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Abstract This work aims at a better understanding
and the optimal control of the spread of the new severe
acute respiratory corona virus 2 (SARS-CoV-2). A
multi-scale model giving insights on the virus popula-
tion dynamics, the transmission process and the infec-
tion mechanism is proposed first. Indeed, there are
human to human virus transmission, human to environ-
ment virus transmission, environment to human virus
transmission and self-infectionby susceptible individu-
als. The global stability of the disease-free equilibrium
is shown when a given threshold T0 is less or equal
to 1 and the basic reproduction number R0 is calcu-
lated. A convergence index T1 is also defined in order
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to estimate the speed at which the disease extincts and
an upper bound to the time of infectious extinction is
given. The existence of the endemic equilibrium is con-
ditional and its description is provided. Using Partial
Rank Correlation Coefficient with a three levels frac-
tional experimental design, the sensitivity of R0, T0
and T1 to control parameters is evaluated. Following
this study, the most significant parameter is the prob-
ability of wearing mask followed by the probability
of mobility and the disinfection rate. According to a
functional cost taking into account economic impacts
of SARS-CoV-2, optimal fighting strategies are deter-
mined and discussed. The study is applied to real and
available data from Cameroon with a model fitting.
After several simulations, social distancing and the dis-
infection frequency appear as the main elements of the
optimal control strategy against SARS-CoV-2.
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1 Introduction

According to the World Health Organization1 (WHO),
the severe acute respiratory syndrome corona virus 2
(SARS-CoV-2) previously known as new corona virus
2019 (2019-nCoV) is responsible of an infectious dis-
ease called Covid-19 [67]. In 1937, corona viruses
were first identified as infectious bronchitis viruses
with which birds suffered, that could devastate poul-
try stocks. Today, the viruses are the cause of the com-
mon cold in 15% to 30% of all cases. In the past 70
years, researchers have found camels, cattle, cats, dogs,
horses, mice, pigs, rats and turkeys that were infected
with corona viruses.2 Older people, and those with
underlying medical problems like cardiovascular dis-
eases, diabetes, chronic respiratory diseases and cancer
are more likely to develop serious illness. The Cen-
ters for Disease Control and Prevention3 (CDC) affirm
that the most common ways the virus spreads from an
infected person to healthy people around them is when
they cough or sneeze and release viral particles into
the air and through touching, hands shaking and other
forms of close personal contact. When healthy peo-
ple touch objects or surfaces on which there are viral
particles, then touch their eyes, nose or mouth before
washing their hands, the virus can spread. In some rare
cases, fecal contamination can cause the virus to spread
as well. The best way to prevent and slow down trans-
mission is beingwell informed about the SARS-CoV-2,
the disease, its causes and how it spreads. Each person
protects himself and others from infection by hands
washing or using an alcohol-based rub frequently and
not touching his face. The SARS-CoV-2 spreads pri-
marily through droplets of saliva or discharge from the
nose when an infected person coughs or sneezes, so it
is important to also practice respiratory etiquette (for
example, by coughing into a flexed elbow). Depending
on its location, the SARS-CoV-2 can leave up to 7 days
out of human body [17]. Several promising vaccines

1 https://www.who.int/emergencies/diseases/novel-coronavirus
-2019, https://www.who.int/emergencies/diseases/novel-corona
virus-2019.
2 See https://medicalaid.org/coronavirus-what-you-need-to-

https://medicalaid.org/coronavirus-what-you-need-to-know/
?gclid=CjwKCAjw26H3BRB2EiwAy32zhaqJLCeU-KplWm3
UuDNRssM9pChnoM_KPDhJ4K6NawLSPfexoCreUQAvD
_BwE, https://medicalaid.org.
3 https://www.cdc.gov/coronavirus/, https://www.cdc.gov/coro
navirus/.

have recently emerged even though their efficiency is
not fully established [43]. However, their adoption by
populations is very partial, especially in the case of
Cameroon where awareness is a major challenge. This
slow uptake of vaccine solutions can be explained in
part by the fact that vaccination is not a substitute for
the application of barrier measures, even for those who
are vaccinated. In this context, modeling, analyzing
models, estimating risks and forecasting the potential
spread of the disease in population remain very useful
for decision makers [42].

Recently, numerous papers (published or not) app-
eared in order to contribute to the fight against the
pandemic Covid-19. Those papers can be organized
in three groups. The first group addressed the prob-
lem of forecasting the disease in order to help deci-
sion makers to better evaluate the logistic challenges
they will face [3,8,9,23,24,32,34,37,38,50,52,53,55,
62,65,66,69,83,84]. The second category of papers
focused on evaluating the effectiveness of mitiga-
tions measures prescribed by the WHO and differ-
ent governments in order to define better fighting
strategies [10,16,19,21,22,33,38,45,46,50,55,61–63,
68,71–75,77,82,84]. The last set of papers studied the
social and the economical impacts of the pandemic
[47,81]. As we can observe in the literature, the wide
part of models only considers person to person dis-
ease transmission. Of course it is important, but indi-
rect transmission by environment may also be consid-
ered. On the other hand, the virus population dynamics
appears also important and should be explicitly studied.

Indeed, when an individual gets in contact with the
virus he is not directly exposed. According to the clas-
sic epidemiological literature, an exposed person refers
to an infected person who cannot yet transmit the dis-
ease [7,14,51]. In the context of Covid-19, it refers
to an individual whose virus is present in his body,
but the level of reproduction has not yet reached the
stage where the individual is shedding virus through
various channels (coughing and sneezing). Hence, to
become exposed the virus has to penetrate in the organ-
ism by oral or respiratory ways. Therefore, the expo-
sition is mainly indirect in terms of human-to-human,
or human-to-environment contacts. This consideration
justifies the regular disinfection of individuals and the
environment as recommended by public health agen-
cies.

Following the authors in [27–31,57], it is important
to build and understand models that link the within-
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host dynamics and population-level dynamics of infec-
tious.Thepredictionof thebehavior ofCovid-19 is very
difficult because mitigation strategies are permanently
changing. So it could be more efficient given an initial
situation to propose optimal control strategies that will
lead to disease extinction at a time to be determined.
Hence, this work proposes efficient and low-cost con-
trol strategies against Covid-19.

The paper is organized as follows. A model is
described in Sect. 2.2 according to the notations given
in Sect. 2.1 and its asymptotic behavior is studied in
Sect. 2.3 depending on some critical thresholds we
define. In Sect. 3.1, we estimate the parameters of
the model according to the real available data from
Cameroon. A sensitivity analysis of critical thresholds
depending on some control parameters is carried out
in Sect. 3.2. Section4 is devoted to the design and the
computation of optimal control strategies according to
different constraints. Illustrative simulations are car-
ried out in Sect. 4.2. The algorithmwhich computes the
optimal control is given in appendix B. The proofs of
different theoretical result in “Appendix A.” The paper
ends with a conclusion in Sect. 5.

2 The model and its general features

2.1 Definition of parameters

In this short section, different parameters are presented
in order to make easier the understanding of the model
to be proposed and studied later.

2.2 Description of the model

We can summarize the dynamics of Covid-19 by Fig. 1.
The disease dynamics can be viewed under two angles.
Indeed, there are human dynamics on the first hand and
the viruses dynamics on humans or in the environment
on the other. According to the Cameroonian context,
we consider ten compartments in the human population
per unit area:

– Susceptible (S): Public health institutions refer to a
susceptible person as a personwho is not a carrier of
the virus and has no immunity to the disease. Such
a person may become infected if he or she does not
comply with the barrier measures prescribed by the
government.

– Exposed (Infected but not contagious) (E): public
health institutions refer to an exposed person as a
person who has the virus in his or her body but
is not contagious in the sense that the virus has
not yet reproduced sufficiently in the body to be
present in the body’s secretions such as saliva and
nasal secretions. Such a person has no symptoms
and will test negative for Corona virus.

