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Dynamic FRET‑FLIM based 
screening of signal transduction 
pathways
Rolf Harkes1,4, Olga Kukk1,4, Sravasti Mukherjee1,2, Jeffrey Klarenbeek1, 
Bram van den Broek1,3 & Kees Jalink1,2*

Fluorescence Lifetime Imaging (FLIM) is an intrinsically quantitative method to screen for protein–
protein interactions and is frequently used to record the outcome of signal transduction events. 
With new highly sensitive and photon efficient FLIM instrumentation, the technique also becomes 
attractive to screen, with high temporal resolution, for fast changes in Förster Resonance Energy 
Transfer (FRET), such as those occurring upon activation of cell signaling. The second messenger 
cyclic adenosine monophosphate (cAMP) is rapidly formed following activation of certain cell surface 
receptors. cAMP is subsequently degraded by a set of phosphodiesterases (PDEs) which display 
cell-type specific expression and may also affect baseline levels of the messenger. To study which 
specific PDEs contribute most to cAMP regulation, we knocked down individual PDEs and recorded 
breakdown rates of cAMP levels following transient stimulation in HeLa cells stably expressing 
the FRET/FLIM sensor, Epac-SH189. Many hundreds of cells were recorded at 5 s intervals for each 
condition. FLIM time traces were calculated for every cell, and decay kinetics were obtained. cAMP 
clearance was significantly slower when PDE3A and, to a lesser amount, PDE10A were knocked down, 
identifying these isoforms as dominant in HeLa cells. However, taking advantage of the quantitative 
FLIM data, we found that knockdown of individual PDEs has a very limited effect on baseline cAMP 
levels. By combining photon-efficient FLIM instrumentation with optimized sensors, systematic gene 
knockdown and an automated open-source analysis pipeline, our study demonstrates that dynamic 
screening of transient cell signals has become feasible. The quantitative platform described here 
provides detailed kinetic analysis of cellular signals in individual cells with unprecedented throughput.

The genetic screens that have elucidated the roles of so many genes over the last decennia1–3 have, until recently, 
mostly relied on static end-point readouts such as cell viability or colony formation. However, in screens for genes 
involved in cell signaling and transient metabolic processes, static screening does not suffice, because the impact 
of such cell signals not only depends on the magnitude of the response, but also on its progression over time. 
Parameters like signal duration, inactivation, plateau phase and oscillatory behavior are essential for a complete 
understanding of signaling pathways. This necessitates genetic screens designed to capture the dynamics of 
signaling events, in short called “dynamic screens”. Thus, in recent years much effort has been invested into the 
development and improvement of methodology for dynamic screening3,4. Advanced live cell light microscopy 
is pivotal in these efforts, as it provides a large toolkit to address the dynamics of cellular processing in real time. 
These tools include time-lapse readout of single-cell morphological phenotypes by automated image analysis, 
and a variety of (fluorescent) indicators, both chemical dyes and genetically encoded indicators such as reporter 
constructs and FRET sensors. Combined with systematic genetic perturbations, imaging-based dynamic screen-
ing presents the state of the art in quantitative cell biology at the single cell level.

Our lab has focused on FRET because it can be used to study almost every aspect of cell signaling. FRET is 
a powerful, time-proven technique to study dynamic protein–protein interactions and also a great readout for 
biosensors, which can be designed to study various steps of signal transduction cascades. Consequently, biosen-
sors have been widely adopted by the scientific community since they first became available in the early 2000s. 
For dynamic purposes, FRET is commonly detected either by ratiometry, in which the ratio of intensities of the 
FRET donor and acceptor are used to follow interactions, or by recording the donor fluorescence lifetime, i.e., 
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the average time the donor stays in the excited state before returning to the ground state. To quantify FRET pre-
cisely by ratiometry, a series of complicated corrections are necessary5. In contrast, it is much easier to quantify 
FRET by FLIM because interaction between donor and acceptor shortens the excited-state lifetime of the donor 
linearly with FRET efficiency. Provided that care is taken to collect only emission from the donor (see below), 
FRET-FLIM quantification requires only knowledge of the characteristic lifetime of the (unquenched) donor6.

Thus, FLIM is ideally suited to quantitatively study baseline and stimulated FRET values in individual cells 
and among different cell populations, yielding data that are directly comparable between different laboratories 
around the world. The flip side of the coin is that dedicated and highly complex hardware is needed to read out 
the sub-nanosecond differences in donor lifetime that are associated with FRET. Moreover, the first implementa-
tions of FLIM equipment were custom-made, photon-inefficient and too slow for fast dynamic events. Therefore, 
until recently FLIM recordings were the exclusive domain of a few expert laboratories. In particular, the low 
throughput of FLIM rendered it ineffective for dynamic FLIM screens. However, over the last decade and a half, 
efforts of several research groups were aimed at improving acquisition speed and automating multi-well handling, 
as well as at simplifying extraction of quantitative parameters, such as fractions of interacting proteins, from 
FLIM data7–9. In collaboration with leading microscopy manufacturers, these developments led to commercial 
turn-key implementations that opened up FLIM to non-expert users. In addition, recent developments, includ-
ing our own, emphasized implementation of extremely photon efficient and fast FLIM instrumentation, both 
for confocal10,11 and wide field microscopy12. Together, these improvements now enable following large numbers 
of cells in real time, with high data content and minimal photodamage, and make FLIM a very attractive choice 
for FRET-based signaling studies. Moreover, these instruments should now enable using FLIM in time-lapse 
dynamic screening applications.

