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Deconvolution of bulk gene expression profiles into the cellular components is pivotal to

portraying tissue’s complex cellular make-up, such as the tumor microenvironment. However,

the inherently variable nature of gene expression requires a comprehensive statistical model

and reliable prior knowledge of individual cell types that can be obtained from single-cell RNA

sequencing. We introduce BLADE (Bayesian Log-normAl Deconvolution), a unified Bayesian

framework to estimate both cellular composition and gene expression profiles for each cell

type. Unlike previous comprehensive statistical approaches, BLADE can handle > 20 types of

cells due to the efficient variational inference. Throughout an intensive evaluation with >

700 simulated and real datasets, BLADE demonstrated enhanced robustness against gene

expression variability and better completeness than conventional methods, in particular, to

reconstruct gene expression profiles of each cell type. In summary, BLADE is a powerful tool

to unravel heterogeneous cellular activity in complex biological systems from standard bulk

gene expression data.
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Over the past decade, gene expression profiling has been
applied to elucidate the complexity of transcriptional
regulation in diverse biological contexts, such as

cancer1,2. Conventional gene expression profiling, either by RNA
sequencing (RNA-seq) or microarrays, captures cumulative gene
expression levels of many cells combined. Therefore, it is often
referred to as bulk gene expression profiling to distinguish it from
the recent single-cell gene expression profiling technologies3. In
oncology, single-cell RNA sequencing (scRNA-seq) is employed
to study cellular heterogeneity within a tumor, composed of
malignant (tumor) and non-malignant cells4–10. However,
scRNA-seq has severe limitations, including technical challenges
such as drop-out11,12 and high cost, which hinder its application
to large series and translation to clinical applications.

Several computational deconvolution methods have been
developed to predict cellular composition from bulk RNA-seq
data by employing a signature of pre-determined cell type-specific
gene expression profiles. Initially, these signatures were con-
structed by sorting each cell type followed by gene expression
profiling13, whereas recent methods such as CIBERSORTx14 and
MuSiC15 employed scRNA-seq data for this purpose. Most
approaches perform linear regression to reconstruct the bulk gene
expression profiles using the gene expression signatures, where
the regression coefficients correspond to the cellular composition.
However, the standard regression approach does not account for
variability in gene expression within the same cell type and may
render biased results.

To the best of our knowledge, no deconvolution method can
adequately and efficiently account for the gene expression
variability within the same cell type. Modeling gene expression
variability is challenging specifically for deconvolution due to the
incompatibility of the log-normalization16, which significantly
stabilizes gene expression variability. Without the log-
normalization (i.e., in linear-scale), gene expression data has a
heavily skewed distribution, which is not adequately modeled by
the standard linear regression approaches, such as non-negative
least square (NNLS) used in EPIC17. Currently, few probabilistic
deconvolution approaches take skewed variability into account.
However, these methods handle only a restricted number of cell
types due to optimization difficulties (e.g., three cell types in
DeClust18 and Demix/DemixT19,20).

Recently, several linear-regression deconvolution approaches
have been introduced that consider gene expression variability.
MuSiC is a variant of NNLS that prioritizes genes for deconvo-
lution by their variability obtained from the multi-subject single-
cell RNA-seq data. CIBERSORTx introduced a two-step approach
to address variable cell-type-specific gene expression profiles
across the samples: first estimate cellular fraction (deconvolution)
and then reconstruct gene expression per cell type in each sample
(purification). However, the purification step of CIBERSORTx can
handle only a part of genes because of the underdetermination
problem where too many parameters need to be inferred. In terms
of cellular fraction estimation, both MuSiC and CIBERSORTx
outperformed the standard linear regression methods, though they
are also linear regression approaches.

Here, we introduce BLADE (Bayesian Log-normAl DEconvo-
lution), a Bayesian method that jointly performs deconvolution
and purification in a single-step, taking into account prior
knowledge of cell type-specific gene expression profiles obtained
from scRNA-seq data. BLADE takes a Bayesian framework that
integrates two signatures of mean and variability of gene
expression per-cell type using a log-normal probability model.
The unified probabilistic model for both deconvolution and
purification of BLADE can leverage the prior knowledge for
purification, which can remedy the underdetermination issue.
Furthermore, an efficient variational inference algorithm was

developed, for which we show that it can handle at least 20 cell
types. Through a comprehensive evaluation based on more than
700 simulated and real bulk gene expression data sets, we
demonstrate a robust performance of BLADE regardless of gene
expression variability. In particular, BLADE achieves high accu-
racy and completeness in gene expression purification, under-
pinning the power of the unified Bayesian framework for
both tasks.

Results
Gene expression variability within a cell type. We first assessed
gene expression variability within a cell type using publicly
available Peripheral Blood Mononuclear Cell (PBMC) CITE-seq
(Cellular Indexing of Transcriptomes and Epitopes by Sequen-
cing) data from 10x Genomics. Based on the integration and
clustering analysis followed by phenotyping of 9439 cells, we
identified fifteen immune cell types, among which nine are in
common, with distinct cell-surface markers and gene expression
profiles (Fig. 1a; see “Methods” and Supplementary Figs. S1–2).
The size of cell populations ranges from 38 regulatory T cells
(0.36%) to 2518 classical monocytes (24%). We then identified
differentially expressed genes (DEGs) for each cell type. Subse-
quently, the standard deviation of gene expression levels per gene
and per cell type was measured to assess gene expression varia-
bility among the same cell types. We identified high gene
expression variability among the same cell populations, especially
for DEGs without log-transformation (i.e., linear-scale; Fig. 1b, c).
The variability further increased when cells from the two scRNA-
seq datasets were combined, indicating the presence of more
variability between individuals (Fig. 1d; P < 2.2 × 10e−16 from a
one-tailed paired t-test of within-sample and between-sample
variability).

Modeling gene-expression variability by probabilistic dis-
tribution. To properly account for variation in gene expression,
we examined multiple probability distributions. We evaluated
normal distribution, negative binomial distribution, and log-
normal distribution to fit the expression level of each gene per cell
type without log-normalization. The normal distribution is the
standard variability model in many deconvolution algorithms,
including CIBERSORTx14, EPIC17, and ABIS21, while the nega-
tive binomial distribution is frequently used for handling count
data such as RNA-seq data22. Note that Poisson distribution was
also introduced for modeling count data23,24, but it is a special
case of negative binomial. The log-normal distribution is identical
to the normal distribution but includes an exponential function,
assuming gene expression data is normally distributed on a log
scale but not on a linear scale. To evaluate the performance of
these probability distributions on gene expression variability, we
assessed (1) the maximum likelihood of fitting gene expression
profiles and (2) the difference between estimated and empirical
modes (i.e., the most probable gene expression level; Fig. 2a–c).
The log-normal distribution, in general, shows the best perfor-
mance in per-gene maximum likelihood, followed by the negative
binomial and normal distributions (Fig. 2a, c). In particular, we
noted a biased fit of the normal distribution toward outlier
observations, which led to low accuracy in identifying modes
(Fig. 2b; see four example genes with a biased fit with normal
distribution in Fig. 2d). In mode estimation, log-normal and
negative binomial appears to be fairly competitive, where the log-
normal had a somewhat worse median but a better third quartile
(Fig. 2b).