– Infectious (I ): public health institutions refer to an
infectious person as anyone who is a carrier of the
disease and contagious (the virus has reproduced
sufficiently in the body to be present in the body’s
secretions such as saliva and nasal discharge), but
who has not yet been identified as such, proba-
bly because he or she does not manifest symptoms
(asymptomatic case) or has not yet been tested. Peo-
ple who are infectious from this point of view are
very often free tomove around and represent a great
risk of contamination.

– Quarantined (Q): public health institutions refer to
a person in quarantine as any person isolated (at
home or in a specialized center) after having been
identified or suspected as a carrier of the disease and
contagious (infectious), but not presenting a serious
form of the disease endangering his or her life (no
respiratory assistance for example). The follow-up
of these people being particular (at least because
of their isolation, even it cannot be perfect due to
contacts with health agents who are also in contact
with the rest of the population), it seems important
to distinguish them explicitly by a compartment.
This distinction allows on the one hand to take into
account the effect of isolation on the dynamics of
the disease. On the other hand, it allows the eco-
nomic impact of quarantine to be explicitly evalu-
ated.

– Hospitalized (H): public health institutions refer
to a hospitalized person as any infectious person
(infectious or in quarantine) who manifests severe
forms of the disease to the point of requiring special
medical attention (such as respiratory assistance
and oxygen).

– Treated (T ): public health institutions refer to a
treated person as any personwho, after having been
in the infectious phase (and possibly the quaran-
tine or hospitalization phases), returns to a state
where he or she is out of danger and is less conta-
gious: even if the viruses remain in low concentra-
tion in the body, their reproduction rate decreases
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Table 1 Description of the parameters of the model (22)

Parameter Formula or range Description Unit

Xi [0,+∞[ Density of human population belonging

To compartment i person × m−2

Yi [0,+∞[ Density of virus population belonging

To compartment i virus × m−2

a1 [0,+∞[ Mass action factor

a2 [0,+∞[ Semi-saturation constant virus

ui [0, 1] Probability of wearing a mask in Xi

mi [0, 1] Probability of being in movement in Xi

κ ]0,+∞[ Maximal size of group of individual person × m−2

Per unit area

ςi (1 − ui ) ςmin
i + ui ς

max
i Proportion of free viruses released from Xi

πi [0,+∞[ Rate at which new free viruses are virus× person−1

day

Produced from Xi

τ1,i (1 − mi ) τmin
1,i + mi τ

max
1,i Transfer rate of viruses from Xi day−1

To the environment

τ2,i (1 − mi ) τmin
2,i + mi τ

max
2,i Transfer rate of viruses from the day−1

Environment to the Xi

τ3,i (1 − mi ) τmin
3,i + mi τ

max
3,i Transfer rate of viruses from Xi to day−1

Other compartments

τ4 u1τ
min
4 + (1 − u1) τmax

4 Rate at which viruses enter inside susceptible body day−1

And start their internal replication

λ a1τ4Y1
a2+Y1

Infection force of viruses on susceptible individuals day−1

ν [0,+∞[ Natural death rate of viruses day−1

ωi [0,+∞[ Additional death rate of viruses due to disinfection day−1

μ [0,+∞[ Natural death rate of humans day−1

d [0,+∞[ Additional death rate of humans due to disease day−1

bi [0,+∞[ Reproduction rate of humans in Xi day−1

�i [0,+∞[ Horizontal immigration rate of humans in Xi
person× day−1

m2

α1 [0,+∞[ Transition rate from infected to infectious day−1

α2 [0,+∞[ Transition rate from quarantined to hospitalized day−1

q [0,+∞[ Reporting/screening rate of infectious day−1

p [0, 1] Probability of being asymptomatic infectious

γ1 [0,+∞[ Transition rate from infectious to treated day−1

γ2 [0,+∞[ Transition rate from quarantined to treated day−1

γ3 [0,+∞[ Transition rate from hospitalized to treated day−1

γ4 [0,+∞[ Transition rate from treated to recovered day−1

� [0,+∞[ Transition rate from recovered to susceptible day−1

ρ1 [0,+∞[ Burial rate of a non-infectious dead day−1

ρ2 [0,+∞[ Burial rate of an infectious dead day−1
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Fig. 1 Flowchart of the
SE I Q H T R DDI B −
VS VE VI VQ VH VT VR VD VDI VF
compartmental model
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due to the body’s resistance or to any treatment.
It is important to note that despite the controversy
about the existence of a treatment, several treat-
ment protocols are proposed either by conventional
medicine, called modern medicine, or by local or
traditional medicine using herbal teas (for those
who do not go to the hospital and practice self-
medication without having tested their serological
status). It is common for a treated person to be sent
back to his usual daily life (home) if he was fol-
lowed in a health facility (out of quarantine or hos-
pitalization). This is due to the limited resources
available to monitor large numbers of patients.

– Recovered (R): public health institutions refer to a
cured person as anyone who, after having been in
the treated phase, no longer has the virus in his or
her body and has possibly developed a resistance (a
priori temporary) to the virus. He/she is no longer
contagious in the sense that he/she does not partic-
ipate in the reproduction of the virus and his/her
nasal or oral discharge is healthy.

– Non-infectious dead (D): public health institutions
refer to a non-infectious decedent as anyone who
died for reasons unrelated to the Corona virus. The
funeral procedures for such persons are classic and

entrusted to their families (more or less long stay
in the morgue, wake with the body, transfer of the
body to its village and festive burial4 [40]).

– Infectious dead (DI ): Public health institutions
refer to a deceased infectious person as a person
who has died from Covid-19. Funeral procedures
for such persons are very fast and ensured by public
services: the body is sealed and is not given to the
family to avoid any risk of secondary contamina-
tion in the handling of the corpse. Even if it is not
proven that the corpses of these people are not con-
tagious, no study to our knowledge shows the con-
trary. As recommended in [43], taking into account
the effect of the deceased follow-up policy in the
dynamics of the disease and the impacts of the dis-
ease and the economic aspects requires the explicit
introduction of the compartments of the deceased
in the modeling.

– Buried (B): The buried compartment makes it pos-
sible to count burials and assess the impact of the

4 Seehttps://www.lassurance-obseques.fr/deuil-afrique-rituels/,
https://www.lassurance-obseques.fr/deuil-afrique-rituels/ and
https://www.obseques-infos.com/actualites/23264-le-deuil-au-
cameroun, https://www.obseques-infos.com/actualites/23264-
le-deuil-au-cameroun.

123

https://www.lassurance-obseques.fr/deuil-afrique-rituels/
https://www.lassurance-obseques.fr/deuil-afrique-rituels/
https://www.obseques-infos.com/actualites/23264-le-deuil-au-cameroun
https://www.obseques-infos.com/actualites/23264-le-deuil-au-cameroun
https://www.obseques-infos.com/actualites/23264-le-deuil-au-cameroun
https://www.obseques-infos.com/actualites/23264-le-deuil-au-cameroun


2708 D. J. Fotsa-Mbogne et al.

rapid burial of infectious dead on the dynamics of
the disease. It also makes it possible to assess the
economic impact of deaths due to Covid-19.

WHO and the Government of Cameroon recom-
mend several control measures that can be explicitly
listed here as follows:

– Limiting direct contacts with others through a con-
trol parameter (τ3): obviously, direct contact with
a person who is contaminated with viruses leads to
being contaminated as well.

– Limiting movements through a control parameter
(m): multiplying movements increases the risk of
being in contact with the virus from environment
or from a person after a direct contact.

– Social distancing which is implemented through
limitation of group size per unit area to a maxi-
mum value (κ): social distancing limits not mobil-
ity but the density of people per unit area. For exam-
ple, guaranteeing a distance of one meter between
individuals means that on a disk of radius 1 meter
there is exactly one person. The implementation of
social distancing does not affect the size of the total
population but rather its spatial distribution. To our
knowledge, no existing epidemiological model has
implemented social distancing using a concept sim-
ilar to “carrying capacity” which is rather common
in ecological models.