In this feasibility study, we developed a dynamic imaging-based screen and automated analysis for monitoring 
the activity of proteins involved in cellular signal transduction. We focused on the well-characterized second mes-
senger cyclic Adenosine Mono Phosphate (cAMP), an ubiquitous messenger that controls many different cellular 
processes, including cell differentiation, gene transcription, secretion and ion channel activity13. cAMP is formed 
upon activation of G protein-coupled receptors (GPCRs) that signal via Gαs subunit. Gαs triggers members of the 
Adenylate Cyclase (AC) protein family, a group of isozymes encoded by 10 different genes in mammals, which 
rapidly produce cAMP from cytosolic ATP14. cAMP then relays the signal to a set of effector proteins, which 
include Protein Kinase A (PKA), a hetero-tetramer consisting of 2 cAMP-binding regulatory subunits and 2 
catalytic subunits. Other effectors include nucleotide-gated ion channels, exchange factors such as Epacs and 
Popeye domain containing proteins15. In addition, recent studies have provided compelling evidence that the 
time course as well as precise subcellular localization of cAMP increases plays a pivotal role in determining the 
outcome of the signaling cascade16–18. For example, PKA members are often anchored to specific target sites by a 
family of A-Kinase Anchoring Proteins (AKAPs), further fine-tuning the biological effects of cAMP. The extensive 
set of proteins involved in synthesis of and response to cAMP underscores the importance of this messenger.

The kinetic properties of signaling are determined by the balance of production and degradation of cAMP. 
Cellular breakdown of cAMP is catalyzed by a family of specialized enzymes, the phosphodiesterases (PDEs). 
Based on their sequence relatedness, kinetics, modes of regulation, and pharmacological properties, the PDEs 
can be divided into 11 families19. In mammals, 3 of the 11 PDE families selectively hydrolyze cAMP (PDEs 4, 
7, and 8), 3 families are selective for cGMP (PDEs 5, 6, and 9), and 5 families hydrolyze both cyclic nucleotides 
with varying efficiency (PDEs 1, 2, 3, 10, and 11). Selectivity in this case is defined as high substrate preference 
at physiological concentrations. Genes for individual PDEs can have multiple promoters, and the transcripts are 
subject to alternative splicing, resulting in nearly a hundred different PDE messenger RNAs20. However, most 
cell types express only a subset of PDE family members (e.g. in HeLa cells: PDEs 1A, 2A, 3A, 3B, 4A, 4B, 4D, 5A, 
6A, 6C, 6D, 7A, 7B, 8A, 8B, 10A are expressed)21. In addition, the activity of PDEs can be further regulated at the 
protein level, for example by other second messengers including cGMP, Ca2+ and other PDE isoforms generat-
ing crosstalk between second messenger systems22 and further increasing the complexity of cAMP signaling.

In this study, we systematically investigated the breakdown efficacy of 22 different PDEs in HeLa cells by 
siRNA-mediated knockdown. siRNA-mediated knockdown has been proved to be an effective strategy to dimin-
ish PDE activity, as was shown by Willoughby et al., who focused on the role of PDE4 in HEK293 cells23. We 
created cell lines stably expressing the Epac-based cAMP FRET-FLIM sensor, Epac-SH189, which was generated 
in our lab by a series of sequential refinements24,25. Epac-SH189 consists of most of the sequence of Epac-1, with 
mutations to render it catalytically dead as well as dislodge it from membranes by deletion of the DEP domain. 
This moiety further harbors a single point mutation, Q270E, which increases its affinity for cAMP. EPAC is 
flanked by FRET donor mTurquoise-2 and a tandem of dark Venus proteins as acceptor25. Since this sensor 
lacks acceptor emission, it is possible to collect photons from a large part of the donor spectrum without the 
need to apply corrections for the acceptor lifetime. This tailors EPAC-SH189 specifically for high-efficiency FLIM 
analysis25. Upon cAMP binding, the Epac moiety undergoes a conformational shift, which decreases FRET and 
thereby increases the donor lifetime. The high FRET span and photostability of this sensor made it ideal for rapid 
screening purposes when the photon budget is limited.

In HeLa cells grown on 96-well plates, a specific PDE was suppressed in each well with a set of 4 differ-
ent siRNA oligonucleotides, administered 72 h prior to imaging. For completeness of the feasibility study, we 
included all PDE families, irrespective of their selectiveness for cAMP. We monitored the production and break-
down of cAMP using a Leica SP8 FALCON microscope10 for high-throughput and photon-efficient recording 
of donor fluorescence lifetimes. Cells were automatically segmented using an established deep-learning based 
segmentation protocol, Cellpose26, and the various kinetic properties of cAMP signals in the cell interior were 
extracted by custom-made Python analysis routines. The highly quantitative results of 6 independent screens 
identified two dominant PDE species in determining cAMP breakdown in HeLa cells.
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Materials and methods
Stable expression of Epac‑SH189 biosensor.  HeLa cervical cancer cells (ccl-2) were cultured in DMEM 
(Gibco, 31966-021) supplemented with 10% FCS (Gibco, 10270). For creation of the stable cell line expressing 
the Epac-SH189 biosensor25 transfection of HeLa cells was performed with the Tol2 transposon system27. For 
transfection two plasmids are used: a cDNA with the transposase sequence and another cDNA with the follow-
ing elements: Tol2, promoter, the puromycin resistance gene, gene encoding for Epac-SH189 and a second Tol2 
sequence.

HeLa cells were seeded on 6-well plates at approximately 10% density and transfected the next day. 1 μg of 
both plasmids was mixed with 6 μl FuGENE reagent (Promega E269A) in 200 μl serum free DMEM and incu-
bated for 30 min before adding the transfection mix to the cells. The cells were further incubated for 48 h and 
subsequently subjected to puromycin selection (1 μg/ml, Sigma-Aldrich P8833). After 4 days cells were sorted 
on a fluorescence-activated cell sorter (FACS) based on mTurq2 fluorescence intensity.

Generating PDE knockdown cells.  Individual PDE gene knockdown was achieved by transfection with 
a pool of four exogenous short RNA duplexes (Table S1) with Lipofectamine® RNAiMAX cationic lipid formula-
tion (ThermoScientific, 13,778,030). After incubation for at least 48 h, cells were imaged in fresh serum-free F12 
culture medium (Gibco, 21,041–025) on 96 well cell culture microplates (Greiner Bio-one, 655,090).

