the correlations, both within 
and between individuals. The correlation of K within a host is 
correctly reproduced to be higher than the correlation across hosts. 
This happens because of the fact that over the time scale of the 
empirical time series only a small fraction of the OTUs change their 
carrying capacity in the model. Therefore, when comparing two 
samples from the same host, most OTUs have the same carrying 
capacity, while when comparing two samples from different hosts, 
all of them have different carrying capacities. The model also 
captures the lower correlations between the noise intensities , even 
if it does not include variability of  as an explicit ingredient, 
implying that differences in , both between individuals and within, 
are simply due to noise in their statistical estimates. The model is 

therefore able to fully capture both the variability of individuals 
over long periods of time as well as differences across individuals.

In light of this model, we can say that the OTUs that we were 
calling stationary, when observed on a time scale of ∼1 year, are 
actually in a transient state of this compound process (which is the 
stable state of an SLM with fixed carrying capacity). Given that the 
average time between two jumps of the carrying capacity that we 
estimated for each individual (see Materials and Methods) is ∼1000 days, 
the compound process only reaches stationarity over longer time 
scales (fig. S5).

DISCUSSION
We considered long time series of human gut microbiome commu-
nities from several individuals and analyzed the similarities in com-
position within and between individual hosts. We were able to 
accurately predict, under a unique quantitative modeling framework, 
the statistical properties of the similarities both within and between 
individuals.

Previous studies analyzing intra- and interindividual variation 
in the human gut microbiome consistently found stability in the 
microbiome over time at time scales of months or years and higher 
similarity within individuals than between individuals (11, 18–21). 
These studies used several similarity measures to compare commu-
nities, e.g., Jaccard index, Bray-Curtis dissimilarity, or Pearson cor-
relation. Other studies used autocorrelation (11) or mean square 
displacement (14) of abundance time series to investigate the long-
term behavior of single OTUs. The dissimilarity measure we use is akin 
to the latter approach in that it evaluates how dissimilar a single abun-
dance time series becomes from its past values. However, our method 
offers two advantages. First, it corrects for sampling bias, disentan-
gling the dissimilarity due to different community composition from 
that due to random sampling, an issue often overlooked. Second, we 
can make exact analytical predictions of its long-term behavior and 
value according to a well-supported model of abundance dynamics. 
This allows us to distinguish OTUs that are stationary from those 
that are not, and to dissect the different contributions of particular 
OTUs to interindividual dissimilarity.

Within an individual, we find that most OTUs are characterized 
by statistically stable dynamics, in agreement with previous findings 
(11). Abundances fluctuate around a value constant in time, with 
constant amplitude. For these OTUs, the long-term dissimilarity is 
due to rapid stochastic fluctuations, and its value is determined by 
the amplitude of such fluctuations. The SLM with constant pa-
rameters predicts correctly the time dependence and the asymptotic 
value of dissimilarity for these OTUs based on the noise intensity  
estimated from the time series. A consistent minority of OTUs have 
a dynamics characterized by processes happening on two distinct 
time scales. Beyond the wide daily fluctuations, they have large 
abrupt transitions in their abundance. Their dynamics are therefore 
nonstationary, and their dissimilarity increases in time beyond the 
value predicted for a stationary time series. These observations 
show that both the amplitude of the fluctuations of each OTU and 
the proportion of nonstationary OTUs contribute to determine the 
overall dissimilarity of an individual’s gut community over time, 
which we can think of as the average of the dissimilarities of all 
OTUs. The overall dissimilarity is therefore a complex quantity to 
interpret, while our OTU-based approach provides a more detailed 
understanding of the underlying dynamics.
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Fig. 4. A model with stochastic fluctuations and discrete jumps of the carrying 
capacity reproduces the statistical properties of the dynamics within one 
individual and the difference between individuals. (A) Equivalent of Fig. 2C 
obtained from time series simulated according to an SLM model with jumps in 
K (see text for details). (B) Correlation of the parameters K and  in time (between 
two halves of a time series) and between pairs of individuals from the same dataset, 
according to the data and to the simulated time series. For K, which ranges over 
several orders of magnitude, we compute the correlations of log(K) to avoid the 
correlation being dominated by a few points with large K.
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Our findings of sudden changes in composition over long time 
scales at the OTU level parallel those of (22) at the strain level. 
Looking at the time scales of evolution in gut microbial communi-
ties, they find that strains evolve slowly over short time scales but 
are replaced by different, related strains on time scales of >6 months.