– Limiting the area of movements through a lock-

down ratio
(
1 − A

AG

)
: the disease is better con-

tained if its spatial spreading is limited by lock-
down. Social distancing is not to be confused with
lock-down. In the lock-down ratio 1 − A

AG
, A

denotes the “effective area” whileAG is the global
geographic area of study where people are living.
The concept of effective area, which we also newly
introduced, designates the surface of the spatial
domain in which an individual is allowed to move
in order to respect the rules of Lock-down. Indeed,
lock-down results in small subpopulations that can
be geographically delimited and do not interact.
This is expected to facilitate the control of the dis-
ease.

– Frequently handswashing and disinfection through
a control parameter (ω): by frequently hands wash-
ing and avoiding to touch the face (especially eyes,
nose and mouth), the probability to get infected is
clearly reduced.

– Wearing mask and avoiding to touch the face
through a control parameter (u): Wearing mask
reduces both the risk of infection and the release
of viruses by infectious, quarantined, hospitalized
and treated individuals.

One of the specificities of our modeling is based
on the fact that each individual regardless of his com-
partment of belonging is potentially a reservoir since
the outside part of his body (including his clothes) can
carry viruses that he would have acquired in contact
with the contaminated environment or a contaminated
person. On the other hand, the amount of virus avail-
able in a human “reservoir” depends on its compart-
ment since people who are contagious beyond trans-
porting viruses taken elsewhere also produce them.
This considerationmakes it possible to explicitly assess
the impact of barrier and disinfection measures. Again,
we emphasize on the fact that getting in contact with
viruses does not mean to be infected, but the infec-
tion occurs when the viruses penetrate the organism by
oral or respiratory ways. Thus, we have ten compart-
ments for virus population per individual status group
located in a unitary surface or per unit area of environ-
ment

(
virus × m−2

)
: global viral load in susceptible

compartment (VS), global viral load in infected com-
partment (VE ), global viral load in infectious compart-
ment (VI ), global viral load in quarantined compart-
ment

(
VQ

)
, global viral load in hospitalized compart-

ment (VH ), global viral load in treated compartment
(VT ), global viral load in recovered compartment (VR),
global viral load in non-infectious dead compartment
(VD), global viral load in infectious dead compartment(
VDI

)
, global free load of viruses in the environment

(VF ). The viral load is transferred from an individual
being in compartment i to the environment (transfer
of type I: τ1,i ) or conversely from the environment to
an individual being in compartment i (transfer of type
II: τ2,i ). In addition, there are transfers of external viral
load (available on the body and clothing) between indi-
viduals when there are direct contacts (transfer of type
III: τ3,i ). Under the simplifying assumption of mass
action, it can be assumed that the amount of free virus
lost by an individual from one compartment after con-
tact is distributed to the other compartments in propor-
tion to their different fractions in the population. It is
likely that the balance of viruses received and lost is
deficient in compartments I, Q and H since they partic-
ipate in the reproduction of viruses. Infectious, quaran-
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tined, hospitalized and treated individuals produce new
viruses at a rate πi with i indexing a specific compart-
ment. A susceptible individual becomes infected when
a virus passes from the outside of his body to the inside
(transfer of type IV: τ4). Infected persons die at a rate
μ or become infectious with a rate α1. An infectious
case is reported at a rate q and dies at a rate μ + d.
The probability that a person identified as infectious
does not immediately develop a severe form of the dis-
ease and is therefore quarantined is p, otherwise he is
admitted to hospital. With a rate α2 a quarantined per-
son develop a severe form of the disease and is there-
fore admitted to hospital. Infectious, quarantined and
hospitalized individuals die at a rate μ + d or become
treated (partially recovered) at the respective rates of
γ1, γ2 and γ3. A treated individual is out of danger but
is still infectious and can die at a rate μ. Treated per-
sons recover completely and become immune at a rate
γ4. A recovered person losses his immunity at a rate �

or dies at a rate μ. Indeed, Recovered people may die
from natural death or from causes unrelated to Covid-
19. Potentially acquired immunity has certainly been
considered in several modeling articles but no precise
study on its effectiveness and duration exists to our
knowledge. It is therefore more appropriate, as is the
case in the literature, to assume that it is not definitive
[42]. Moreover, despite the advent of vaccines, barrier
measures remain strongly recommended for everyone,
including those who have been vaccinated. With a rate
ρ1, a non-infectious dead person is buried while an
infectious dead individual is buried at a rate ρ2. Indeed,
infectious dead persons are potentially very contagious
and it is recommended to bury them rapidly in order to
limit contacts.

Let X = [
S, E, I, Q, H, T, R, D, DI , B

]T
be

the vector of humanpopulation densities per unit area in
each compartment,Y = [

VS, VE , VI , VQ, VH ,

VT , VR, VD, VDI , VF
]T be the vector of virus

population densities per unit area in each compartment,

� = [
�1, �2, �3, �4, �5, �6, �7, �8, �9, 0

]T

be the vector of horizontal immigration rates in each
compartment of the human population, b = [b1, b2,
b3, b4, b5, b6, b7, 0, 0, 0]T be the vector of
vertical immigration rates (through births) in each com-
partment of the human population, 
 = [0, 0, ς3π3,

ς4π4, ς5π5, ς6π6, 0, 0, 0, 0]T be the vector of the
release rates of viruses by contagious humans (via
their nasal or oral discharge) into the environment, and

N = ∑7
i=1 Xi and N = ∑9

i=1 Xi be, respectively, the
density of the living human population per unit area and
the density of the living or deceased (but not yet buried)
human population per unit area. Amathematical model
corresponding to Fig. 1 can be described as

– A mesoscopic model (intermediate scale of human
gatherings):

•
X1 =

(
�1 +

7∑
i=1

bi Xi

)(
1 − N

κ

)

−
(

a1τ4Y1

a2 + Y1
+ μ

)
X1 + �X7. (1)

The first term to the right of the equality in equation
(1) corresponds to horizontal recruitment (immi-
gration at rate�1) and vertical recruitment (birth at
rates bi ) in the susceptible human population. Pop-
ulation density per unit of surface is restricted by
logistic expression

(
1 − N

κ

)
which reduce the pop-

ulation growth when N is near to κ . The limiting
capacity κ models social distancing which reduces
the number of individuals per unit of area. The sec-

ond term represents the exposition (
a1τ4Y1

a2 + Y1
) and

the natural death at rate μ. The last term corre-
sponds to the lost of immunity at rate �. Consid-
ering all those features in the same model are not
common and it makes the analysis of the model
more difficult.

•
X2 = �2

(
1 − N

κ

)
+ a1τ4Y1

a2 + Y1
X1 − (μ + α1) X2.

(2)

The first term to the right of the equality in equa-
tion (2) corresponds to horizontal recruitment in the
exposed human population. The second term rep-
resents the arrival of new exposed. The last term
corresponds to the natural death at rate μ and the
worsening of the disease at rate α1.

•
X3 = �3

(
1 − N

κ

)
+ α1X2 − (μ + d + q + γ1) X3.

(3)

The first term to the right of the equality in equa-
tion (3) corresponds to horizontal recruitment in the
infectious human population. The second term rep-
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resents the arrival of new infectious. The last term
corresponds to the death at rateμ+d, the detection
of the disease by screening test (at rate q) and the
treatment at rate γ1.

•
X4 = �4

(
1 − N

κ

)
+ pq X3

− (μ + d + α2 + γ2) X4. (4)

The first term to the right of the equality in equa-
tion (4) corresponds to horizontal recruitment in the
quarantined human population. The second term
represents the arrival of new quarantined after test-
ing an infectious at rate pq. The last term corre-
sponds to the death at rate μ + d, the worsening of
the disease (at rate α2 and the treatment at rate γ2).

•
X5 = �5

(
1 − N

κ

)
+ (1 − p) q X3 + α2X4

− (μ + d + γ3) X5. (5)

The first term to the right of the equality in equa-
tion (5) corresponds to horizontal recruitment in
the hospitalized human population. The second and
third terms represent the arrival of new hospitalized
after testing an infectious (at rate (1 − p) q) and
disease worsening for quarantined (at rate α2). The
last term corresponds to the death at rate μ+d and
the treatment at rate γ3.