We further evaluated the performance of the log-normal and
negative binomial distributions in the context of deconvolution.
To this end, we constructed a generic statistical deconvolution
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method that can model gene expression profiles with various
probabilistic assumptions given known cellular fractions. The
method approximates the convolution of random variables with
an arbitrary distribution using a probabilistic generating function,
for which both negative binomial and log-normal random
variables can be accurately approximated (see “Methods”,
Supplementary Note 1, and Supplementary Fig. S3). Based on
this method, we evaluated the performance of negative binomial
and log-normal distribution in fitting the gene expression profiles
per cell type using RNA-seq data from TCGA25. First, we
obtained TCGA RNA-seq data of mesothelioma (TCGA-MESO;
n= 84) and sarcoma (TCGA-SARC; n= 256), from which we
estimated the fraction of eight cell types using EPIC17, a
deconvolution method previously applied to the TCGA. Then,
we applied the flexible deconvolution method with two different
probabilistic assumptions, log-normal and negative binomial, to
estimate expression profiles per cell type of 200 random genes. In
terms of log-likelihood and root mean square error (RMSE)
measured per gene, log-normal and negative binomial deconvo-
lutions performed equally well for most of the genes, except for a
few genes (Fig. 2e, f). Cumulatively, we concluded that the log-
normal distribution is an attractive probabilistic distribution to
model the gene expression variability of each cell type.

Overview of BLADE: Bayesian Log-normal Deconvolution. We
constructed a Bayesian Log-normal Deconvolution method,
BLADE, by emulating bulk gene expression profiles through
convolution of gene expression profiles per cell type (Fig. 3a). The
bulk gene expression level of each gene j in sample i was modeled
by yij ¼ ∑t f

t
i x

t
ij þ 2ij. Here, the hidden variables f ti and xij

t

denote the fraction of cell type t for sample i and the purified
expression level of gene j of cell type t for sample i. These hidden
variables f ti and xij

t are, respectively, endowed with the Dirichlet
distribution and the log-normal distribution. To incorporate prior
knowledge from scRNA-seq data, we take a hierarchical approach
to model xij

t by taking a conjugate prior of log-normal dis-
tribution with hyperparameters μt0j; κ

t
0j; α

t
0j, and βt0j (Fig. 3b).

The hyperparameters are chosen based on the mean and standard
deviation of each gene per cell type from the scRNA-seq data. By
inferring the hidden variables, we can jointly estimate the fraction
of cell types, captured by f ti , and purified gene expression profiles
of each cell type in each sample, captured by xt ij. For inference,
we employed a collapsed variational inference that maximize
efficiency by integrating out a subset of hidden variables with a
conjugate prior in advance. Furthermore, we employed the
L-BFGS algorithm in conjunction with machine-code translated
Python code for gradient and objective function calculations
instead of native Python code. The compilation of native Python
code by the Numba package26 significantly accelerates gradient
and objective functions that are executed thousands of times
during the L-BFGS optimization (Supplementary Fig. S4). See
“Methods” and Supplementary Note 2 for further details of the
framework. As a result, BLADE can handle many cell types (>20
cell types); unlike the previous log-normal-based deconvolution
that can account for a maximum of three cell types20.

Robustness of BLADE deconvolution against gene expression
variability. We assessed the robustness of BLADE, CIBERSORTx,
and non-negative least squares (NNLS) against gene expression

Fig. 1 Overview of single-cell CITE-seq data from two PBMC samples. a t-SNE plots show the similarities in Pearson correlation coefficients among gene
expression profiles of individual cells in two single-cell PBMC RNA-seq data, respectively, on the left and right. Cell type* is denoted by color. b, c Comparison
of gene expression variability measured in standard deviation (y-axis) per gene and cell type pair in log-scale (b) and linear-scale (c) for both datasets (x-
axis). The genes were split by differentially expressed genes (DEGs; n= 2876 gene and cell type pairs; red) and non-differentially expressed genes (non-
DEGs; n= 145,305 gene and cell type pairs; blue). The standard boxplot notation was used (lower/upper hinges—first/third quartiles; whiskers extend from
the hinges to the largest/lowest values no further than 1.5 * inter-quartile ranges). d. Comparison of within-sample (x-axis) and between-sample variability (y-
axis) in gene expression levels per cell type, split by DEGs (n= 2876) and non-DEGs (n= 145,305) per cell type. Standard deviation is measured for each
gene and cell type first separately in two PBMC single-cell datasets followed by taking the average (x-axis), then also in merged PBMC data set (y-axis). Only
the nine cell types commonly detected in two data sets were used in the analysis. *(CMCD4T: central memory CD4+ T cell; CMonocytes: classical
monocytes; EMCD4T: effector memory CD4+ T cell; mDC: myeloid dendritic cell; MemoryB: memory B cell; MemoryCD8T: memory CD8+ T cell; NaiveB:
naive B cell; NaiveCD4T: naive CD4+ T cell; NaiveCD8T: naive CD8+ T cell; NKcells: natural killer cell; NKT: natural killer T cell; Nmonocyte: non-classical
monocyte; pDC: plasmacytoid dendritic cell; TRegs: regulatory T cell).
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variability by applying them to model-based simulation data. The
simulation data was created to have diverse but controlled
variability levels of gene expression profiles (standard deviation of
0.1–1.5) as well as different numbers of cell types (5–20 cell
types), marker genes (100–1000 genes), and samples
(5–100 samples; in total 700 training data sets). Note that NNLS
is a regularized linear regression, a type of constrained linear
regression used in many deconvolution methods, including
MuSiC15, EPIC17, TIMER27, ABIS21, and also in the purification
step of CIBERSORTx14. The simulation data variability levels
were selected to recapitulate the observed range in the scRNA-seq
data (up to standard deviation of 1.5 in log scale; Fig. 1b, c). In
general, all three methods could accurately estimate cellular
fractions in case of a high number of genes, a low number of cell
types, and a low variability level. In contrast, the performance
decreased when a smaller number of genes are presented, and the
number of cell types is increased (Fig. 4a; Supplementary
Figs. S5–7). However, BLADE was the most robust against gene
expression variability. In particular, in the range of observed
expression variability of DEGs in the PBMC scRNA-seq data (on
average standard deviation of > 0.5; Fig. 1b), BLADE significantly
outperformed CIBERSORTx and NNLS.