Stimuli used in the screen.  Isoproterenol, Propranolol, Forskolin, IBMX (3-isobutyl-1-methylxanthine) 
and Cilostamide were purchased from Sigma-Aldrich.

FRET detection for monitoring dynamic changes in cellular cAMP levels.  To monitor the pro-
duction and breakdown of cAMP in real time, the donor (mTurquoise2) fluorescence lifetime of the Epac-SH189 
FRET biosensor was measured by FLIM. This FLIM sensor features a tandem dark (i.e., non-emitting) Venus 
acceptor which allows recording a large part of the donor emission spectrum while minimizing contamination 
of the signal with acceptor emission25.

FLIM experiments were carried out using a Leica TCS-SP8 FALCON confocal FLIM microscope10 using 
LAS-X version 3.5 software. The microscope was equipped with a humidified incubator with 5% CO2 at 37 °C. 
Cells were excited with a pulsed diode laser (PicoQuant) at 440 nm, and photon arrival times were recorded with 
two HyD detectors, together covering the mTurquoise emission spectrum, adjusted to count photons at approxi-
mately equal rates (460–510 nm and 515–600 nm, respectively). In an additional channel, cell nuclei stained 
with 1 µM SiR-DNA (Spirochrome, SC007) for at least 45 min were imaged at 640 nm excitation, 650–725 nm 
emission, to support segmentation. Experiments were conducted in 96-Well plates (Greiner Bio-one, 655090) 
using a 20X 0.75 NA dry objective (Leica Microsystems, #506517), recording a single randomly selected field of 
view with ~ 200–600 cells per well, at 2 or 5 s time-lapse rate. In all experiments, the position of the focal plane 
was actively stabilized using the Leica Auto Focus Control (AFC) to prevent focal drift or focus artifacts from 
pipetting of stimuli.

For the analysis of lifetime data of PDE knockdown cells and control cells, TCSPC data were fitted in various 
manners. The recorded photon arrival time histograms showed multi-exponential decay, suggesting the super-
position of different FRET states. These FLIM data are well described by a double-exponential fit: a high FRET 
state with a lifetime of 0.6 ns, and a low FRET state with a calculated lifetime of 3.4 ns. For the lifetime analysis, 
the images were binned (2 × 2 pixels) and the pixel photon arrival times were fitted to a double-exponential 
reconvolution function with fixed lifetimes at 0.6 ns and 3.4 ns using Leica LAS X software. The resulting two 
images contained the amplitudes of these two components and were saved as TIF files, reducing the amount of 
raw data more than 40-fold. In order to relate to conventionally reported lifetime values we map the ratio of the 
components back to the original 0.6–3.4 ns scale, resulting in a weighted mean lifetime value.

For stimulation by photo-release of caged cAMP, cells were treated with DMNB-caged cAMP (4,5-Dimeth-
oxy-2-Nitrobenzyl Adenosine 3’,5’-Cyclicmonophosphate, Molecular Probes, D1037) for at least 30 min prior 
to imaging at a final concentration of 1 mM. Uncaging was with a 200 ms UV pulse from the Leica EL6000 lamp 
(4 mW, approximately 400 mW/cm2 in our experimental setup with the 20×, 0.75 NA dry objective) using a 
DAPI_LP filter cube (380/40 nm, 405 nm dichroic) which was inserted in the confocal excitation path to enable 
UV illumination and confocal FLIM recording simultaneously.

For experiments involving receptor stimulation, after acquisition of a baseline of at least 5 frames, the 
β-adrenergic receptor agonist Isoproterenol (40 nM final concentration) was added to the imaged well, rapidly 
followed by addition of the receptor antagonist Propranolol (60 nM final concentration). After lifetime values 
had returned to the baseline, the direct activator of adenylate cyclases Forskolin (25 µM final concentration) was 
administered for internal calibration.

As rapid and reliable mixing of the stimuli was paramount in these experiments, we first compared several 
methods of administration, including replacing the entire well content with new medium containing each stimu-
lus, administration from an automated pipetting system and manual pipetting from concentrated stock solutions. 
Fast and reliable responses whilst evoking minimal focus drift were observed with the following protocol: stimuli 
were added by manually pipetting in 10% of the well volume from a 10X concentrated stock solution, combined 
with rapid mixing by pipetting the well content up and down for 4 times.

Kinetic analysis using Python.  A graphical representation of the automated workflow and analysis pipe-
line is shown in Fig. 2. All raw data is available on Zenodo28 and custom written software with the link to the 
corresponding Zenodo data repository can be found on our GitHub page29. See http://​www.​python.​org and 

http://www.python.org
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https://​imagej.​net/ for open source software used in this work. These are the steps that are taken in the analysis, 
they can be repeated by running the software found online:

1.	 Cells are segmented using the deep learning algorithm Cellpose26. Due to minimal cell movement during 
acquisition, intensity data from all frames can be combined. The mean intensity is sent to Cellpose for deep-
learning based cell segmentation.

2.	 Since the data contains the intensity of two fitted lifetime components, we calculate the weighted lifetime 
per frame using formula: τ =

0.6×Int1+3.4×Int2

Int1+Int2
 , where τ is the average lifetime from the two fitted component 

amplitudes (Int1 and Int2).
3.	 A lifetime trace is generated for each Region of Interest (ROI) in the labelmap, and fitted with the logistics 

function: τ = τ0 +
τR

1+e−4(t−tm)/r  , where τ0 is the value of the baseline lifetime, τR is the range of lifetimes, tm 
is the time at the midpoint and r is the breakdown time. r represents the time required to break down the 
entire range if the breakdown had been constant at the value of the midpoint.

4.	 Goodness of fit was assessed by calculating the root-mean-square deviation (RMSD) and the corresponding 
mean absolute percentage error (MAPE). Only traces with MAPE below 1% were included in experiment 
evaluations and statistical analysis.

5.	 In the final step of the analysis is the generation of the figures using individual Jupyter notebooks that can 
be found in the GitHub repository29.