•
X6 = �6

(
1 − N

κ

)
+ γ1X3 + γ2X4 + γ3X5

− (μ + γ4) X6. (6)

The first term to the right of the equality in equa-
tion (6) corresponds to horizontal recruitment in
the treated human population. The second, the third
and the fourth terms represent the respective treat-
ing rates from the infectious (γ1), quarantined (γ2)
and hospitalized (γ3). The last term corresponds to
the death at rate μ and the recovering at rate γ4.

•
X7 = �7

(
1 − N

κ

)
+ γ4X6 − (μ + �) X7.

(7)

The first term to the right of the equality in equa-
tion (7) corresponds to horizontal recruitment in

the recovered human population. The second term
represents the recovering rates of treated (γ4). The
last term corresponds to the death at rate μ and the
lost of immunity at rate �.

•
X8 = �8

(
1 − N

κ

)
+ μ (X1 + X2 + X7) − ρ1X8.

(8)

The first term to the right of the equality in equa-
tion (8) corresponds to horizontal recruitment in
the non-infectious dead human population. That
recruitment could correspond to transportation or
transfer of dead individuals for burial ceremonies
like it is common in Cameroon or other valu-
able reasons. The second term represents the death
of individuals in susceptible, exposed and treated
compartment at rate μ. The last term corresponds
to the burying at rate ρ1.

•
X9 = �9

(
1 − N

κ

)

+ (μ + d) (X3 + X4 + X5) + μX6 − ρ2X9.

(9)

The first term to the right of the equality in equa-
tion (9) corresponds to horizontal recruitment in the
infectious dead human population. As in equation
(8) that recruitment could correspond to transporta-
tion or transfer of dead individuals for burial cer-
emonies like it is common in Cameroon or other
valuable reasons. The second term represents the
death of individuals in infectious, quarantined, hos-
pitalized at rate μ + d. The third term represents
the death of individuals in recovered compartment
μ. The last term corresponds to the burying at rate
ρ2.

•
X10 = ρ1X8 + ρ2X9. (10)

The first and the second terms in Eq. (10) corre-
spond the burying of dead individuals at respec-
tive rates ρ1 and ρ2. The horizontal migrations
(represented by the �i s) in the different com-
partments can be explained by the movements of
travelers who sometimes prefer to return to their
countries of origin (as has been mentioned by the
media about citizens of several African countries
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including Cameroonians residing in China), medi-
cal evacuations for more competent health centers,
or repatriation of human remains. Thus, if the geo-
graphical area of study is limited, horizontal recruit-
ments are possible in practically all the compart-
ments.

– A microscopic model (virus scale):

•
Y1 =

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,1Y10

⎞
⎠ X1

N

−
(

μ + ν + ω1 + τ1,1 + τ3,1 + a1τ4Y1

a2 + Y1

)
Y1.

(11)

The first term to the right of the equality in equation
(11) represents the recruitment of viruses in suscep-
tible population after a contactwith environment (at
rate τ2,1) and individuals of other compartments (at
respective rates τ3, j ). The second term corresponds
to the disappearing of viruses by natural death (at
rate ν), by the death of the human host (at rate μ),
by disinfectionmeasures applied by the host (at rate
ω1), by the exchange of viruses with environment
(at rate τ1,1) and other compartments (at rate τ3,1),
and by the transition of the host from the susceptible
compartment to the exposed compartment.

•
Y2 =

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,2Y10

⎞
⎠ X2

N
+ a1τ4Y 2

1

a2 + Y1

− (
μ + α1 + ν + ω2 + τ1,2 + τ3,2

)
Y2.

(12)

The first term to the right of the equality in equa-
tion (12) represents the recruitment of viruses in
exposed population after a contact with environ-
ment (at rate τ2,2) and individuals of other com-
partments (at respective rates τ3, j ). The second
term corresponds to the update in population of
viruses due to the transition from susceptible status
to exposed status at rate a1τ4Y1

a2+Y1
. The third term rep-

resents the disappearing of viruses by natural death
(at rate ν), by the death of the human host (at rate
μ), by disinfection measures applied by the host (at
rate ω2), by the exchange of viruses with environ-
ment (at rate τ1,2) and other compartments (at rate
τ3,2), and by the transition of the host from the sus-

ceptible compartment to the exposed compartment
at rate α1.

•
Y3 = ς3π3X3 +

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,3Y10

⎞
⎠ X3

N

+ α1Y2 − (μ + d + q + γ1 + ν

+ω3 + τ1,3 + τ3,3
)

Y3. (13)

The first term to the right of the equality in equa-
tion (13) represents the release of internal viruses
by infectious individuals on themselves. The sec-
ond term corresponds to the recruitment of viruses
in infectious population after a contact with envi-
ronment (at rate τ2,3) and individuals of other com-
partments (at respective rates τ3, j ). The third term
corresponds to the update in population of viruses
due to the transition from exposed status to infected
status at rate α1. The fourth term represents the dis-
appearing of viruses by natural death (at rate ν),
by the death of the human host (at rate μ + d),
by disinfection measures applied by the host (at
rate ω3), by the exchange of viruses with environ-
ment (at rate τ1,3) and other compartments (at rate
τ3,3), by the transition of the host from the infec-
tious compartment to the treated compartment at
rate γ1, and by the transition of the host from the
infectious compartment to the quarantined or the
hospitalized compartment at screening rate q.

•
Y4 = ς4π4X4 +

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,4Y10

⎞
⎠ X4

N
+ pqY3

− (
μ + d + α2 + γ2 + ν + ω4 + τ1,4 + τ3,4

)
Y4.

(14)

The first term to the right of the equality in equa-
tion (14) represents the release of internal viruses
by quarantined individuals on themselves. The sec-
ond term corresponds to the recruitment of viruses
in quarantined population after a contact with envi-
ronment (at rate τ2,4) and individuals of other com-
partments (at respective rates τ4, j ). The third term
corresponds to the arrival of new quarantined from
the infectious compartment at rate pq. The last term
represents the disappearing of viruses by natural
death (at rate ν), by the death of the human host
(at rate μ + d), by disinfection measures applied
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by the host (at rate ω4), by the exchange of viruses
with environment (at rate τ1,4) and other compart-
ments (at rate τ3,4), by the transition of the host
from the quarantined compartment to the hospital-
ized compartment at rate α2, and by the transition
of the host from the quarantined compartment to
the treated compartment at rate γ2.

•
Y5 =ς5π5X5 +

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,5Y10

⎞
⎠ X5

N

+ (1 − p) qY3 + α2Y4

− (
μ + d + γ3 + ν + ω5 + τ1,5 + τ3,5

)
Y5.

(15)

The first term to the right of the equality in equa-
tion (15) represents the release of internal viruses
by hospitalized individuals on themselves. The sec-
ond term corresponds to the recruitment of viruses
in hospitalized population after a contact with envi-
ronment (at rate τ2,5) and individuals of other com-
partments (at respective rates τ5, j ). The third term
corresponds to the arrival of new hospitalized from
the infectious compartment at rate (1 − p) q. The
fourth term materializes the arrival of new hospi-
talized from the quarantined compartment at rate
α2. The last term represents the disappearing of
viruses by natural death (at rate ν), by the death
of the human host (at rate μ + d), by disinfection
measures applied by the host (at rate ω5), by the
exchange of viruses with environment (at rate τ1,5)
and other compartments (at rate τ3,5), and by the
transition of the host from the hospitalized com-
partment to the treated compartment at rate γ3.

•
Y6 =ς6π6X6 +

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,6Y10

⎞
⎠ X6

N

+ γ1Y3 + γ2Y4 + γ3Y5

− (
μ + γ4 + ν + ω6 + τ1,6 + τ3,6

)
Y6.

(16)

The first term to the right of the equality in equa-
tion (16) represents the release of internal viruses
by treated individuals on themselves. The second
term corresponds to the recruitment of viruses in
treated population after a contact with environ-
ment (at rate τ2,6) and individuals of other com-

partments (at respective rates τ6, j ). The third, the
fourth and the fifth terms correspond to the update
in viruses population due to the transition from
infectious, quarantined and hospitalized compart-
ments, respectively. The last term represents the
disappearing of viruses by natural death (at rate ν),
by the death of the human host (at rate μ + d), by
disinfection measures applied by the host (at rate
ω6), by the exchange of viruses with environment
(at rate τ1,6) and other compartments (at rate τ3,6),
and by the transition of the host from the treated
compartment to the recovered compartment at rate
γ4.