The large transitions observed in nonstationary OTUs can be 
effectively captured in changes of the typical abundance around 
which they are fluctuating. In the SLM framework, these transitions 
correspond to a change in the value of the carrying capacity. The 
nonstationary aspects of OTU dynamics can therefore be fully 
described by switches between alternative values of the carrying 
capacity.

Moreover, the timing of the jumps between alternative values is 
strongly correlated across OTUs, with windows of times where the 
carrying capacity of several OTUs switches and others where the 
dynamics is overall stationary. The natural explanation to these 
clustered rapid transitions is the existence of alternative stable 
states, which differ in the carrying capacities of a small subset of 
OTUs. They could be intrinsic to the dynamics, and driven by 
stochasticity, or could correspond to important changes in the 
environmental conditions (e.g., travel or change of diet) with big 
impact on community composition. Our approach is explicitly 
agnostic on the mechanism behind the alternative stable state, 
revealing instead their regular statistical features.

The SLM we used to describe the dynamics comprises an 
autoregressive and a non-autoregressive term. The importance of 
these two components in gut microbial dynamics is quite debated 
(11, 23). In the context of the SLM, the parameter  measures the 
relative importance of the non-autoregressive part of the dynamics. 
Estimates of this parameter, corrected for the sampling bias, show 
that it is heterogeneous across OTUs (fig. S1) and independent of 
the carrying capacity (16).

The comparison between individuals revealed that most of their 
dissimilarity is due to the independent stochastic fluctuations of 
abundances. The remaining dissimilarity, due to deterministic 
differences between individuals, is almost completely explained by 
differences in the carrying capacities of OTUs. The emerging picture 
indicates that the gut communities of different individuals fluctuate 
around states with compositions that are correlated (carrying 
capacities have a moderate to high correlation across individuals) 
but different.

The observation that both the changes within an individual on 
the time scale of months and the differences between individuals 
are explained by differences in the carrying capacities motivated 
our model, joining the dynamics of the SLM with transitions in the 
carrying capacity. The model predicts quantitatively, under a unique 
framework, the statistical properties of within-individual dynamics 
and between-individual differences.

The model is a composition of SLM processes with different 
carrying capacities, which switch according to a Markov process. In 
the case of a finite state space, the process is mathematically well 
posed. It corresponds to a subcase of the switched Markov process 
studied in (24), which has a set of desirable properties: The population 
does not go to extinction with probability 1, and it admits a stationary 
distribution with finite variance. Here, we consider continuous 
values of carrying capacity, for which rigorous mathematical results 
regarding stationarity do not exist. While a sufficiently large finite 
state space of carrying capacity values would be indistinguishable 
from the continuous case from a practical point of view, showing 

the well posedness of the latter case represents an interesting 
mathematical challenge. A more in-depth discussion can be found 
in section S9.

Our models assume the existence of a universal dynamics of gut 
microbiome (25), where all individuals are characterized by the 
same parameters of the dynamics, i and ​​​K ̄ ​​ i​​​, and differences be-
tween individuals are uniquely determined by which dynamical 
alternative stable state they occupy and by random fluctuations of 
abundances. Such a universal dynamics necessarily creates a 
parallel between within-host dynamics and between-host properties, 
which we unveiled under our modeling framework.