We then compared the performance of BLADE and CIBER-
SORTx in estimating gene expression profiles per cell type. In this
comparison, NNLS is not included because of redundancy since
the purification step of CIBERSORTx is based on NNLS. There
are two modes of purification in CIBERSORTx, both of which
were compared with BLADE: (1) estimating average profile per
cell type across the samples (group mode purification), and (2)
estimating the profile per cell type for each sample (high-
resolution mode purification). For the data set with low variability
levels, both BLADE and CIBERSORTx accurately reconstructed
gene expression profiles per cell type (Fig. 4b, c; Supplementary
Figs. S8–9). However, unlike BLADE, the performance of
CIBERSORTx decreased rapidly as the RNA expression varia-
bility within a cell type increased. Furthermore, CIBERSORTx
often excludes genes for purification, especially in high-resolution
mode, when: (1) the number of cell types is larger than or equal to
the number of samples, and (2) the variability in gene expression
is high (Fig. 4d; Supplementary Figs. S10, S11). BLADE could
accurately estimate the gene expression profiles of each cell type
in both group mode and high-resolution mode, regardless of the
number of cell types and samples, without any filtering (Fig. 4b, c;
Supplementary Figs. S8–9).

Fig. 2 Comparison of normal, negative binomial, and log-normal distribution in fitting linear-scale gene expression data. a A bar chart of average log-
likelihood of the three types of distribution fitted to PBMC single-cell RNA-seq data. The genes were split by DEGs (red; n= 1723) and non-DEGs (blue;
n= 1496). b Comparison of the distance of the estimated mode to the true mode (y-axis) per distribution type (x-axis). The standard boxplot notation was
used (lower/upper hinges— first/third quartiles; whiskers extend from the hinges to the largest/lowest values no further than 1.5 * inter-quartile ranges).
c Pairwise comparison of per-gene log-likelihood of log-normal distribution (y-axis) and that of normal (x-axis; top) and negative binomial distribution
(x-axis; bottom). The genes were split into non-DEGs (left) and DEGs (right). d Density plots for raw-counts (red) and optimized log-normal (green),
normal (blue), and negative binomial distribution (purple) for four example genes (gene name at the top) with low maximum log-likelihood for normal
distribution. e, f Maximum log-likelihood values (e) and root mean squared error (root MSE: f) of each gene for log-normal (y-axis) and negative binomial
(x-axis) convolutions of T= 8 cell types, applied to TCGA-MESO (left) and TCGA-SARC (right) data.
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Application of BLADE to in silico mixture of PBMC scRNA-
seq data. We constructed realistic bulk gene expression data by
in silico mixing the scRNA-seq data from PBMC samples
without any model assumption to further evaluate our method.
To this end, we randomly sample 100 cells 20 times from the
9439 cells from the two PBMC scRNA-seq data sets. We chose
to use 100 cells since more cells get selected commonly in
multiple samples as we sample more, making the simulated
bulk gene expression data lose variability between the samples.
In order to make the simulation data as realistic as possible, a
cumulative sum of raw counts of 100 cells was obtained, fol-
lowed by a standard normalization. The resulting simulation
data recapitulate the gene expression variability of 15 cell types
(Fig. 5a; Supplementary Fig. S12). We constructed signature
matrices that capture the true mean and the standard deviation
of 1007 genes selected and measured using all of 9439 cells (top
200 DEGs with FDR < 0.2 per cell type, combined). We also
generated three extra data sets with a coarse classification of the
15 cell types by four (level 1; 441 genes selected), eight (level 2;
604 genes), and 12 cell types (level 3; 880 genes) in the same
manner to diversify the difficulty levels for deconvolution (see
Supplementary Data 1 for the details of classifications). The
increase of cell type often lowers the fraction of each cell type
and the number of genes that can classify each cell type (Sup-
plementary Figs. S13–14). In particular, the fraction of T cells in
level 1 is 0.47 on average, which gets much lower for their
subtypes in level 4 (0.01 and 0.094 on average for naive and

memory CD8+ T cells; Supplementary Fig. S13). Furthermore,
although more genes selected in the higher levels, there are 25
unique DEGs for T cells (DEGs only identified for T cells) in
level 1, whereas there are only 16 and 3 unique DEGs for naive
and memory CD8+ T cells in level 4 (Supplementary Fig. S14).
Collectively, deconvolution gets more challenging as the num-
ber of cell types increases from level 1 to level 4.

Using the bulk PBMC data generated above, we evaluated
BLADE taking CIBERSORTx, NNLS, and also MuSiC as the
baseline. We used the same list of genes and signatures for the
baseline methods for a fair comparison. In general, the accuracy
of estimated cell type fractions gets lower as the number of cell
types gets higher, as expected (Fig. 5b, see also Spearman
correlation coefficients and RMSE in Supplementary Fig. S15). All
algorithms reached > 0.5 Pearson correlation coefficient for
almost all cell types at level 1, where many cell types failed to
reach as high performance as the number of cell types increased.
Interestingly, the performance was sometimes higher in level 3
than level 2, especially for MuSiC, possibly because the advantage
of having more genes overcomes the complexity due to the
increased number of cell types (e.g., 880 genes in level 3,
compared to 604 genes in level 2). At level 4, BLADE
outperformed CIBERSORTx (P-value of 0.0087; a one-tailed
paired t-test) and NNLS (P-value of 0.021; a one-tailed paired t-
test) and performed comparably to MuSiC (P-value of 0.46; one-
tailed paired t-test). The performance of the four methods are
significantly correlated (P-value < 0.05 from Pearson correlation