Comparison of cell segmentation.  We initially used a conventional image analysis approach for cell seg-
mentation by implementing Voronoi segmentation in an ImageJ macro (Github29), using the thresholded signal 
of nuclei stained with SiR-DNA as seeds. Each ROI created in this way was refined by restricting the ROIs with 
respect to size and intensity. Note that nuclear labeling proved not to be necessary for Cellpose segmentation. 
In comparing two independent segmentation runs, one with and the other without inclusion of the SiR-DNA 
channel, Cellpose yielded comparable high-precision labelmaps for all imaged FOVs. The results of Voronoi 
segmentation and Cellpose were in very good agreement, with the former providing significantly faster segmen-
tation, at the expense of slightly reduced reliability and dependance on nuclear seeds. Since analysis time was 
not restrictive, we include segmentation with Cellpose in this study. For further details, see Fig. S1 and the text.

Results
Optimizing screening conditions and FLIM analysis.  We first set out to determine optimal conditions 
to acquire time-lapse FLIM images using the Leica SP8 FALCON system. This system is designed for high-count 
rate Time-Correlated Single Photon Counting (TCSPC) and records mTurquoise2 lifetimes reliably at count 
rates in excess of 40 MHz per detector. We spread the mTurquoise2 emission over 2 HyD (hybrid detectors) by 
adjusting the spectrometer settings (see M&M), effectively doubling the maximum count rate. Global fitting 
indicated dominant lifetime components of 3.4 and 0.6 ns, indicating the superposition of two different FRET 
states. Saturation of the sensor with cAMP, as induced by the treatment of cells with the direct AC activator 
forskolin, changed the relative magnitude of the two populations but not their lifetimes. All time-lapse images 
were therefore fitted with a n-Exponential Reconvolution model using two fixed lifetime components of 3.4 and 
0.6 ns, and the intensities resulting from these fits were exported as tiff files.

High signal to noise (S/N) ratio of lifetime measurements requires large numbers of photons to be collected 
per frame from each cell. However, possible photodamage, bleaching, and the necessary throughput set upper 
limits to the excitation power and acquisition time. To reliably resolve small differences in cAMP concentration, 
we aimed to achieve a lifetime repeatability (i.e., deviations of consecutive baseline readings in the integrated 
signal of each cell) of less than 50 ps RMS, even for dim cells. With the conditions detailed in M&M, actual 
observed RMS of ~ 25 ps, n = 6500 cells, was achieved for most screens. As the lifetime span of the Epac-SH189 
sensor ranges from ~ 2.0 ns in the resting state up to 3.3 ns when maximally saturated with cAMP, S/N ratio is 
thus better than 40:1. It can be seen in Fig. 1 that this was sufficient to clearly resolve cell-to-cell variability in 
response to addition of norepinephrine (NE), which activates β-adrenergic receptors in HeLa cells. This S/N ratio 
also suffices to resolve cell-to-cell variability in baseline lifetimes, and thus in resting cAMP concentrations. The 
lifetimes of FRET sensors at resting state appeared near-normally distributed (2.34 + /− 0.05 ns, mean +/− SD, 
n = 154), Fig. 1E. Interestingly, a small percentage of cells with slightly increased cAMP levels were found (Fig. 1, 
see arrows). When imaged 2 days after culturing, these cells usually grouped together, suggesting clonal differ-
ences in baseline cAMP levels in WT HeLa cells. We also noticed that in most cells cAMP levels do not return 
to the initial resting values after transient stimulation with NE.

The required throughput is determined by both the temporal resolution necessary to capture cAMP dynam-
ics (time-lapse interval) and by the number of cells to be recorded from. The latter depends on several factors, 
including cell-to-cell variability due to stochastic differences inherent in signal transduction cascades and on 
incomplete penetration of the genetic perturbations carried out in the screen. Most siRNA mediated knockdown 
experiments display considerable variability in gene silencing resulting in incomplete or even no detectable 
knockdown in a percentage of cells30. Our pilot studies showed that recording from a few hundred cells in a 
single FOV captured most of the variation in each well. To minimize the risk that factors such as ongoing aging 
of the medium and increasing cell confluency might bias the results, we decided to run each entire screen, i.e. 22 
knockdown conditions + controls in duplicate (60 wells in total), within 6–8 h. Under these conditions, we found 
near-identical lifetimes in the experiments recorded at the onset and at the end of the 6-h long screen (Fig. S2). 
Together, these considerations led us to conduct the screens using a 20 × dry objective, recording a single field 
of view with ~ 200–600 cells per well, and at 2 or 5 s time-lapse rate.

https://imagej.net/
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Automatic extraction of kinetic parameters.  To optimize automated image analysis on a cell-by-cell 
base, we started by comparing algorithms for reliable segmentation of individual cells. We initially adapted 
standard image analysis methods by generating a dedicated Image J macro tailored to our cells. In essence, cell 
nuclei were detected by in vivo staining with SiR-DNA, followed by Voronoi segmentation to determine cell 
boundaries, which was based on the time-averaged intensity of the time-lapse images. This macro29 yielded 
good results, i.e. a ~ 95% reliable segmentation of cells was achieved as judged by eye. However, while our experi-
ments were in progress, a general algorithm for segmentation of cells based on deep-learning algorithms was 
reported26, the performance of which we tested against our own developments. In several independent experi-
ments we found Cellpose26 to be superior in reliability compared to more conventional image segmentation 
algorithms, including our own developments (Fig. S1). It must be mentioned that Cellpose is unpractically slow 
for near-real time analysis, but as it delivered very good segmentation without needing nuclear staining, we 
adopted it for all off-line segmentation of data in this study (for details, see M&M).

For each individual cell (ROI), we extracted mean fluorescence intensity and donor lifetime (Fig. 1) values, 
along with data on ROI size and potential error conditions such as disturbances by dislodged cells and out-of-
boundary conditions (detailed description in accompanying information on our Github page). These data also 
were used to calculate RMS noise values of intensity and lifetime signals. Moreover, after fitting the agonist 
induced responses of cells to a suitable model (Fig. 2 and M&M), dynamic parameters such as activation rates, 
peak values, decay properties and steady state value were extracted.