•
Y7 =

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,7Y10

⎞
⎠ X6

N
+ γ4Y7

− (
μ + � + ν + ω7 + τ1,7 + τ3,7

)
Y7. (17)

The first term to the right of the equality in equation
(17) corresponds to the recruitment of viruses in
recovered population after a contact with environ-
ment (at rate τ2,7) and individuals of other compart-
ments (at respective rates τ7, j ). The second term
corresponds to the update in viruses population due
to the transition from treated compartment. The last
term represents the disappearing of viruses by nat-
ural death (at rate ν), by the death of the human
host (at rate μ), by disinfection measures applied
by the host (at rate ω7), by the exchange of viruses
with environment (at rate τ1,7) and other compart-
ments (at rate τ3,7), and by the transition of the host
from the recovered compartment to the susceptible
compartment at rate �.

•
Y8 =

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,8Y10

⎞
⎠ X8

N
+ μ (Y1 + Y2 + Y7)

− (
ρ1 + ν + ω8 + τ1,8 + τ3,8

)
Y8. (18)

The first term to the right of the equality in equation
(18) corresponds to the recruitment of viruses in
non-infectious dead population after a contact with
environment (at rate τ2,8) and individuals of other
compartments (at respective rates τ8, j ). The second
term corresponds to the update in viruses popula-
tion due to the death of individuals belonging to
susceptible, exposed and recovered compartments.
The last term represents the disappearing of viruses
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by natural death (at rate ν), by the burial of the dead
host (at rate ρ1), by disinfection measures applied
on the dead host (at rate ω8), and by the exchange
of viruses with environment (at rate τ1,8) and other
compartments (at rate τ3,8).

•
Y9 =

⎛
⎝

9∑
j=1

τ3, j Y j + τ2,9Y10

⎞
⎠ X9

N

+ (μ + d) (Y3 + Y4 + Y5) + μY6

− (
ρ2 + ν + ω9 + τ1,9 + τ3,9

)
Y9. (19)

The first term to the right of the equality in equa-
tion (19) corresponds to the recruitment of viruses
in infectious dead population after a contact with
environment (at rate τ2,9) and individuals of other
compartments (at respective rates τ9, j ). The sec-
ond and the third terms correspond to the update in
viruses population due to the death of individuals
belonging to infectious, quarantined, hospitalized
and treated compartments. The last term represents
the disappearing of viruses by natural death (at rate
ν), by the burial of the dead host (at rate ρ2), by
disinfection measures applied on the dead host (at
rate ω9), and by the exchange of viruses with envi-
ronment (at rate τ1,9) and other compartments (at
rate τ3,9).

•
Y10 =

6∑
j=3

(
1 − ς j

)
π j X j +

9∑
j=1

τ1, j Y j

−
⎛
⎝ν + ω10 +

9∑
j=1

τ2, j X j

N

⎞
⎠ Y10. (20)

The first term to the right of the equality in equa-
tion (20) corresponds to the release of virus in the
environment by infectious, quarantined, hospital-
ized and treated populations. The second terms rep-
resents the recruitment of viruses in environment
after a contact with individuals of each compart-
ment (at respective rates τ1, j ). The last term repre-
sents the disappearing of viruses by natural death
(at rate ν), by disinfection measures (at rate ω10)
and by the exchange of viruses from the environ-
ment to human hosts (at rate

∑9
j=1

τ2, j X j
N ).

The Monod5 type infection force λ = a1τ4Y1
a2+Y1

is the
product of the mass action factor a1, the adequate con-
tact probability Y1

a2+Y1
(the probability that viruses reach

critical parts of the body like nose, mouth and eyes),
the transfer rate τ4 and the susceptible body virus pop-
ulation size Y1.

The parameters of the model (1 )–(20) are described
in Table 1. Although we focus explicitly on micro-
scopic and mesoscopic scales, there is also a macro-
scopic scale of the global human population

XG = [
SG EG IG QG HG TG RG DG DI,G BG

]T

= AG × [
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

]T
.

(21)

Hence, equation at the macroscopic scale can be
derived easily from the equation at the mesoscopic
scale. Since the variables of the model (1 )–(20 ) are
densities per unit area, the effect of lock-down is eval-
uated by multiplying these densities by the effective
area A instead of the total area AG like in (21). As
mentioned before, lock-down allows the disease to be
managed independently in small subpopulations. As
we will see in Theorem 3, lock-down accelerates the
extinction of the disease.

The model (1)–(20) can be written in the form
⎡
⎣

•
X
•
Y

⎤
⎦ =

[
M (X, Y ) 0
P (X, Y ) Q (X, Y )

] [
X
Y

]
+
[
�

0

]

≡ G (X, Y ) , (22)

with M ,Q Metzler and P having all its coefficients
nonnegative.

Proposition 1 Letω = min
i=1,...,10

{ωi },π = max
i=1,...,10

{πi },
CD = �8+μκ

ρ1
, CD = �9+(μ+d)κ

ρ2
, CV = κπ

ν+ω
and

NV = ∑10
i=1 Yi . � = {0 < N ≤ κ, X8 ≤ CD, X9 ≤

CDI , NV ≤ CV
}∩R

20+ is an attractor of the invariant
positive orthant R20+ with respect to the system (22).

Proposition 1 shows the validity of the model ( 1)–
(20). It shows the boundedness of the population den-
sity (κ) due to the social distancing. It also allows us
to consider separately the microscopic dynamics (of
viruses) and the macroscopic dynamics (of humans).

5 See the book [36] for more details.
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Indeed, control strategies at the microscopic level con-
cern the individual precautions to be applied (social dis-
tancing, mobility, disinfection of people and surfaces,
maskwearing and treatment).At themacroscopic level,
the global health policies are considered (social dis-
tancing, wearing mask, screening, rapid burying of
infectious dead, isolation and treatment of infectious).
Of course there are measures that act at both levels.

2.3 Equilibriums and asymptotic behaviors

Omitting the compartment of buried (B or X10), we
can address the issue of existence of equilibriums. We
are particularly interested in the ’Disease Free Equi-
librium’ (DF E = (

X DF E , Y DF E
)
) and other feasi-

ble ’Endemic Equilibrium’ (E E = (
X E E , Y E E

)
). It is

clear that immigration in the infectious compartments
with a constant positive rate makes impossible the exis-
tence of the DFE. It should be noted, however, that if
horizontal immigration is proportional to the popula-
tion, then a disease-free balance is still possible.

If the geographical area of study extends to the planet
( the model and the strategy of disease control are on
a planet level) or a systematic control is applied at all
the territorial frontiers (spatial isolation or lock-down).
Of course, the latter possibility is less realistic than the
former. Indeed, the concept of horizontal immigration
is defined when there is a transition of material from
one delimited geographical area to another delimited
area. Therefore, if we consider the global population
we will have only one area (global) and no horizontal
immigration (ie �i = 0, i = 2, . . . , 6, 8, 9).

If �i = 0, i = 1, . . . , 9 then there is no horizon-
tal recruitment and the only possibility of recruitment
of new individuals is only from new births. That last
consideration will be adopted here for simplicity.

Proposition 2 Assume that �i = 0, i = 1, . . . , 9.
Then the following statements hold.

(i) The trivial null equilibrium always exists : X =
Y = 0,

(ii) If b1 > μ, then the non-trivial disease-free equi-
librium (DFE) exists :

X DF E
1 = N DF E = κ

(
1 − μ

b1

)
, X DF E

2 = . . . ,

X DF E
7 =X DF E

9 =0, X DF E
8 =μX DF E

1

ρ1
, Y DF E=0,

(iii) If b1 > μ and there is an endemic equilibrium
(EE) then c7� +∑7

i=1 ci bi > μ + λ > μ where

λ = a1τ4Y E E
1

a2 + Y E E
1

,

X E E
1 = −

κ
(
μ + λ − c7� −∑7

i=1 ci bi

)
(∑7

i=1 ci

)∑7
i=1 ci bi

,

X E E
i = ci X E E

1 and

the ci s are given as follows:

c1 = 1, c2 = − λ

m2,2
, c3 = −m3,2c2

m3,3
,

c4 = −m4,3c3
m4,4

, c5 = −m5,3c3 + m5,4c4
m5,5

,

c6 = −m6,3c3 + m6,4c4 + m6,5c5
m6,6

and

c7 = −m7,6c6
m7,7

.