Fig. 3 BLADE workflow. a To construct a prior knowledge for BLADE, we used CITE-seq data that contains gene expression and cell surface marker profiles
of each cell. Cells are then subject to phenotyping, clustering, and differential gene expression analysis. Then, for each cell type, we retrieved average
expression profiles (red cross and top heat map) and standard deviation per gene as the variability (blue circle and bottom heatmap). This prior knowledge
is then used in the hierarchical Bayesian model (bottom right) to deconvolute bulk transcriptome profiles. b A graphical model of BLADE represents
random variables, observed and hidden variables, respectively, in blue and gray nodes, and their dependency associations (arrows). See the text for the
details of the model.
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Fig. 4 Performance evaluation BLADE using simulation data with diverse settings. a Performances (Pearson correlation coefficient; y-axis) of BLADE
(orange), CIBERSORTx (blue), and NNLS (dark red) to predict the cellular fraction of a subset of simulation data with ten cell types, 1000 genes, and
various variability levels (standard deviation of 0.1–1.5; x-axis; n= 50 per variability level; five independent data set with ten cell types each). The standard
boxplot notation was used (lower/upper hinges—first/third quartiles; whiskers extend from the hinges to the largest/lowest values no further than 1.5 *
inter-quartile ranges). b, c Performances (Pearson correlation coefficient; y-axis) of BLADE (orange) and CIBERSORTx (blue) to predict gene expression
profiles per cell type for all samples jointly (group mode; b) and for each sample separately (high-resolution mode; c) using the same simulation data
(n= 50 per variability level; five independent data set with ten cell types each). The standard boxplot notation was used. d Fractions of purified genes in the
simulation data with two extreme levels of gene expression variability (left and right panels) by CIBERSORTx in group mode (top) and high-resolution
mode (bottom). x- and y-axis represent the number of cell types and samples in the simulation data, respectively.
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Fig. 5 Performance evaluation of BLADE using simulated PBMC bulk RNA-seq data. a A t-SNE plot represents the similarities in Pearson correlation
coefficients among gene expression profiles of 15 cell types* (denoted by label) in 20 simulated bulk PBMC data. b Performances (Pearson correlation
coefficient; y-axis) of BLADE (orange), CIBERSORTx (blue), NNLS (dark red), and MuSiC (light yellow) in predicting cellular fractions of the 20 simulated
PBMC bulk RNA-seq data with diverse levels (n= 4, 7, 12, and 15 cell types, respectively, in levels 1–4; x-axis). The standard boxplot notation was used
(lower/upper hinges —first/third quartiles; whiskers extend from the hinges to the largest/lowest values no further than 1.5 * inter-quartile ranges). c
Comparison of performance in estimating the cellular fractions per cell type of BLADE (y-axis) with CIBERSORTx, NNLS, and MuSiC (x-axis) at level 4. The
fraction of each cell type is indicated by the size of the point. Pearson correlation coefficient and two-tailed test P-values are indicated at the top left in each
panel. d Performance of BLADE (indicated by color) and its association to the number of unique DEGs per cell type (x-axis) and the respective fraction in
the simulated data (y-axis). e Performance in Pearson correlation coefficient of BLADE (orange), CIBERSORTx (blue) for group mode purification of four
levels of PBMC simulation data (n= 4, 7, 12, and 15 cell types, respectively, in levels 1–4; x-axis). The standard boxplot notation was used. f Performance
(Pearson correlation coefficient; y-axis) of BLADE (orange) and CIBERSORTx (blue) in estimating gene expression profiles per cell type (x-axis) and per
sample in level 4 (n= 20 samples per cell type; left). Fraction of genes in silico purified in high-resolution mode by CIBERSORTx at all levels of PBMC
simulation data (n= 20 samples with 4, 7, 12, and 15 cell types, respectively, in levels 1–4; x-axis; right). The standard boxplot notation was used.
*(CMCD4T: central memory CD4+ T cell; CMonocytes: classical monocytes; EMCD4T: effector memory CD4+ T cell; mDC: myeloid dendritic cell;
MemoryB: memory B cell; MemoryCD8T: memory CD8+ T cell; NaiveB: naive B cell; NaiveCD4T: naive CD4+ T cell; NaiveCD8T: naive CD8+ T cell;
NKcells: natural killer cell; NKT: natural killer T cell; Nmonocyte: non-classical monocyte; pDC: plasmacytoid dendritic cell; TRegs: regulatory T cell).
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test), especially in pairs of MuSiC and BLADE (Pearson
correlation coefficient= 0.82; P-value= 1.9e−04), and NNLS
and CIBERSORTx (Pearson correlation coefficient= 0.87; P-
value= 3.0e−05; Fig. 5c; Supplementary Fig. S16 for the
comparison in the levels 1–3). Among the 15 cell types,
plasmablasts, classical monocytes, natural killer (NK) cells were
the best predicted by all four methods, which commonly failed to
predict the composition of regulatory T cells (Tregs), naive CD8+
T cells (NaiveCD8T), and central memory CD4+ T cells
(CMCD4T). These cell types are commonly low abundant
(fraction of < 7% on average), and only a few unique DEGs
were identified for each cell type (< 50 unique DEGs; Fig. 5d; see
Supplementary Fig. S17 for other levels). In contrast, we noted a
decent predictive performance of all methods for the abundant
cell types (> 10%) with a high number of DEGs (> 50
unique DEGs).

BLADE significantly outperformed CIBERSORTx in estimat-
ing gene expression profiles per cell type in both group mode and
high-resolution mode across all the levels (Fig. 5e, f and
Supplementary Fig. S18). For group mode purification, CIBER-
SORTx performed comparably to BLADE at level 1, which,
however, gets lower at the higher level. Here, BLADE’s
performance was near-perfect, as expected, since BLADE
integrates cell-type-specific gene expression profiles for purifica-
tion (Fig. 5e). CIBERSORTx did not estimate expression levels of
most genes in high-resolution mode, and essentially no genes
were purified for 11 cell types at level 4 (right panel of Fig. 5f;
Supplementary Fig. S19). Furthermore, estimated expression
profiles by CIBERSORTx are in general less accurate than
BLADE in all levels, except for few cell types (e.g., central memory
CD4+ T cells and naive CD4+ T cells at level 4; Fig. 5f). The
performance of BLADE in high-resolution mode purification is
consistently accurate (> 0.7 Pearson correlation coefficient) across
all cell types in all levels (Supplementary Fig. S20). Cumulatively,
Bayesian simultaneous deconvolution and in silico purification by
BLADE significantly outperformed CIBERSORTx in reconstruct-
ing gene expression profiles per cell type.