Next, we tested the reproducibility of our results with different batches of cells on different days. Our analy-
sis showed excellent consistency of S/N ratio and calibration value following treatment with 25 µM forskolin. 
Baseline values were slightly more variable (Table S2), most likely reflecting small batch-to-batch variations in 
basal cAMP levels. These observations stress the importance of carrying out signaling screens within a limited 
time span, i.e., preferably on a single day.

Caged‑cAMP assay shows importance of PDE3A in regulation of cAMP breakdown.  We next 
set out to conduct a FLIM screen to investigate the roles of the roles of individual PDEs in breaking down cAMP. 
We initially studied the kinetics of cAMP changes in HeLa cells upon photorelease of caged cAMP. For that, 
HeLa cells stably expressing the Epac-SH189 were seeded in 96-well plates, and using pools of 4 specific siRNAs 
against each isoform, individual PDEs were knocked down in duplicate wells. Cells were loaded with DMNB-

D

CBA

100μM NE 25μM FSK

t=0 sec
25µM FSK
t=280 sec

E

Figure 1.   Detection of dynamic changes in cAMP levels in HeLa cells by FLIM. (A–C) Cells expressing the 
FRET-FLIM sensor Epac-SH189 are imaged at rest (A) and after stimulation with forskolin (FSK). (B) Calibration 
bar: lifetime in ns. Panel (C) shows the ROIs (color-coded) for each individual cell, as segmented using 
Cellpose, overlayed with fluorescence intensity. (D) Single cell FLIM time-lapse traces extracted from the same 
experiment show the transient response to stimulation with a 20-s pulse of the agonist, 100 µM norepinephrine 
(NE). The bold black line represents the mean of all cells. NE was added at t = 70 s and for calibration FSK was 
added at t = 265 s. (E) Distribution of the baseline values (average of 20 samples for each cell). Yellow arrows in 
(A, D and E) indicate cells with higher baseline lifetimes.
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caged-cAMP at 1 mM final concentration for 30 min. Uncaging with a 200 ms UV pulse caused an immediate 
increase in intracellular cAMP levels, and thus in donor lifetime, which subsequently returned towards its base-
line level (Fig. 3). Hundreds of cells within a single FOV were imaged every 2 s for at least 140 s (or longer, if slow 
recovery called for that) and acquired data was stored for analysis offline.

Following segmentation, time-lapse FLIM traces for each ROI were individually fitted to a logistic (sigmoid) 
curve. For large numbers of cells, the data and fits were visually inspected to ensure proper fitting using a Python 
script (results_browser29). cAMP breakdown time was then calculated from the resulting fit parameters and 
plotted for each PDE knockdown condition (Fig. 4). From these data, it is apparent that knockdown of PDE3A 
markedly affects the breakdown time in these cells (85.5 ± 2.5 s, versus 37.9 ± 0.5 s in WT cells, (mean ± SEM; 
p < 0.001, student t-test). Additionally, a smaller but significant effect of PDE10A knockdown on cAMP break-
down was seen (51.4 ± 0.8 s, p < 0.001).

From the data in Fig. 4, it is also apparent that the calculated decay times for individual cells show consider-
able variability. As the S/N ratio within a single cell is excellent (compare e.g. the variability of the initial 123 
samples in the baseline in Fig. 4), the cell-to-cell variability in FLIM values likely has biological origin. Moreover, 
the extremely large span of the observations seen for knockdown of PDE3A and PDE10A suggest that lack of 
or incomplete PDE knockdown in individual cells is a further major determinant of variability in these wells. 
Furthermore, cell shape differences, e.g. in surface-to-volume ratios, are likely to affect cAMP clearance. This 
view is supported by the observation that very similar results were obtained when we repeated selected condi-
tions, again in duplicate, a month later.

Next, we carried out a follow-up experiment to evaluate the effect of simultaneous knockdown of both PDE3A 
and PDE10A. Remarkably, knockdown of these two PDE genes in the same cell did not significantly slow down 
cAMP breakdown below the rate seen for PDE3A alone. This is perhaps unexpected because in PDE3A knock-
down cells there is still a considerable rate of cAMP clearance. Therefore, next we assayed cAMP breakdown in 
cells pretreated with two well-characterized PDE inhibitors, the nonspecific PDE inhibitor IBMX31 (100 µM) and 
the PDE3 family specific inhibitor cilostamide32 (1 µM) administered either alone or together. Both inhibitors 
slowed down cAMP breakdown to rates slightly below that of combined PDE3A/PDE10A siRNA treatment, and 
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Figure 2.   Schematic overview of the FLIM screen for dynamic changes in cAMP. HeLa cells expressing FRET-
FLIM sensors grown in 96-well plates are treated with siRNA pools for 48 h. Fluorescence was read out using 
an automated Leica SP8-FALCON FLIM microscope. The time-average of fluorescence intensity was used for 
segmentation using Cellpose, whereas the fluorescence lifetime data were fitted with a double-exponential 
decay using fixed fast and slow components of 0.6 ns and 3.4 ns, respectively. The magnitudes of those two 
components were exported to Python for further analysis. Based on the segmented ROIs, lifetime data were 
plotted for each individual cell, subjected to quality control, and agonist-induced changes were fitted with a 
suitable model. The fitting parameters are then summarized in descriptive plots.
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combined they caused a further increase in cAMP clearance times (Fig. 5). It is also noteworthy that unlike PDE 
knockdown, inhibitor pretreatments selectively wiped out the population of cells with fastest breakdown times, 
consistent with the notion that high variability in breakdown speeds in the population of PDE3A and PDE10A 
knockdown cells reflects incomplete knockdown by siRNAs. Intriguingly, despite inhibition of all PDEs, cAMP 
still eventually is cleared in these HeLa cells. The mechanisms involved remain to be elucidated in further studies.