On the time scale of the empirical time series that we considered 
(≈1 year), we are able to reproduce the difference in magnitude 
between intra- and interindividual variability under this assumption. 
This suggests that, at least over this time scale, the relevant element 
to capture the difference across hosts and the dynamics within a 
host is the jumps of carrying capacities between different values, 
which are distributed around a mean common to all hosts. It is 
important to note that on time scales much longer than the average 
time between two jumps of the carrying capacity, this assumption 
would imply that an individual eventually becomes as different 
from her/his past self as from another individual. This is a strong 
implication that is worth discussing and comparing with empirical 
evidence. Many previous works that found that intraindividual 
dissimilarity is significantly smaller than interindividual dissimilarity 
consider relatively short time scales, ranging from 2 to 10 months 
(26–28). Over these time intervals, our model agrees with these 
empirical observations. The average time between two jumps of the 
carrying capacity that we estimated in the individuals of our 
datasets varies between 2 years to more than 5 years. This implies 
that the intraindividual dissimilarity would equal the interindividual 
one only after several years.

To our knowledge, there are two studies that consider longer 
time intervals (18, 19). In (18), intervals from 2 months to 8 years 
are considered. The intraindividual similarity declines as the 
interval increases, and after 8 years, it is close to the interindividual 
one. This behavior qualitatively agrees with our model. Faith et al. 
(19), instead, obtain that after almost 6 years intraindividual similarity 
is still significantly larger than the interindividual one. Interpolating 
the decrease of similarity with time lag as a power-law, the authors 
conclude that the intraindividual similarity will remain larger than 
the interindividual one for decades. In summary, previous literature 
does not give a clear-cut picture of how intra- and interindividual 
dissimilarities compare in the very long term.

Very likely host genetics and other persisting characteristic have, 
even if small, detectable effects on microbiome composition in the 
long term, which cause persisting difference across hosts. Our model 
is relevant also in this scenario. We can speculate that this persisting 
difference corresponds to the existence of the different states be-
tween which the carrying capacity jumps that are not exactly the 
same for all individuals. In the model, this could be translated into 
the fact that the ​​​K ̄ ​​ i​​​ values are not exactly the same for all individuals. 
They must, however, be similar; otherwise, we would not observe a 
high correlation between the values of K across individuals. In this 
scenario, therefore, our assumption that all individuals are 
described by the same ​​K ̄ ​​ is not adequate to describe time scales 
much longer than the typical times between two jumps of the 
carrying capacity, and it should be modified to accommodate 
individual differences.
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Irrespective to the existence of these differences, our model 
shows that the dynamics of gut microbiome unfolds on at least two 
time scales. On the time scale of hours or a few days, community 
composition responds to fast environmental fluctuations. These 
fluctuations act as perturbation to a resilient community, whose 
dynamics is governed by the fast population processes of birth and 
death (16). It is important to note that the typical time scale of these 
rapid fluctuations is shorter (or at most equivalent) to these popula-
tion processes, of the order of a few hours. The resilient community 
states are, however, stable only transiently. Over months and years, 
these community states change, often abruptly and discontinuously.

The presence of these transient states could be explained, both 
mathematically and biologically, in different ways. They could be 
true alternative stable states, as defined in nonlinear dynamics. The 
nonlinearity of the community dynamics could determine the 
existence of multiple stable states, with their own basin of attraction, 
which determines different attractors depending on the initial 
conditions. The presence of constant perturbations (environmental 
but also due to demographic stochasticity or migration) could 
produce stochastic transitions between alternative states. The existence 
of alternative stable states is not rare or particularly notable. For 
instance, consumer-resource model with nonsubstitutable resources 
displays multistability (29). Alternative stable states have also been 
observed experimentally in simple microbial communities (30–32), 
where the community state can switch from one to another, e.g., 
due to a transient invading species (31) or due to the environmen-
tal noise.