Let us consider the Jacobian matrix of (22) given by

J =
[

J1,1 J1,2
J2,1 J2,2

]

with

J1,1 (1, j) = M1, j −
7∑

i=1

bi Xi

κ
, j = 1, . . . , 7 and

J1,1 (i, j) = Mi, j in other cases,

J1,2 (1, 1) = − a1a2τ4X1

(a2+Y1)
2 , J1,2 (2, 1) = a1a2τ4X1

(a2 + Y1)
2 ,

J1,1 (i, j) = 0 in other cases,

J2,1 (i, i) =ςiπi +
⎛
⎝

9∑
j=1

τ3, j Y j+τ2,i Y10

⎞
⎠ N − Xi

N 2 ,

i = 1, . . . , 9,

J2,1 (10, j) = (
1 − ς j

)
π j − τ2, j Y10

N

+Y10

9∑
k=1

τ2,k Xk

N 2 , j = 1, . . . , 9,

J2,1 (i, j) = 0 in other cases,

J2,2 (1, 1) = Q1,1 + τ3,1X1

N
− a1a2τ4Y1

(a2 + Y1)
2 ,

J2,2 (i, i) = Qi,i + τ3,i Xi

N
, i = 2, . . . , 9

J2,2 (2, 1) = τ3,1X2

N
+ a1τ4Y1 (2a2 + Y1)

(a2 + Y1)
2 ,
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J2,2 (i, j) = Qi, j + τ3, j Xi

N
, i, j = 1, . . . , 9,

J2,2 (i, 10) = τ2,i Xi

N
, i = 1, . . . , 9, and

J2,2 (10, j) = Q10, j , j = 1, . . . , 10.

Proposition 3 Assume that �i = 0, i = 1, . . . , 10.

(i) The null invariant set {0}9×R+ ×{0}10 is locally
asymptotically stable (LAS) if b1 ≤ μ.

(ii) The null equilibrium X = Y = 0 is globally
asymptotically stable (GAS) if bi ≤ μ, i=1, . . . , 7.

(iii) The disease-free equilibrium is locally asymptot-
ically stable (LAS) if and only if b1 > μ and
J1,1 − J1,2 J−1

2,2 J2,1 is Metzler stable.
(iv) If b1 > μ and λ = 0 then the disease-free

equilibrium for the macroscopic model (X =
X DF E , Y ∈ (R+)10) is GAS.

Let F denote the vector of flows due to infectious con-
tacts between humans an viruses in the disease associ-
ated compartments (E , I , Q, H , T , DI ,VS ,VE ,VI ,VQ ,
VH , VT , VR , VD , VD,I and VF ). Similarly, let V denote
the vector of flows in the disease associated compart-
ments but which are not due to infectious contacts:

F1 = a1τ4X1Y1

a2 + Y1
, Fi = 0, i = 2, . . . , 7,

F8 = a1τ4Y 2
1

a2 + Y1
, Fi = 0, i = 10, . . . , 15,

V = G (X, Y ) − F (23)

with G given in 22).
If F and V are the respective Jacobian matrix of F

andV evaluated at theDFE, then the basic reproduction
number R0 is given by the spectral radius of the next
generation matrix (Van Den Driessche and Watmough
method [78–80]). In this context, F is a 16×16 matrix

given such as F (1, 1) = a1τ4
a2

, F (1, 7) = a1τ4X DF E
1

a2
and F (i, j) = 0 otherwise. V is a 16 × 16 matrix
given such as V1,7 = 0, Vi, j = J (i + 1, j + 1)
if i, j = 1, . . . , 5, V6, j = J (9, j + 1) if j =
1, . . . , 5, V6,6 = J (9, 9), V6, j = J (9, j + 4) if j =
7, . . . , 16, Vi,6 = J (i + 1, 9) if i = 1, . . . , 5, Vi,6 =
J (i + 4, 9) if i = 7, . . . , 16, Vi, j = J (i + 4, j + 4)
if i, j = 7, . . . , 16, Vi, j = J (i + 1, j + 4) if i =
1, . . . , 5, j = 7, . . . , 16, (i, j) �= (1, 7) and Vi, j =
J (i + 4, j + 1) if i = 7, . . . , 16, j = 1, . . . , 5.
Although the calculation of the inverse of V is non-

trivial, we have the particular formula

R0 = ρ
(
−FV −1

)
= −F (1, 7) × V −1 (7, 1) . (24)

The effective reproduction number can also be com-
puted by multiplyingR0 by the proportion of suscepti-
ble individuals [70].R0 can be biologically interpreted
in this context as the average number of new viruses
generated by an introduced virus during its lifespan.

The infection force λ plays an important role on the
disease spreading. Subsequently, regarding the expres-
sion of λ in Table 1, we can see that the use of mask
and avoiding to touch the face is crucial to limit disease
spreading. The control u can be viewed as the fraction
of time the mask is well used. λ can vary with time
depending on individual human habits. It is interesting
to depict how the disease behaves if λ is a decreasing
function of time ( lim

t→+∞λ (t) = 0). We start by stating

a useful result which is a particular case of very useful
theorems in [36,58,76], about ω-limit sets of asymp-
totic autonomous systems.

Lemma 1 Let us consider a linear differential system

•
U = AU + C (25)
•
V = (A + v (t) B) V + C (26)

where A is a constant n × n Metzler stable matrix, B
is a constant n × n Metzler matrix, C is a constant
n × 1 matrix and v is a positive numeric function of
the time. Assume that the solution (U, V ) of (25)–(
26) is bounded and sup

t∈[0,+∞[
v (t)

∥∥e−t A
∥∥ < +∞. Then

lim
t→+∞ (U (t) − V (t)) = 0. This will happen in partic-

ular if lim
t→+∞v (t) eρ(A)t = 0, where ρ (A) denotes the

spectral radius of A.

Instead of using the technical approaches in [36,58,
76], Lemma 1 is proved here in a simple contextual
manner in the appendix. The remaining results of the
paper are original and so are their proofs. Although
the latter combine fairly general results on dynamical
systems, their implementation is non-trivial according
to the structure of the model ( 1)–(20).

Theorem 1 If b1 > μand lim
t→+∞λ (t)

∥∥∥eρ(M1,1|λ=0)t
∥∥∥ =

0 then the DFE is GAS.

Theorem 1 gives us a first way to limit disease
spreading.
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Theorem 2 Assume that �i = 0, i = 1, . . . , 10 and
b1 > μ. Let D denotes a diagonal matrix such that Di,i

is the sum of absolute values of only negative terms in

the expression of Qi,i , R = D + Q, r1 = max
j=1,...,10

R1, j
D j, j

and r2 = max
j=1,...,10

∑10
i=1

(
RD−1

)
i, j . Then the DFE is

GAS if

T0 =
a1α1r1τ4κ (b1 − μ)

(
π3

μ+d+q+γ1
+ π4

μ+d+α2+γ2
+ π5

μ+d+γ3
+ π6

μ+γ4

)

a2b1 (1 − r2) (μ + α1)
(
μ + ν + ω1 + τ1,1 + τ3,1

) < 1. (27)

Theorem 2 provides a sufficient condition that
ensures the stability of the disease free equilibrium.
Moreover, it shows that avoiding to touch the face and
the frequency of wearing mask by susceptible popula-
tion (u1 via τ4), the mobility (m via different contact
rate among people τ3, andwith the environment τ1), the
disinfection (washing of hands included in) by suscep-
tible population (ω1) and social distancing (reducing
κ) are crucial parameters in order to stop the spreading
of the disease. The biological interpretation of T0 is
the following. During its lifespan 1

(μ+ν+ω1+τ1,1+τ3,1)
a virus infects a susceptible individual at the ade-
quate rate a1r1κτ4(b1−μ)

a2b1(1−r2)
. Once the susceptible individ-

ual is infected he becomes infectious with a probability
α1

μ+α1
andwill produce π3

μ+d+q+γ1
, π4

μ+d+α2+γ2
, π5

μ+d+γ3

and π6
μ+γ4

viruses during its respective stays in com-
partments of infectious, quarantined, hospitalized and
treated.