While analyzing these data, we noted that baseline donor lifetimes in cells pretreated with DMNB-cAMP 
showed considerable biological variability, ranging between 2.4 ns and 2.7 ns (Fig. S3A). In contrast, untreated 
cells had average lifetimes of 2.28 ns at rest and showed considerably less variability (Fig S3B). The difference 
increased when cells were incubated with increasing concentrations of DMNB-cAMP, indicating some leakiness 
(spontaneous decomposition of the caging group in the cells) of this compound. In line with this, baseline donor 
lifetimes in PDE3A knockdown cells and in PDE3A / PDE10A knockdown cells were significantly elevated in 
DMNB-cAMP treated cells (Fig. S4A), but not in untreated controls. Together, these data indicate that PDE3A 
also has significant activity when cAMP levels are only slightly increased in these cells. We also noted that in the 
vast majority of stimulated cells, cAMP levels eventually returned to their pre-stimulation value (Fig. S4C,D). A 
similar observation holds true for PDE knockdown cells.

We conclude that our screening platform is well suited to resolve even minor differences in cAMP clear-
ance kinetics, and that variability between experiments carried out several weeks apart is only minor. However, 
pretreatment with DMNB-cAMP appears to cause a significant disturbance of baseline cAMP levels, and this 
effect was amplified when PDE3A was knocked down. We therefore redesigned the experimental paradigm to 
circumvent the confounding effect of caged cAMP.

Dominant role of PDE3A is confirmed using transient activation of GPCR signaling.  Dynamic 
screens can also be carried out when AC is activated following stimulation of GPCRs with their cognate ligands. 
However, in such experiments it is much harder to dissect the contribution of PDEs in controlling the rate of 
cAMP clearance, because cAMP levels are also affected by the continued activity of proteins (GPCRs, G proteins 
and AC) upstream in the signaling cascade. Termination of Gαs activity is believed to happen in seconds33,34 and 
AC activity is strictly dependent on GTP-loaded Gαs. However, receptor inactivation is much slower and, in 
most cases, not complete: a small proportion of receptors is thought to recycle to the plasma membrane where 
they can become reactivated by the agonist and continue to signal35.

Therefore, we adopted a protocol in which cells were stimulated with a receptor agonist, followed within 
10–15 s by addition of excess of a potent competitive antagonist. We chose β-adrenergic receptors as they form 
a well-characterized G-protein coupled receptor system36,37, and are endogenously expressed in HeLa cells. We 
first stimulated HeLa cells with 40 nM of the receptor agonist isoproterenol which caused a rapid rise in cAMP 
levels and subsequently added the antagonist propranolol at 60 nM concentration which caused a sharp decline 
following the stimulation. Finally, 25 µM forskolin was added to directly stimulate AC and obtain a maximal 
sensor response as a control. Figure 6 shows a representative single-cell lifetime trace along with a fitted logistic 
curve capturing the decay kinetics.
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Figure 3.   Changes in donor lifetime of the Epac-SH189 sensor upon uncaging of cAMP. The time trace (right) 
is from the green cell indicated in the left. Cells were imaged every 2 s and uncaging was at 25 s using a 200 ms 
flash of UV light. Note quick degradation of cAMP by PDEs back to baseline levels. Orange line shows the 
logistic function fitted to the data. Fit parameters are indicated by dashed lines: minimum and maximum 
lifetime (horizontal lines), maximum slope (diagonal line); vertical dashed lines indicate the intersection 
between maximum slope and min/max lifetime. The reported breakdown time (black arrow) is the time 
between the vertical two lines. The lower right panel shows the fit residuals.
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Figure 4.   Decay time of donor lifetime signals following UV-uncaging of cAMP in cells treated with siRNAs 
for the indicated PDEs. Note significantly slower breakdown upon knockdown of PDE3A, and a smaller, but 
still significant contribution of PDE10A. Datapoints are fitted decay times of single cells. For each condition, the 
experiment was performed in duplicates, with cells grown, transfected, and assayed in two independent wells. 
Indicated are median value (vertical black line), mean value (green dotted line); boxes encompass middle 50% of 
values and whiskers represent 1.5 times the interquartile range. Inset: 10 representative traces for cAMP decay in 
Hela cells with PDE3A gene knock-down (upper panel) and control (lower panel) cells. Cells were imaged every 
2 s; uncaging at 25 s using a 200 ms flash of UV light.

Figure 5.   Breakdown of cellular cAMP after uncaging of DMNB-cAMP in HeLa cells. Datapoints represent the 
cAMP breakdown time values for all analyzed ROIs (individual cells) at a given condition. For each condition, 
the experiment was performed in duplicates, with cells grown, transfected, and assayed in two independent 
wells. Further details are as in Fig. 4.
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Importantly, we noted that cAMP decay rates as determined following this experimental protocol in WT 
cells were approximately equal to those measured after photorelease of caged cAMP. This implicates that fol-
lowing addition of propranolol, all upstream steps in the signaling cascade became inactivated within seconds. 
It was also confirmed that when propranolol was added as first stimulus, no detectable response followed upon 
subsequent addition of isoproterenol. We therefore conclude that this experimental paradigm is well suited to 
study the role of PDEs in cAMP breakdown.

Figure 7 shows effects of individual knockdown of the same set of 22 PDEs assayed according to this protocol. 
Again, we find that PDE3A is the most prominent enzyme controlling cAMP breakdown in HeLa cells, followed 
by PDE10A. The effects of knockdown of other PDEs were not significant. Furthermore, the double knockdown 
of PDE isoforms 3A and 10A together is also in good agreement with the data from the first screen after pho-
torelease of caged cAMP. Remarkably, however, the effects of PDE inhibitors IBMX and cilostamide appeared 
more pronounced as compared to the first screen. Eventually, in all cases cAMP levels returned towards baseline 
levels, indicating the activity of additional cAMP clearance mechanisms in these cells.