In the presence of alternative stable states, the typical time scale 
associated with the transitions would depend on the relation 
between the magnitude of perturbations and the size of the basins 
of attraction. In this respect, the time scale of months or years 
measures the rate at which a sequence of perturbation drives the 
system to another basin of attraction. It is important to note that 
this is the product of environmental (or other) perturbations occurring 
at a much faster rate. Another explanation is that we are seeing a 
succession of quasi-stable states because of long transients in the 
dynamics (33). Long transients could arise because of several possible 
mechanisms, for example, they are likely to be present in high-
dimensional complex dynamical systems, as a result of the many 
tangled interactions and the presence of several time scales. They 
might also arise in the presence of bifurcations, when tipping points 
are reached after a slow change of the environmental variables. In 
this case, the time scale of months and years would directly corre-
spond to the existence of population and/or environmental variables 
(e.g., dietary changes) evolving over those time scales. Both of these 
scenarios (alternative stable states with stochastic switching and 
long transients in the dynamics) are possible. Our model sets the 
basis to distinguish between the two.

The next step is to understand how these transient states emerge 
from the dynamics. In this regard, an important factor would be to 
include species correlations in the modeling and understand 
their structure (11, 34). In the setting of this work, the correlation 
between OTUs is not accounted for. The dynamics accounts in an 
effective manner, through the value of the parameters K and , for 
the interactions between OTUs and with the environment. However, 
fluctuations of OTUs within the same communities are described as 
independent. Empirically, fluctuations can certainly be correlated 
because of interactions or response to the same environmental 
perturbations.

MATERIALS AND METHODS
Data
We analyze time series of 14 individuals coming from three different 
datasets: 10 individuals of the BIO-ML dataset (35) (all those for 
which a dense long-term time series is available), 2 individuals (M3 
and F4) from the Moving Pictures dataset (20), and two individuals 
(A and B) from (3). The length of the time series ranges from 
6 months to 1.5 years, and the sampling frequency varies (daily in 
the most dense series). Individuals A and B from (3) both undergo 
a period of strong disturbance to their gut flora due, respectively, to 
two diarrhea episodes during a travel abroad and a Salmonella 
infection. We exclude these periods from the analysis and consider 
for each individuals two separate time series, before and after the 
perturbation. Raw data for MP and D were obtained from MGnify 
(36), under project IDs MGYS00002184 and MGYS00001278, while 
for BIO-ML they were obtained from the National Center for 
Biotechnology Information (NCBI), under project ID PRJNA544527. 
More details on the data analysis can be found in the Supplementary 
Materials.

Measuring dissimilarity
We want to measure the dissimilarity between the composition of a 
community at time t and at time t + T. Let ​​ 

→ ​(t ) = (​​ 1​​(t ) , … , ​​ S​​(t ) )​ 
be proportional to the absolute abundance of the S OTU in the 
community at time t. At time t, N(t) sequences are sampled, resulting 
in counts ​​ → x ​(t ) = (​x​ 1​​(t ) , … , ​x​ S​​(t ) )​. The relative OTU abundances ​​ ​ 

→ x ​ _ N​​ 
found in the two samples at lag T differ not only due to the differ-
ence in absolute OTU abundances in the community, reflected in ​​ → ​​, 
but also due to random sampling. Even if we sampled twice the 
same community, we would find some differences in the measured 
relative OTU abundances, especially if the sampling depth N is 
small with respect to the size of the community. Therefore, any 
dissimilarity measure computed directly on the measured relative 
abundances ​​ ​ 

→ x ​ _ N​​ would overestimate the dissimilarity. The overesti-
mation, additionally, is more pronounced for rare OTUs and for 
samples with smaller sampling efforts. To correct for the bias intro-
duced by random sampling, we use a dissimilarity measure, i(T), 
that is defined on the absolute abundance in the two communities, 
proportional to ​​ → ​​, but can be estimated from the sampled counts ​​ → x ​​. 
The dissimilarity for OTU i between time t and t + T is defined as

	​​ ​ i​​(t, T ) = ​​(​​ ​ ​​ i​​(t ) − ​​ i​​(t + T)  ─  ​​ i​​(t ) + ​​ i​​(t + T) ​​)​​​​ 
2
​​	 (1)