Application of BLADE to standard bulk RNA-seq data with
incomplete prior knowledge. We further challenged BLADE and
other deconvolution algorithms using the standard bulk RNA-seq
data of PBMC immune cell mixtures for which the composition
of eight immune cell types was determined by flow cytometry28

(Fig. 6a). Of these eight cell types, neutrophils were not identified
in our PBMC scRNA-seq data. Furthermore, there are unde-
termined cells by the flow cytometry analysis that still contributed
to the bulk RNA-seq data. Therefore, there is only limited prior
knowledge available on cell-type-specific gene expression profiles,
which is the case for most applications of deconvolution. We
applied BLADE and other baseline methods using the gene
expression signatures consisting of 532 genes that can distinguish
seven cell types derived in the same manner as in the previous
section (see Supplementary Data 1 for the cell type classification).
BLADE was able to reconstruct fractions of the seven cell types
rather accurately, except for myeloid dendritic cells (mDC;
Fig. 6b, c and Supplementary Fig. S21). We confirmed a low
concordance of mDC signature compared to the previously
determined signature using a large number of RNA-seq data28

(53 samples; Fig. 6d). In fact, mDC signature has a higher cor-
relation with previous B cell and monocyte signatures (Fig. 6e),
which makes the signatures less informative and the deconvolu-
tion extra challenging. Other baseline methods estimated com-
positions of monocytes accurately, but they failed to do the same
for the majority of the other cell types including mDC (Fig. 6b).
In fact, they often failed to detect some cell types, particularly

Tregs are commonly missed (Fig. 6c). Instead, BLADE over and
underestimated the fractions of Tregs and CD8+ T cells,
respectively, by absorbing CD8+ T cell fractions to Tregs.
However, BLADE was still able to rank samples accurately by
their fractions. Cumulatively, BLADE was the most robust
method for estimating cell type fractions when available prior
knowledge was incomplete.

Evaluation of BLADE for deconvolution of tumor RNA-seq
data. We further evaluated our method using scRNA-seq data
from tumor samples. First, we obtained scRNA-seq data for 35
pancreas samples (CRP000653; Genome Sequence Archive), of
which 24 are tumors while the other 11 are normal. The scRNA-
seq data contains 57,530 cells classified into 10 cell types29

(Fig. 7a; Supplementary Fig. S22). For a fair evaluation of
deconvolution algorithms, the 35 samples and their cells were
split into auxiliary (six samples, of which four are tumors) and
main samples (29 samples, of which 20 are tumors; Supplemen-
tary Fig. S23). From the auxiliary samples, we obtained the mean
and standard deviation of 818 genes that can classify ten cell types
reliably (top 100 DEGs with FDR < 0.1 per cell types). For the
main samples, we generated bulk gene expression profiles by
calculating a cumulative sum of the raw count of all cells, fol-
lowed by the standard log-normalization. For predicting the
fraction of 10 cell types, MuSiC performed the best, followed by
BLADE and CIBERSORTx (Fig. 7b; see Spearman correlation
coefficients and RMSE in Supplementary Fig. S24). Interestingly,
the performance of BLADE correlates the most with MuSiC
(Pearson correlation coefficient of 0.62; P-value of 0.056), whereas
it is less so with CIBERSORTx (Pearson correlation coefficient of
0.39; P-value of 0.27) and NNLS (Pearson correlation coefficient
of −0.18; P-value of 0.62; Fig. 7c). BLADE outperformed MuSiC
for predicting the fraction of B cells but was worse for predicting
endocrine cell fractions. Most cell types achieved high perfor-
mance (> 0.5 of Pearson correlation coefficient) in all methods,
except for B cells (in MuSiC and CIBERSORTx), T cells (in
CIBERSORTx and NNLS), and Stellate cells (in NNLS). These cell
types are often less dominant (< 5%) and with a small number of
DEGs (less than 40 unique DEGs; Fig. 7d). For reconstructing
cell-type-specific gene expression profiles, both BLADE and
CIBERSORTx achieved high performance for all cell types (> 0.8
of Pearson correlation coefficient; > 0.9 mostly for BLADE;
Fig. 7e, f). However, the purification by BLADE is without any
filtering, unlike CIBERSORTx, which purified around 30% of
genes per cell type on average in high-resolution mode (Fig. 7g).
Cumulatively, BLADE is a reliable deconvolution method espe-
cially to reconstruct cell-type-specific gene expression profiles in
the tumor context.

Discussion
One of the major challenges in the deconvolution of bulk RNAseq
data is the adequate and efficient handling of gene expression
variability, mainly since stabilization of variability by log-
normalization is inapplicable. Most of the previous algorithms
implicitly or explicitly assumed normal distribution, as otherwise,
the inference is highly challenging and limits the number of cell
types that can be handled maximally (three cell types in
Demix19). However, the normal distribution often renders a
biased fit for gene expression variability (Fig. 2a–d), leading to a
suboptimal outcome of deconvolution algorithms. Consequently,
the performance of the standard regression technique, NNLS, was
consistently inferior, especially when there is a realistic level of
gene expression variability (Figs. 4–7).

CIBERSORTx and MuSiC are also linear-regression approa-
ches that partially alleviate the issue by prioritizing genes for
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deconvolution. Support vector regression, the core algorithm of
CIBERSORTx, depends on a subset of genes with high recon-
struction errors. On the contrary, MuSiC explicitly learns gene
weights from the single-cell RNA-seq data and prioritizes genes
with low variability, for which the normal distribution can fit
accurately due to the low skewness. We noted a consistently
superior performance for fraction estimations of these algorithms
over NNLS (Figs. 4a, 5b, 6b, 7b). MuSiC outperformed BLADE in
some cases, indicating normal distribution-based deconvolution
can also be accurate when genes are prioritized based on the gene
expression variability. However, performance of MuSiC com-
pared unfavorably to that of BLADE when prior knowledge was
incomplete (Fig. 6). Furthermore, the strategy of prioritizing
genes reduces the completeness of the purification results
(Figs. 4d, 5f, 7g). We observed a lower performance of linear
regression-based purification by CIBERSORTx, particularly in
high-resolution mode, which may be due to the inefficient
variability model and a large number of variables to be estimated
(Figs. 4b, c, 5e, f, 7e, f).

BLADE is a hierarchical Bayesian model that simultaneously
performs deconvolution and estimation of gene expression pro-
files per cell type. The log-normal convolution model efficiently
accounts for variability in gene expression and also for prior
knowledge of gene expression profiles per cell type derived from
scRNA-seq data (Fig. 3). Notably, thanks to the unified prob-
abilistic model used in BLADE, the prior knowledge contributes
to both deconvolution and gene expression purification. This
prior knowledge significantly reduces the search space of solu-
tions for both tasks, which leads to enhanced accuracy and
completeness, especially for gene expression purification. The
efficient variational inference of BLADE allowed it to handle
many cell types while accurately modeling the gene expression

variability. Furthermore, the hierarchical approach of BLADE
makes it robust against the quality of prior knowledge, as
demonstrated in Fig. 6. Finally, unlike MuSiC and CIBERSORTx,
the Bayesian framework of BLADE provide the uncertainties of
estimates, which may be valuable to evaluate the quality of the
results and for further downstream analysis.