Finally, we tested for possible correlations between fluorescent properties of the cells, and outcome of the 
analysis. We found no evidence that cellular brightness affected donor baseline lifetimes for individual cells 
(Fig. S5). However, higher expression levels of the biosensor slightly prolonged cAMP breakdown, presumably 
due to the buffering effect of the Epac-sensor (Fig. S5). We conclude that variability in cellular cAMP breakdown 
speeds appears to dominated by true biological variability and that the agonist/antagonist stimulation paradigm 
is well suited to study the dynamics of cAMP turnover in genetic screens.

Discussion
Dynamic FLIM screening is finally within reach.  The theoretical advantages of quantitative FLIM 
imaging for detection of FRET in screening applications have been long acknowledged: in principle, FLIM 
recording is insensitive to differences in expression levels of the sensor, sensor bleaching, excitation fluctuations 
and slight misfocusing. Moreover, because it is a single-channel technique, it also circumvents artifacts due to 
e.g. chromatic aberration and sensitivity difference issues between channels which are often seen in ratio imag-
ing. However, the practical implementation of FLIM in screenings has thus far been less than straightforward. 
This is because: first, until recently, available FLIM instrumentation has been either very slow or photon-hungry, 
and second, available FRET sensors most often are not optimized for FLIM read-out. In fact, FRET sensors have 
been almost exclusively optimized for ratio-imaging, and many sensors that offer a decent dynamic ratio change, 
show only a small lifetime change when assayed by FLIM24,25. Having spent significant efforts in improving both 
FLIM instrumentation and FRET-FLIM sensors, we here aimed to put these developments to the test and inves-
tigate the feasibility of a FLIM based dynamic screen. To this end we developed a screening platform and analysis 
pipeline to identify key PDE isoforms responsible for cAMP breakdown in HeLa cells.

We acquired data from HeLa cells expressing Epac-SH189 with a high-speed TCSPC instrument, the Leica SP8-
FALCON and set up an analysis pipeline to extract dynamic data on cAMP levels in individual cells. Hundreds 
of cells per condition were segmented, and single-cell time-lapse traces with lifetime information were analyzed 
and fitted to a suitable mathematical model. We found that FLIM recording was stable and reproducible, with 
RMS noise levels in single-cell calculated lifetimes of about 25 ps, and that the majority of observed variability 
between cells and from day to day represents genuine biological variations. In addition, due to the excellent 
sensitivity of the instrument, no bleaching was detectable after collecting hundreds of frames from a FOV and 
we found no indications for phototoxic stress on the cells. Thus, FLIM recording has now become sufficiently 
fast and sensitive for routine data acquisition in single cell time-lapse screening experiments.

Setting up the proof‑of‑principle screen.  In order to characterize the roles of individual PDEs in HeLa 
cells, we employed two independent manners to induce transient increases in cytosolic cAMP levels. In initial 
screens, we uncaged DMNB-caged cAMP using a brief flash of UV light. The ensuing increase in sensor lifetime 
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Figure 6.   Assessing receptor mediated cAMP pathway. (A) Overview of the β-adrenergic receptor signaling 
pathway and agents used to affect cAMP production and breakdown. (B) Donor fluorescence lifetime changes 
of the Epac-SH189 sensor (blue line) in a single HeLa cell after stimulation of the β-adrenergic receptor with the 
agonist isoproterenol (40 nM) and subsequent blocking with the antagonist propranolol (60 nM). Forskolin 
(FSK) (25 µM) is added for calibration. Also shown is a logistic fit to estimate the cAMP breakdown time 
(orange).
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rapidly decayed towards baseline, and speed differences in cAMP clearance reflected the effect of knockdown 
of specific PDEs and PDE inhibitors. Among 22 individual PDEs included in our screen, we found PDE3A and 
PDE10A knockdowns to significantly slow down cAMP clearance. However, loading cells with DMNB-cAMP 
caused an increase in baseline levels, most likely due to some leakiness (spontaneous hydrolysis) of the com-
pound, potentially biasing the results.

Therefore, we also tailored a protocol involving transient agonist-induced activation of GPCR signaling for 
screening purposes. GPCR signaling cascades encompass many different proteins at the cell membrane as well 
as in the cytosol, and cAMP metabolism following elevations due to receptor activation is highly complex. Upon 
stimulation with GPCR agonists, the time course of cAMP elevation is a mixture of AC activation and cAMP 
production on one hand, and cAMP clearance by PDEs on the other hand. Thus, the time course reflects direct 
aspects of Gαs activity, but also indirect aspects such as GPCR inactivation (desensitization) and crosstalk with 
additional signaling cascades that may become activated downstream of these receptors. In addition, spatial 
aspects of cAMP signaling are critical for cellular function38 and they may affect the kinetics of lifetime changes 
in our screen. Lefkowitz et al. showed a putative switching mechanism at β2-adrenergic receptors, where protein 
kinase A (PKA) activated by the Gαs-pathway subsequently phosphorylates the receptor and causes enhanced 
Gαi activation to limit further cAMP production, thereby forming a negative feedback loop39. In summary, it is 
not a priori clear that the outcome of a PDE-knockdown screen using GPCR activation should be one-to-one 
comparable to that of a cAMP uncaging screen. In an effort to focus on the role of PDEs in clearing cAMP from 
the cells, we adopted a protocol of transient GPCR activity using sequential agonist and antagonist stimulation. 
We stimulated β-adrenergic receptors, which are at the heart of a well-characterized GPCR system36,37, and 
abrogated signaling with the selective antagonist propranolol within 15 s. Interestingly, cAMP clearance rates 
following stimulation by this protocol appeared equally high as those following cAMP uncaging, indicating that 
Gαs signaling and AC activity cease within seconds following receptor inactivation.