We note that this quantity does not depend on the proportionality 
constant between the absolute abundances and ​​ → ​​. i takes values in 
[0,1]. It is equal to 0 when the abundances are equal and to 1 if the 
abundance is zero at one time and nonzero at the other. If we define 
di(t, T) = xi(t) − xi(t + T) and si(t, T) = xi(t) + xi(t + T), we can prove 
(see the Supplementary Materials) that, if N(t) = N(t + T) (which 
can always be obtained by down-sampling the sample with larger N)

	​​ Φ​ i​​(t, T ) = ​ 
〈 ​d​i​ 

2​ ∣ ​ s​ i​​  〉  − ​s​ i ​​
  ─ ​s​ i​​(​s​ i​​ − 1) ​  =  〈 ​ 

​d​i​ 
2​ − ​s​ i​​ ─ ​s​ i​​(​s​ i​​ − 1) ​ ∣ ​ s​ i​​ >  1  〉​	 (2)

where 〈 · 〉 represents the average over realizations of the sampling 
and is constrained to those realizations where si > 1. This average 
over realization cannot be computed from the data, as we have a 
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single realization. However, its average over time t is approximated 
by the average over time of the single realizations (Supplementary 
Materials).

Therefore, we compute the dissimilarity at lag T by averaging 
over the time points of the time series

	​​ ​ i​​(T ) = ​ 1 ─ T ​ ​ ∑ 
t=1

​ 
T
 ​​ ​​ i​​(t, T ) ≃ ​  1 ─ T ​ ​ ∑ 

t=1
​ 

T
 ​​ ​  ​d​ i​​ ​(t, T)​​ 2​ − ​s​ i​​(t, T)  ───────────  ​s​ i​​(t, T ) (​s​ i​​(t, T ) − 1) ​​	 (3)

where now di(t, T) and si(t, T) are the values in a single realization 
of the sampling, known from the data. In this way, we obtain an 
estimation of the dissimilarity of real abundances i at a lag T based 
on the sampled counts xi.

Estimating parameters of the dynamics from data
Previous studies (15,  16) showed that the dynamics of the abun-
dance  of a microbial species is best described by the SLM with 
environmental noise

	​​ ​ ̇ ​ = ​  1 ─  ​ ​(​​1 − ​  ─ K ​​)​​ +  ​√ 
_

 ​  ─  ​ ​ (t)​​	 (4)

where (t) is Gaussian white noise. This model has three parameters: 
 has the dimension of a time and determines the time scale of 
relaxation to stationarity, K would be the carrying capacity in the 
absence of noise, and  measures the intensity of the environmental 
noise. The model does not include interaction among species and 
therefore cannot reproduce patterns of interspecies correlation but 
correctly reproduces several patterns of the dynamics of a single 
species (15, 16). If  < 2, the stationary distribution is gamma

	​ P(; K,  ) = ​  1 ─ 
(2 /  − 1) ​ ​​(​​ ​  2 ─ K ​​)​​​​ 

​ 2 _ ​−1
​ ​​​ ​ 

2 _ ​−2​ ​e​​ −​ 2 _ K​​​	 (5)

with mean ​<    >  = K ​2 −  _ 2 ​​  and variance ​var( ) =  ​  <  ​>​​ 2​ _ 2 −   ​​. Note that the 
coefficient of variation ​​√ 

___________
  var( ) / <   ​>​​ 2​ ​​ depends only on the param-

eter , which can thus be interpreted as the amplitude of the 
fluctuations.