Enhanced in silico microdissection by BLADE opens up the
possibility to molecularly characterize individual cell types in
tissue based on the standard RNA-seq data. For instance, we
demonstrated that BLADE could be applied to estimate each cell
type’s gene expression profiles that make up the tumor micro-
environment (TME). This allows us to characterize pathway
activity in each immune cell type and possibly to recognize
additional cell (sub-)types. Furthermore, BLADE can aid pre-
viously established gene expression subtypes (e.g., PDAC30,31) by
characterizing the subtypes with distinct TME profiles. Finally,
the detailed profiling of the TME, particularly immune TME
profiles, may lead to a clinically applicable biomarker strategy for
immunotherapy based on the standard bulk gene expression
profiling. In conclusion, BLADE is a powerful tool that can sig-
nificantly contribute to unravel cellular heterogeneity in complex
biological systems.

Methods
PBMC single-cell RNA-seq data. Two public peripheral blood mononuclear cell
(PBMC) CITE-seq (cellular indexing of transcriptomes and epitopes by sequen-
cing) datasets of healthy donors were downloaded from 10x Genomics datasets
database [https://support.10xgenomics.com/single-cell-gene-expression/datasets/
3.0.2/5k_pbmc_protein_v3] [https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.0/pbmc_10k_protein_v3]. Genes and cells were filtered
based on the following criterions: percentage of mitochondrial genes <10% and
number of genes per cell between 200 and 4000. After the filtering, raw count data
was normalized and scaled, using SCTransform, which performs normalization
and variance stabilization using regularized negative binomial regression.

Fig. 6 Performance evaluation of BLADE using PBMC bulk RNA-seq data with incomplete prior knowledge. a Cell types fractions (y-axis) determined by
flow cytometry in nine samples (x-axis). All cell types* have a color associated as shown in the legend. b Performances of BLADE (orange), CIBERSORTx
(blue), NNLS (dark red) and MuSiC (light yellow), measured by Pearson correlation (y-axis) of the estimated sample-specific cell type (x-axis) fractions
with those determined by flow cytometry. c Estimated cell fractions (y-axis) per sample (x-axis) by BLADE (top-left), NNLS (top-right), MuSiC (bottom-
left) and CIBERSORTx (bottom-right). d, e Pearson correlation (y-axis in d and color gradient in e) of the signature per pair of cell types determined by
Finotello et al. and two PBMC scRNA-seq data used in this study. *(TRegs: regulatory T cells; NKcells: natural killer cells; mDC: myeloid dendritic cells).
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Dimensionality reduction was done using principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (t-SNE). Following that, k-nearest
neighbors (knn) of each cell using 25 dimensions of PCA were determined. This
knn graph was used to construct the Shared Nearest Neighbor (SNN) graph by
calculating the neighborhood overlap (Jaccard index) between every cell and its 20
nearest neighbors. Cluster determination was done by SNN graph modularity
optimization based on the Louvain algorithm with the resolution of 1. Cells were
phenotyped separately in both datasets, using primarily cell surface markers and
then gene expression levels in case of lack of usable cell surface markers (Sup-
plementary Figs. S1–2). The two datasets were individually normalized, followed by
selecting variable genes. The two data set were then integrated, and batch corrected
using the common variable genes. The same analysis as described above was
performed on the merged data set, including PCA, SNN, and cluster
determination32. Finally, the top 200 differentially expressed genes per cell type
were identified using a two-sided Wilcoxon Rank sum test by taking a contrast
between one cell type versus the rest with an FDR cutoff of 0.2.

Comparison between log-normal, negative binomial, and normal distribution
in fitting raw gene expression counts. To evaluate log-normal, normal, and
negative binomial distribution in fitting gene expression profiles, we retrieved raw
counts per gene and per cell type and fit the three distribution types using the
maximum-likelihood method available in fitdistrplus R package. For each cell type,
genes with a standard deviation of lower than 0.5 were filtered out as they are
mostly not expressed in that cell type. Finally, the log-likelihoods of the optimized
distributions were obtained per gene and per cell type for comparison. As an
alternative measure, we also identified the mode (i.e., the peak of the probability
distribution) in each of the optimized distributions and assessed its accuracy by
comparing it to the mode of the empirical distribution for each gene and cell
type pair.

A generic deconvolution method with known cellular composition. For a fair
comparison of log-normal and negative binomial distribution for deconvolution,
we developed a simple, generic maximum-likelihood-based convolution model.
Formally it is assumed that there are i ¼ 1; :::; I samples in which t ¼ 1; :::;T cell
types jointly contribute to expression profiles of j ¼ 1; :::; J genes. For each sample i

and gene j, a bulk expression level is given, indicated by yij . Then, two hidden
variables were introduced that jointly makeup yij: (1) expression level of the gene
per cell type and sample, xtij; and (2) cellular composition for each cell type t, fti,
where 8f ti ≥ 0 and ∑t f

t
i ¼ 1. An important strength of our method here is that it

applies to any underlying parametric distribution for xt ij . yij is a (weighted) con-
volution:

yij ¼ ∑
T

t¼1
f ti x

t
ij ð1Þ

which implies, with x̂t ij ¼ f ti x
t
ij ,

gyij ðyÞ ¼
Z y

u1¼0
� � �

Z y� ∑
T�1

i¼1
ui

uT¼0
gx̂1 ij ðu1Þ � � � gx̂T�1

ij
ðuT�1Þgx̂T ij

y � ∑
T�1

t¼1
ut

� �
du1 � � � duT : ð2Þ

By assuming xt ij follows log-normal distribution (i.e., xtij � LNðμtj ; ðσtj Þ2Þ) and
thus x̂tij � LNðμtj þ logf t i; ðσtj Þ2Þ, yij is a convolution of T log-normal random
variables. The interest lies in estimating parameters θj ¼ ðμtj ; σtj Þ by maximum
likelihood.

While numerical evaluation of (2) may still be efficient for T ¼ 228, however,
the extension to T > 2 is not straightforward to a T � 1 dimensional integral. To
this end, the log-normal density gt ¼ gx̂t ij is approximated by a probability

generating function (PGF). See Supplementary Note 1 for the details of PGF
approximation. The PGF-based approximation of gt showed higher accuracy than
an alternative approximation method, Fenton-Wilkinson (FW) approximation33,
which was also included as a benchmark (see Supplementary Note 1 and
Supplementary Fig. S3).