By setting

δ=max

{
1+

(
μ+τ1,1 + τ3,1

) (
a2
(
ν + ω

)+ κπ
)+ a1κτ4π

(ν + ω1)
(
a2
(
ν + ω

)+ κπ
) ,

1 + max
j=1,...,10

τ2, j

ν + ω10
, max

j=2,...,9

D j, j

ν + ω j

}
and

δ = max

{
1 +

(
μ + τ1,1 + τ3,1

)
(a2ν + κπ) + a1κτ4π

ν (a2ν + κπ)
,

1 + max
j=1,...,10

τ2, j

ν
, max

j=2,...,9

D j, j

ν

}
,

we can see using the boundedness of NV , that 1
1−r2

≤
δ ≤ δ. Hence, Theorem 2 also permits us to evaluate
given κ , u and m the minimum frequency at which
the disinfection should occur. For example, if ω = 0
probably due to the management of death persons, then
the condition T0 ≤ 1 is satisfied when

ω1 >
a1α1τ4κδ (b1−μ)

(
π3

μ+d+q+γ1
+ π4

μ+d+α2+γ2
+ π5

μ+d+γ3
+ π6

μ+γ4

)

a2b1 (μ + α1)

− (
μ + ν + τ1,1 + τ3,1

)
. (28)

Notice that by disinfection we mean a global action
on the body, so it would be necessary to evaluate the
specific contribution of hands washing.

Figure2 is an illustration of the asymptotic behavior
of cumulative infectious individuals depending on the
relative position of T0 with respect to 1. The smaller
T0 is, the smaller is the amplitude of the peak and the
earlier it occurs. If the mask is never adopted then the
disease prevalence can pass above 30% and stabilize
around 3.5%.

We end the section with a theorem giving an upper
bound to the time of extinction of the disease. By the
time of extinction we mean the first time where there
is neither infectious and nor virus. That is there is less
than one infectious and less than one virus.

Theorem 3 Let S = S
S+E+I+Q+H+T +R , I =

E+I+Q+H+T
S+E+I+Q+H+T +R and A denotes the effective area

of the spatial study zone in m2 (ie the area of the zone
each individual is allowed to move in during the lock-
down). Assume that ∀t ≥ 0, λ (t) = λ0e−αt , α > 0.
Then

•
I = λS + bN

κ
I − (b + β (1 − pd)) I

− (βpd − μ) (1 − I) I, (29)

where β =
(∑4

i=0 Ti

)−1
, pd is the probability to

die during the stay in infected or infectious compart-
ments (E, I , Q, H, T ) and the Ti s denote the aver-
age times spent in those compartments. Moreover, if
σ1 = min {α, β (1 − pd)} then

I (t) ≤ I (0) e−(β(1−pd ))t + λ0te−σ1t . (30)

Furthermore, if σ2 = min
{
ν + ω , β (1 − pd)

}
,

σ3 = min
{
ν + ω , σ1

}
then
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Fig. 2 Asymptotic behavior of infectious dynamics depending on T0

NV (t) ≤ NV (0) e−(ν+ω)t + κπI (0) te−σ2t

+κπλ0t2e−σ3t (31)

and the respective first times T �
H and T �

V such that,
respectively, AIG (t) N (t) ≤ 1 and ANV (t) ≤ 1 sat-
isfy

T �
H ≤ κAI (0)

β (1 − pd) e
+ 4κλ0A

σ 2
1 e2

and

T �
V ≤ ANV (0)(

ν + ω
)

e
+ κπA

(
8eσ 3

3 I (0) + 27σ 2
2 λ0

)

2σ 2
2 σ 3

3 e3
.

As we can see in the expressions of T �
H and T �

V that
the higher κ , λ0, I (0), NV (0) andA are, the longer the
time of disease extinction max

{
T �

H , T �
V

}
is. If the lock-

down is applied, then the effective global population to
consider is N G = AN which represents the number of
living persons admitted in a given closed area. Hence,
the lock-down level can be expressed by the ratio 1 −
A
AG

, where AG denotes the real area of the physical
study zone (town, district, department, region, country,
continent, or the whole world).

3 A focus on Cameroonian context

3.1 Early estimation of the parameters of the disease
dynamics

This section aims to determine values of the parame-
ters of the model ( 1)–(20) in such a way that its pre-
dicted dynamics is close to the Corona’s observed data
in Cameroon, from March 2 to June 7, 2020. That is
estimation of parameters also known in the literature
as fitting the model. We used the daily data available
on the website https://www.data.gouv.fr/fr/datasets/
coronavirus-covid19-evolution-par-pays-et-dans-le-
monde-maj-quotidienne/www.data.gouv.fr for our esti-
mates. We also used the situation reports on Covid-
19 in Cameroon available on the website https://www.
humanitarianresponse.info/en/operations/cameroon/
health/documentshttps://www.humanitarianresponse.
info. It corresponds to the beginning of the epidemic,
when the natural dynamics of the disease were less
complex to predict since controlmeasureswere simpler
and secondary approaches (e.g. periodic containment
and vaccine) had not yet taken place. The data con-
sist of daily counts of infections, recoveries, deaths,
quarantines and hospitalizations. Following the ref-
erence [52,53], we set C RI (t), C RQ (t), CRH (t),
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C R R (t) and C RD (t) to be, respectively, the cumu-
lative numbers of reported infectious cases, of reported
quarantined, of reported hospitalized (active cases), of
reported recovery and of reported dead at time t ≥ t0,
where t0 denotes the date of the first introduction of an
infectious to be evaluated. Note that these values will
be divided by the cumulative area of populated areas
(AG) to match the model ( 1–(20) for which variables
are expressed in density per unit area. There are sev-
eral approaches for the estimation of the parameters
of a model. A first method is to discretize the differ-
ential equation model with respect to available time
series and to fit unknown parameters by reducing the
distance between the numerical solution and observed
time series [13]. Another method consists of empiri-
cal estimating function linking the state of the system
with the time using times series and after in estimation
through the considered model [12,24,54,65].

Here we use a semi-empirical method using statisti-
cal regressions based on empirical models according to
data (the upcoming model ( 40) for example) and key
relations derived from the main model (1)–(20). In the
global population (as defined in (21)), those relations
are the following :

C RI (t) = q
∫ t

t0
IG (s) ds, (32)

∫ t

t0
QG (s) ds = C RQ (t) = pq

∫ t

t0
IG (s) ds, (33)

∫ t

t0
HG (s) ds = C R H (t)

=
∫ t

t0
((1 − p) q IG (s) + α2QG (s)) ds, (34)

∫ t

t0
RG (s) ds = C R R (t)

=
∫ t

t0
(γ2QG (s) + γ3HG (s)) ds, and (35)

∫ t

t0
DG (s) ds = C R D (t) = (μ + d)

∫ t

t0
(QG (s) + HG (s)) ds. (36)

According to certain cultural practices inCameroon6

(See [40]), we will assume that the average timethat

6 Seehttps://www.lassurance-obseques.fr/deuil-afrique-rituels/,
https://www.lassurance-obseques.fr/deuil-afrique-rituels/ and
https://www.obseques-infos.com/actualites/23264-le-deuil-au
-cameroun, https://www.obseques-infos.com/actualites/23264
-le-deuil-au-cameroun.

elapses between the death of an individual not identified
as infectious (i.e., he or she dies without being quar-
antined or hospitalized) and his or her burial is 3 days
(ρ1 = 1

3 ), while burial takes place within 24 hours of
the death of an individual considered infectious (ρ2 =
1). According to the literature, we will assume that the
transition rate from the infected compartment (E) to the
infectious compartment (I ) is α1 = 1

14 , the transition
rates from the infectious compartments (I ,Q,H ) to the
treated compartment (T ) are γi = 1

7 , i = 1, . . . , 3 and
the transition rate from the treated compartment (T )
to the recovered/immune compartment (R) is γ4 = 1

7
[52,53]. It is not clearly established in the literature
that there is a real immunity, but according to [42],
we will suppose that � = 2.74 × 10−3. The recom-
mended social distancing parameter κ in Cameroon is
1person × m−2 but we will estimate the real value of
κ according to available data and the model (1)–( 20).