The parameters K and  can be computed using estimates of the 
mean and variance of the abundance  derived from the time series 
of sampled relative abundances. As mentioned before, the variables 
 are proportional to the absolute abundance. In this respect, it is 
convenient to choose the proportionality constant such that ∑i < i > = 
1. Under this choice, the average <i> can be estimated from the 
sampled relative abundances as ​​  1 _ ∣ T ∣​ ​∑ t∈T​ ​​ ​x​ i​​(t)​ (16). The variance of 
abundance fluctuations can be estimated with the sampling-corrected 
formula derived in (16)

	​ var( ) =  ​  1 ─ ∣ T  ∣ ​ ​ ∑ 
t∈T

​​​ ​ ​x​ i​​(t ) (​x​ i​​(t ) − 1)  ─  N(t ) (N(t ) − 1) ​ − ​​(​​ ​  1 ─ ∣ T  ∣ ​ ​ ∑ 
t∈T

​​​ ​ ​x​ i​​(t) ─ N(t) ​​)​​​​ 
2
​​	 (6)

We note that the variance estimated with this formula may result 
negative if many counts are 0 or 1. The OTUs for which this happens 
are excluded from the analysis, as it is not possible to estimate their 
parameters.

Although we do not use the value of  in our analyses, it is useful 
to say that it is of the order of magnitude of 1 day [estimated with 
the R package POMP (37), which performs statistical inference 
of partially observed Markov processes]. Although the interval 
between observations is also 1 day, it is still possible to see the effect 

of the relaxation time in the initial increase of (T), as can be seen 
from the model trajectories in Fig. 1 (D and E), obtained for  = 1. 
The extent of the initial increase depends on both  and .

Theoretical expected values for dissimilarity
We can compute the expected value of the dissimilarity of an OTU 
between two snapshots of the same community at a large lag T, ​​​i​ 

∞​​, 
by assuming that the abundances at the two times are independent 
and identically distributed gamma variables distributed according 
to (5) with the same parameters, equal to the estimated K and  for 
that OTU. Note that this is the expected value of ​​​i​ 

∞​​ under the 
assumption that the dynamics is stationary. The expected value can 
be computed analytically, and it depends only on 

​E(​​i​ 
∞​ ) = ​∫0​ 

∞
 ​​​∫0​ 

∞
 ​​ ​​(​​ ​ ​​ 1​​ − ​​ 2​​ ─ ​​ 1​​ + ​​ 2​​ ​​)​​​​ 

2
​ P(​​ 1​​; K,  ) P(​​ 2​​; K,  ) d ​​ 1​​ d ​​ 2​​  = ​    ─ 4 −  ​​	 (7)

Similarly, we can compute the expected value of ​​​ ̄ ​​i​ 
a,b​​, taking the 

two abundances to be  random variables with different parameters

​E(​​
_

 ​​i​ 
a,b​ ) = ​∫0​ 

∞
 ​​​∫0​ 

∞
 ​​ ​​( ​​ ​ ​​ 1​​ − ​​ 2​​ ─ ​​ 1​​ + ​​ 2​​

 ​​)​​​​ 
2
​ P(​​ 1​​; ​K​ 1​​, ​​ 1​​ ) P(​​ 2​​; ​K​ 2​​, ​​ 2​​ ) d ​​ 1​​ d ​​ 2​​ =  f(​K​ 1​​, ​K​ 2​​, ​​ 1​​, ​​ 2​​)​	(8)

where ​f(K, K, ,  ) = ​   _ 4 − ​​. See the Supplementary Materials for the 
expression of f.

Identifying OTUs with a plateau in intraindividual 
dissimilarity
To classify the curves ​​​  ​​ i​​(T)​ as either flat or increasing, we per-
formed a linear fit discarding the initial transient (T > 10) and 
classified as increasing those with slopes above a threshold. To estab-
lish the threshold, we accounted for the fact that, although we 
expect a flat dissimilarity if the abundance is stationary, a slope different 
from zero can be found because of the noise in the estimation of , 
which depends on the length and density of the time series, on the 
sequencing depth, and from the OTU parameters. Therefore, for 
each individual, we computed the threshold as follows. We simulated 
the dynamics of each OTU according to the SLM with parameters 
equal to the parameters estimated for that OTU and  = 1. From 
these time series of ​​ 

→ ​​, we sampled the time series of ​​ → x ​​ according to 
the sampling depth of the corresponding samples in the data, ob-
taining therefore values of ​​ → x ​​ only for days for which the individual 
was sampled. We then computed ​​​  ​​ i​​(T)​ and its slope for each 
OTU. We defined as threshold for an individual the 95% quantile of 
the slopes obtained for that individual, i.e., the value such that only 
5% of slopes obtained from the simulation are larger. Results are 
robust to variations of the thresholds (Supplementary Materials).