Comparison of LN and NB based on the generic deconvolution technique. The
aforementioned generic deconvolution was used to evaluate LN and NB for
deconvolution. For this, two RNA-seq data sets are retrieved from The Cancer
Genome Atlas (https://tcga-data.nci.nih.gov/tcga/) using TCGAbiolinks34. We
considered all complete samples from the following tumor types: Mesothelioma
(MESO35, n= 84; and Sarcoma (SARC36, n= 256. We retrieved the upper quartile

Fig. 7 Performance evaluation of BLADE for deconvoluting tumor data. a t-SNE plot showing the variability of the cell populations in the PDAC single-cell
RNA-seq data. b Performances (Pearson correlation coefficient; y-axis) of BLADE (orange), CIBERSORTx (blue), NNLS (dark red), and MuSiC (light yellow)
in predicting cellular fractions of the PDAC bulk RNA-seq data (n= 29 main samples). The standard boxplot notation was used (lower/upper hinges—
first/third quartiles; whiskers extend from the hinges to the largest/lowest values no further than 1.5 * inter-quartile ranges). c Comparison of performance
in estimating the cellular fractions of each cell type of BLADE (y-axis) with CIBERSORTx (left), NNLS (middle), and MuSiC (right; x-axis). The fraction of
each cell type is indicated by the point size. Pearson correlation coefficient and two-tailed test P-values are indicated at the top left in each panel. d The
number of unique DEGs per cell type (x-axis) and the respective fraction in the PDAC data (y-axis). e Performance in Pearson correlation of BLADE
(orange), CIBERSORTx (blue) for group mode purification (n= 10 cell types). The standard boxplot notation was used. f Performance (Pearson correlation
coefficient; y-axis) of BLADE (orange) and CIBERSORTx (blue) in estimating gene expression profiles per cell type (x-axis) and per sample (n= 29 samples
for each cell type; right). The standard boxplot notation was used. g Fraction of genes in silico purified in group mode (blue) and high-resolution mode
(blue) by CIBERSORTx.
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normalized RSEM (RNASeq by expectation-maximization) TPM (transcript per
million) gene expression values (R package curatedTCGAData), merged replicated
measurements (R package MultiAssayExperiment), and extracted the sample
definitions from the barcodes (R package TCGAutils). We retained genes with
mean count larger or equal to 5. For visualizing results, 200 genes were sampled
randomly from this set37. The comparison procedure for LN and NB
distributions is:

1. Apply a non-statistical method, EPIC17, to estimate cell type fractions for
bulk RNA-seq data using cell type-specific reference signatures. It has shown that
EPIC provides a reliable estimate of cellular fractions of T ¼ 8 cell types38, and it
provides fractions that add up to 1.

2. Fix the cellular fractions and fit generic deconvolution models with T ¼ 8 LN
or NB components using maximum likelihood.

3. Compare the maximum likelihood values of the LN and NB models for of
J genes.

The above procedure was done for 200 randomly selected genes with mean
count per million larger or equal to 5 to exclude lowly expressed genes. Note that
the comparison of the maximum likelihood values is fair, because the number of
parameters used in the LN and NB components is the same, of 2T ¼ 16 per gene.
As an alternative metric, we also measured the accuracy in reconstructing bulk
gene expression levels based on deconvolution. Taking actual and predicted bulk
gene expression level in LN or NB deconvolution model, root-mean-squared error
(RMSE) was evaluated per gene and per model.

Hierarchical Bayesian model for convolution of log-normal variables (BLADE).
BLADE is a hierarchical Bayesian model for log-normal convolution while
accounting for the prior knowledge of per cell-type gene expression profiles (see
Overview at Fig. 3a). Formally, we assume yij ¼ ∑t f

t
i x

t
ij þ 2ij , where ϵij is a log-

normal error with mean parameter 0 and variance parameter γj . Then, x
t
ij

follows a log-normal distribution: xt ij � LNðμt j; 1λjÞ, where μt j and λt j are

expected value and precision in log-scale. Note that the parameters μt j and λt j
are shared across the samples. To incorporate prior knowledge on gene
expression profiles per cell type, a hierarchical Bayesian approach was taken: μt j
and λt j are endowed with normal-gamma priors with hyperparameters

μt0j; κ
t
0j; α

t
0j, and βt0j : ðμt j; λt jÞ � NGðμt0j; κt0j; αt0j; βt0jÞ. Note that the normal-

gamma distribution is a conjugate prior of log-normal distribution, based on
which marginal distribution of xt ij given the hyperparameters μt0j; κ

t
0j; α

t
0j, and

βt0j is analytically tractable. The other hidden variable, f t i, was endowed with

Dirichlet distribution: ðf 1 i; :::; f T iÞ � Dðα1 i; :::; αT iÞ.
For the inference, a collapsed variational inference was employed to handle

analytically intractable posterior distribution of hidden variables given observed
variables39. In the framework, the random variables with conjugate prior
distribution, which are μt j and λt j , were integrated out, which allows us to find a
fully Bayesian estimation of xt ij instead of estimation of the single most probable

μt j and λt j
39. By defining the variational distribution for the hidden variables, xt ij

and f ti , the objective function is to minimize the dissimilarity between the
variational distribution and probability distribution, measured by Kullback-Leibler
divergence (see Supplementary Note 2 for the detailed derivation). The
minimization was done by the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm available in SciPy Python library with the constraints
of f i

t ≥ 0 and ∑t f
t
i ¼ 1. Numba-compiled objective function and gradients were

used for the acceleration.

Selection of hyperparameters based on the empirical-Bayes framework.
BLADE has multiple hyperparameters for the hidden variables xt ij and f i

t , and also

for observed variable yij . For f i
t , a hyperparameter αt i for Dirichlet distribution

needs to be set. A user-defined value is assigned to αt i for all t since we do not have
prior information on cellular composition. For yij , we need to specify a precision of

each gene, γj , which we chose 1
Vð logyijÞs, where s and VðlogyijÞ are a user-defined

scale factor and a variance in log-scale measured per gene, respectively. For
hyperparameters of xt ij , μ

t
0j; κ

t
0j; α

t
0j , and βt0j; we incorporated prior knowledge of

gene expression profiles per cell type obtained from the scRNA-seq data. Given log-
normal likelihood and normal-gamma priors, average expression level and stan-

dard deviation of xt ij are: Eðlogxt ijÞ ¼ μt0j and Vðlogxt ijÞ ¼
βt 0j
αt 0j

, respectively. To

make use of the prior knowledge, we obtained the sample estimates of Eðlogxt ijÞ
and Vðlogxt ijÞ from the scRNA-seq data, denoted by μt j and ðσt jÞ2. Then, we
assigned μt0j ¼ μt j whereas αt0j is set by users followed by deriving:

βt0j ¼ αt
0j
ðσt jÞ2. Here, αt0j allows to adapt to how much information the single cell

data carries for the bulk RNA-seq data. The other hyperparameter κt0j is also user-
defined, which serve as a scale factor for variance of μt j (see also Supplementary
Note 2).