Data fitting.  In both designs of the screen, decay data were fitted with a sigmoid curve for pragmatic rea-
sons. It may be argued that decay kinetics, certainly after cAMP uncaging, would approximate an exponential 

Figure 7.   Breakdown of cAMP for different knockdowns of PDEs upon brief stimulation of the β-adrenergic 
pathway. For each condition, the experiment was performed in two independent wells. Further details are as in 
Fig. 4.
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decay model if cAMP clearance is dominated by PDEs. However, different PDEs with potentially different affini-
ties and expression levels would contribute to clearance and such a model would not accommodate a single value 
for enzymatic Vmax. More importantly, our data do not represent cAMP concentrations, but rather its binding 
to the Epac sensor, which itself is saturable. Finally, the observed cAMP breakdown curve is affected by the dis-
placement kinetics of the agonist by propranolol. We therefore standardized fitting to a basic sigmoidal decay 
model. Fit residuals showed no systematic deviations, and Chi-squared values were around 1, indicating that the 
model validly describes the data.

PDE3A and PDE10A are dominant in HeLa cells in both screening paradigms.  In both screen-
ing methods, PDE3A and to a lesser extent PDE10A, were unequivocally identified out of 22 PDE isoforms as 
most important determinants of cAMP clearance. The relative importance of PDE3A has also been reported 
in several other cell types40–42, and thus this particular PDE isoform has become a potential drug target, most 
importantly in treatment of cardiovascular diseases and infertility43–45. Along with Cilostazol, an FDA-approved 
inhibitor for treatment of acute heart failure, alternative PDE3 inhibitors are currently being developed46,47. 
Also, several natural mechanisms by which PDE activity can be activated are currently under investigation for 
pharmacological manipulation46. Knocking down PDE10A alone also slowed down cAMP breakdown slightly 
but significantly. Nevertheless, rapid cAMP clearance was still observed both in cells treated with siRNA against 
PDE3A and PDE10A alone, or in combination. This indicates that other clearance pathways must be active. This 
view is supported by control experiments performed with the nonspecific PDE inhibitor IBMX31 and the PDE3-
family specific inhibitor cilostamide32, which slowed down cAMP clearance to levels beyond those observed for 
the combined knockdown of PDE3A and PDE10A. It is intriguing that even in the presence of these two inhibi-
tors together, cAMP levels still eventually decay towards baseline, suggesting the existence of additional, perhaps 
PDE-independent, clearance mechanisms.

Limitations of the screen.  Two important caveats must be made when interpreting these results. First, 
our sensor reads out cytosolic cAMP and we thus focused on the dynamics of cAMP generation and degrada-
tion throughout entire cells. Note that the readout of average cytosolic cAMP levels does not recapitulate the 
complexity of localized cAMP signaling, which over the last 15 years has been studied by several groups. For 
example, the Zaccolo lab has systematically addressed roles of specific PDE isoforms in creating and regulat-
ing local pools of cAMP16,48, unveiling e.g. the role of nanoscopic heterogeneity in cAMP signals in optimized 
cardiac contractility upon adrenergic activation16. In addition, a recent study by Lohse et al. demonstrates that 
under basal conditions, a large pool of cAMP in cells is bound, resulting in low free cAMP concentrations49. 
Nanometer-sized domains of even lower cAMP levels may be created and maintained by individual PDEs. The 
work by the Lefkimmiatis lab50 has provided evidence that protein phosphatases can sculpt functionally distinct 
cAMP/PKA domains depending on differences in the rates of dephosphorylation of PKA targets. GPCR stimuli 
may act to increase the concentration of cAMP so as to flood nanodomains and thereby trigger downstream 
effects. More generally, the compartmentalized signaling orchestrated by ACs and PDEs allows different GPCRs 
to generate unique spatially restricted cAMP pools that activate defined subsets of localized PKA, that in turn 
phosphorylate key targets in signal propagation, leading to specialized cellular responses. All of these aspects are 
not properly reflected in the results of the current study.

The second caveat is that the penetration of PDE knockdown by siRNAs is most likely far from optimal30. 
Although each gene was targeted by a pool of 4 different sequences, we have observed that control siRNA against 
lamin A provided marked depletion of this protein in up to 70% of cells, and even then, to varying degrees. Our 
screening data strongly suggest that PDE knockdown also has been variable, but this was not tested due to lack 
of availability of specific antibodies. In line with this interpretation, the effects seen with PDE inhibitors IBMX 
and cilostamide were more drawn out; for example, in Figs. 5 and 7 such pretreatment completely wiped out the 
fast-decaying population of cells. However, it is also conceivable that prolonged knockdown by siRNAs might 
have triggered compensatory mechanisms. For example, knockdown of PDE3A may cause other PDEs to partly 
take over its predominant role in cAMP breakdown. Such behavior would not be expected when cells are exposed 
to PDE inhibitors. Future studies using more state-of-the-art knockdown strategies such as the use of inducible 
degrons for depletion of PDE protein or CRISPR-Cas to completely knockout each PDE should address this 
point. The latter offers the added advantage that it is compatible with pooled microscopy screens, allowing for 
example addressing all PDEs in a single time-lapse experiment.

Final conclusions
By combining high-end fluorescence lifetime imaging, a FLIM-optimized biosensor, deep-learning based cell 
segmentation and an automated analysis pipeline with systematic gene knockdown we achieved a robust screen-
ing platform for the systematic study of proteins affecting cellular signaling dynamics. Using open-source Python 
scripts and data structures, we illustrate the wealth of dynamic data delivered by quantitative time-lapse FLIM 
imaging. Whereas the multi-well format is particularly well suited for pharmacological characterization, includ-
ing the analysis of effects of chemical libraries, the very quantitative nature of the obtained data should also be 
invaluable in extending such dynamic signaling screens to the pooled screening format. As such, we expect that 
this study will contribute to a substantial increase in throughput in signal transduction studies.

Data availability
All data can be found on Zenodo repository: https://​zenodo.​org/​record/​477251. Custom software can be found 
on GitHub: https://​github.​com/​Jalink-​lab/​pde-​screen-​2021.

https://zenodo.org/record/477251
https://github.com/Jalink-lab/pde-screen-2021
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