Identifying jumps in the carrying capacity K
To identify the points of a time series where the carrying capacity K 
has a jump, we first estimated K in window of length w = 50 days so 
that for each day t we have two estimates, Kfor, estimated in the 
forward window (t, t + w], and Kback, estimated in the backward 
window (t − w, t]. The estimates of K are computed using the 
estimate of  for the entire time series. Note that we accepted an 
estimate of K only if the corresponding window contains at least 
five samples. If the count is null for all samples in a window, the 
value of K is set to the value such that the probability to observe 
nonzero counts is 1/w.
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The two estimates of K will differ on days around a change in 
K. To detect these days, we compute two quantities

	​​ D​ +​​(t ) = log L({​x​ t−w+1​​, … , ​x​ t​​}∣ ​ K​ back​​, )​	 (9)

	​  − log L({​x​ t−w+1​​, … , ​x​ t​​}∣ ​ K​ for​​, )​	 (10)

	​​ D​ −​​(t ) = log L({​x​ t+1​​, … , ​x​ t+w​​}∣ ​ K​ for​​, )​	 (11)

	​  − log L({​x​ t+1​​, … , ​x​ t+w​​}∣ ​ K​ back​​, )​	 (12)

D+ has a peak when Kfor does not predict well the counts observed 
in the backward window, while D− has a peak when Kback does not 
predict well the counts observed in the forward window. Therefore, 
we identify the jumps in K as the times where D+ or D− has a peak 
with height larger than a threshold (fig. S7). Results are robust to the 
variation of this threshold (see the Supplementary Materials).

Simulating abundance time series with K jumps
We simulate abundance time series according to an SLM with 
carrying capacity K that changes in time with discrete jumps. To 
simulate an individual, we consider the parameters K and  of all its 
OTUs for which the parameters can be computed. For each individual, 
the values of ​​​K ̄ ​​ i​​​ were set to the average of the estimated Ki in all the 
individuals of the same dataset. Changes in K are a Poisson process, 
with rate such that the percentage of OTUs for which a jump is 
observed in the simulated time window is equal to the percentage 
observed empirically for that individual. The average estimated rate 
is 1/1117 days-1, with substantial variability across individuals: It 
ranges from 1/3550 days-1 for the most stable individual to 1/82 
days-1 for the very unstable B post-Salmonella. The values of Ki be-
tween jumps are extracted from ​​K​ i​​ = ​​ K ̄ ​​ i​​ ​ with a variance of  that is 
the same for all OTUs. We consider a variance of  equal to 2 for the 
main results (e.g., Fig. 4). This value is estimated by matching the 
observed variability of Ki in the data (see section S8 and fig. S4). We 
perform a sensitivity analysis in fig. S12 obtaining that different 
values of the variance of  produce similar results (see fig. S12).

The initial condition is chosen to match the expected stationary 
distribution of abundances: The value of Ki for each OTU is chosen 
from a lognormal with mean ​​​K​ i​​ ̄ ​​, and the initial abundance is then 
drawn from a gamma distribution (corresponding to the stationary 
distribution of an SLM with parameters Ki and i). The obtained 
time series are then sampled with a sampling depth equal to the 
average sampling depth for that individual, and only samples corre-
sponding to days when the individual was sampled are kept (as the 
time series density affects the noise in the dissimilarity). The 
obtained time series of counts are analyzed as the empirical ones. 
Correlations are computed for the OTUs for which the parameters 
can be estimated.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj2882
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