An empirical Bayes approach was employed to select the best set of user-defined
parameters40. For each configuration of parameters, a maximum likelihood
estimate of variational parameters is obtained using a subset of samples. Then, the
hyperparameter configuration with the highest likelihood is selected, followed by
performing deconvolution using the entire data set. Only a subset of samples is
used in the empirical Bayes step, not only to gain computational efficiency but also
to avoid overfitting. Throughout the manuscript, we considered a total of 90
different parameter configurations that cover all possible combinations of
αt i 2 1; 10f g, αt0j 2 0:1; 0:5; 1; 5; 10f g, κt0j 2 1; 0:5; 0:1f g, and s 2 1; 0:3; 0:5f g.

Construction of the simulation data with a controlled noise level. We con-
structed simulation data sets of bulk gene expression profiles with known cellular
fraction, gene expression profiles per cell type, and a diverse number of cell types
and samples. To this end, given a number of cell types and genes, we first randomly
sample an expected gene expression level μt j for gene j and cell type t from a
normal distribution with 0 mean and standard deviation of 1.5: μt j � Nð0; 2Þ.
Then, we sample gene expression levels per sample and per cell type, xt ij from a
log-normal distribution with mean μt j and standard deviation of σ
(xt ij � LNðμt j; σÞ), where σ is the parameter to control the variability in gene
expression per cell type of each simulation data set. Fraction of cell types are
sampled from a Dirichlet distribution with uninformative prior: f ti � ð8iαti Þ, where
αti ¼ 1. Then, the bulk gene expression profiles are generated by yij ¼ ∑t f

t
i xij

t . We
constructed a total of 700 training data sets with the following settings: (1) number
of samples= [5,10,20,50,100]; (2) number of genes= [100,200,500,1000]; (3)
number of cell types= [2,3,5,10,20]; and (4) level of variability in gene expression
profiles per cell type: σ = [0.1,0.2,0.5,0.75,1,1.25,1.5].

Construction of PBMC simulation data. To construct realistic simulation data, 20
bulk gene expression data sets were generated by randomly sampling and merging
a subset of 9439 cells from the two PBMC scRNA-seq datasets. For each sample,
the cellular fraction was first sampled from a Dirichlet distribution. The actual
fractions of the 15 cell types were used as the parameter of the Dirichlet dis-
tribution so that the sampled fraction is similar to the total fraction. The fraction
was then converted into the count of each cell type, with the following constraints:
(1) the total number of cells is 100, and (2) the minimum number of cells per type
is one. Then, the given number of cells were sampled with replacement, followed by
obtaining the raw counts per cell type as the cumulative sum of raw counts of the
sampled cells. Up to three distinct cells per type were allowed to be sampled since
otherwise, gene expression variability was over-stabilized due to the averaging.
Finally, the simulated bulk raw counts were obtained by taking the cumulative sum
of the raw counts per cell type among 15 cell types. The bulk gene expression data
was log-normalized using the Seurat package32.

Standard bulk RNA-seq data for PBMC immune cell mixtures. The raw counts
of RNAseq data and immune cell fractions determined by flow cytometry were
obtained from the GEO databases with accession GSE107572. The raw counts was
log-normalized using the Seurat package32.

Construction of PDAC evaluation data. PDAC single-cell RNAseq data were
obtained from the Genome Sequence Archive database under the accession code
CRP00065329. A total of 57,530 cells from 35 pancreas samples (11 normal pan-
creas and 24 PDAC samples) were previously classified into ten cell types. For
auxiliary data, we selected 17,266 cells (30% of cells) from six samples, of which
two are normal and four are PDAC samples with the most cells. The rest of the
29 samples were used as the main data for evaluation. The signature genes were
selected by the top 100 DEGs from each of the ten cell types (FDR < 0.1; 818 genes
in total), followed by obtaining mean and standard deviation from the reference
data. Note that we used more stringent criteria to select DEGs than for the PBMC
data, because a sufficient number of DEGs (>500 DEGs) still satisfies these. For
main data, a cumulative sum of the raw count of all cells was obtained from each
sample. The standard log-normalization was then applied to the raw count. For the
evaluation, the true cell type fractions and cell-type-specific gene expression pro-
files were obtained per main sample.

Systematic evaluation of BLADE and comparison against baseline methods.
The original implementation of CIBERSORTx, NNLS, and MuSiC were obtained
from https://cibersortx.stanford.edu/ (docker image), SciPy Python library, and
https://github.com/xuranw/MuSiC (R package), respectively. For all four methods,
the same set of genes were consistently used for a fair comparison. For the
simulation data sets with the controlled gene expression variability level, true mean
μt j and variability σ per cell type of all genes were retrieved. For the PBMC and
PDAC bulk transcriptome data, average and standard deviations of the union of
DEGs of, respectively, 15 and 10 cell types were obtained from the scRNAseq data.
These DEGs were selected using a FDR cutoff of 0.2 for PBMC data (in total 1007
genes) and a FDR cutoff of 0.1 for PDAC data (in total 818 genes). CIBERSORTx
and NNLS require average expression profiles per gene and cell type, and BLADE
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requires both mean and standard deviation. MuSiC internally calculates the gene
weight using the raw counts from scRNA-seq data, which was only available in
PBMC and PDAC evaluation data set. The Pearson correlation coefficient,
Spearman correlation coefficient, and root mean squared error (RMSE) were
measured using the predicted and true fraction of each cell type across the samples
to evaluate the deconvolution performance. Likewise, the Pearson correlation
coefficient was measured between true and estimated gene expression profiles per
cell type for group mode purification and per cell type and per sample for the high-
resolution mode purification. The performance evaluation for purification was
done only for CIBERSORTx and BLADE as NNLS and MuSiC only estimate
cellular fractions.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study is from public sources. The two PBMC CITE-seq datasets of
healthy donors were downloaded from 10x Genomics datasets database [https://
support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/
5k_pbmc_protein_v3] [https://support.10xgenomics.com/single-cell-gene-expression/
datasets/3.0.0/pbmc_10k_protein_v3]. The TCGA data is retrievable using the TCGA-
biolinks R package. The PBMC data is available from GEO under the accession code
GSE107572. The single-cell RNA-seq data of the PDAC cohort is available from the
Genome Sequence Archive under the accession code CRP000653.

Code availability
BLADE python software along with a user-friendly demo is available and maintained at
https://github.com/tgac-vumc/BLADE41.
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