The data on CRQ, CRQ being available in situation
reports only for the 30 firsts days contrarily to the data
on CRI, CRD and CRR which cover the whole period
of study. Hence we divide the estimation in two steps :

– Step 1: Use of data from March 2 to April 1, 2020.
Summing equations (32), (33) and (34), we have

α2 ≈ 1 + E

[
C RH (t) − CRI (t)

CRQ (t)

]
, (37)

t0 being the greater time where I = Q = H =
T = R = 0. The mathematical expectation E [•]
approximated by the empirical average is used
here to contain uncertainties causing variation on
CRH(t)−CRI(t)

CRQ(t) . Such as statistical approach could
also permit to evaluate a confidence interval assum-
ing adequate hypotheses on the distribution of the
noises. Commonly, large numbers law and central
limit theorem are used for large dataset [48]. Due
to their relatively rapid growth, we suppose as in
the references [52,53] that C RD (t) and CRH (t)
can be approximated through log-linear models as
follows

CRQ (t) ≈ e(kQ(t−t1)) − 1, (38)

CRH (t) ≈ e(kH (t−t2)) − 1, (39)

– Step 2: Use of data from March 2 to June 7, 2020.
Regarding the rapid growth of reportedinfectious
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cases, we assume that CRI can be approximated
through the following empirical model

CRI (t) ≈ e(kI (t−t0)) − 1, (40)

According to the equations (32)–(36) we have

TG (t) = e−(μ+γ4)t

∫ t

t0
e(μ+γ4)s (γ1 IG (s)+γ2QG (s) +γ3HG (s))

ds and (41)

RG (t) = γ4e−(μ+�)t
∫ t

t0
e(μ+�)s TG (s) ds. (42)

The following approximations hold

p ≈ E

[
CRQ (t)

CRI (t)

]
, (43)

q = 1

p (t1 − t0)
, (44)

d ≈ E

[
CRD (t)∫ t

t0
(QG (s) + HG (s)) ds

]
− μ and (45)

EG (t) = d

dt

[
q IG (t) + (μ + d + q + γ1)CRI (t)

qα1

]
.

(46)

The coefficients kI = 0.1717935, kQ = 0.202587,
kH = 0.128817, t0 = −2.646517, t1 = 1.484067,
t2 = −5.746704 were estimated through log-linear
regression with the software R. Among the above coef-
ficient only t2 was found not statistically different from
zero during the regression analysis of variance. The
adopted empirical models were highly significant with
all the adjusted R2s between 82.98% and 96.03%,
and the probability-values (commonly called p-values)
between 8.096 × 10−8 and 2.716 × 10−3. A negative
t0 means that the first infectious case occurs probably
before the origin date of the study. The same holds for t1
and t2. SinceCRIwas given by (32) it was easy to deter-
mine the expression of EG (t), in particular EG (0).
The statistical approach we adopted is justified by the
uncertainties. α2, p, q, d and other estimated values are
available in Table 2.

It appeared more difficult to explicitly estimate a1,
a2, πi , τmin

i, j , τmax
i, j , τmin

4 , τmax
4 , ςmin

i , ςmax
i , mi and ui

using available data. Regarding public transport con-
ditions in Cameroon the maximum value of κ can be
fixed to κ = 8 person × m−2. According to the den-
sity of population per unit of surface7 the minimum

7 https://www.populationdata.net/pays/cameroun/, www.popul
ationdata.net.

value of κ is fixed to κ = 5.003 × 10−5 −2. With-
out social distancing at the disease outbreak, we have
κ = κ and the infection term λS is proportional to the
global population (say SG) due to the mass action. S
being bounded fromabove by κ according to themodel,
we have a1 (t) = SG (t)

κ(t) . Notice that κ and κ are non
decreasing functions of SG . Thus, we can simplify by
assuming that a1 is definitely a constant given by

SG (0)
κ(0) .

It is possible to estimate SG and NG (global population
of alive or dead except buried individuals) similarly to
TG and RG . Under the hypothesis of homogeneity of
the population the values of S, E and I can be esti-
mated by multiplying the respective proportions in the
global population by the threshold κ(b1−μ)

b1
(for exam-

ple S (0) = κ(b1−μ)SG (0)
b1NG (0) ). The term λS = a1τ4Y1S

a2+Y1
can

be estimated using the relations

λS = •
E + (μ + α1) E

= κ (b1 − μ)

b1

⎛
⎝

•
EG

NG
− EG

N 2
G

•
N G + (μ + α1)

EG

NG

⎞
⎠

and (47)

Y1 = a2λS

a1τ4 − λS
. (48)

Figure 3 shows the cumulative reported infectious
cases in Cameroon from the 2nd of March to the 7th
of June 2020. When studying the dynamics of cumu-
lative reported infectious cases we noticed a change
approximatively around the thirtieth days. Indeed, the
growth of the cumulative number of reported infectious
appeared to be higher during the first thirty days. This is
likely due to the delay in the implementation of the bar-
rier measures (which were announced by the Cameroo-
nian government only as of March 20, 2020) and the
delay in their effects on the disease dynamics.8 Thus,
to capture this apparent change, we split the empirical
modeling into two periods: those of the first 30 days
and those of the days after. This splitting also allowed
for a better fit of the model. Parameters concerning the
disease outbreak (starting time, initial values of state
variables) have been estimated using the first dataset.

8 https://www.lemonde.fr/afrique/article/2020/06/04/coronavir
us-au-cameroun-la-gestion-de-la-pandemie-severement-critiqu
ee\_6041729\_3212.html, https://www.lemonde.fr/afrique/.
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Fig. 3 Cumulative reported cases from the 2nd of March to the 07th of June 2020

The other parameters have been fitted using the whole
sample. The estimates are given in Table 2.

According to the values in Table 2, relation (28 ) and
Theorem 2, if people never wear a mask, no social dis-
tancing is applied and only susceptible individuals dis-
infect themselves, then the rate of complete disinfec-
tion (ω1) should not be less than20day−1 (ie about once
every 72 minutes) in order to have T0 = 7.3163071
andR0 = 0.887382. If at least the social distancing of
1 person×m−2 is respected then the lower boundvalue
of ω1 drops to 3 day−1 (ie about once every 8 hours) in
order to have T0 = 5.7754491 and R0 = 0.7064687.

Thus, a complementary application of all mitigation
measures is mandatory.

3.2 Effects of controls on disease dynamics

This section aims at evaluating first the sensitivity of
different control parameters with respect to the thresh-
olds R0 and T0. The second fold of this section is to
survey the effect of some control parameters on the
asymptotic behavior of the disease dynamics. Follow-
ing Theorem 1, we define the convergence index
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Table 2 Estimation and baseline values of parameters of the model (22)

Parameter Value Unit Source

a1 3.117558 × 106 Assumed

a2 2.091775 × 106 virus [42]

ui 0 Percentage Assumed

mi 1 Percentage Assumed

κ
[
5.003 × 10−5, 8

]
person × m−2 https://www.populationdata.net/pays/cameroun/www.populationdata.net

ςmin
i 3 × 10−1 Percentage Assumed

ςmax
i 1 Percentage Assumed

πi 6.73 × 10−1 virus × person−1day−1 [42]

τ1,i 2.8 × 10−2 day−1 [42]

τmin
2,i 0 day−1 Assumed

τmax
2,i 2.8 × 10−2 day−1 [42]

τmin
3,i 0 day−1 Assumed

τmax
3,i 2.75 × 10−1 day−1 [42]

τmin
4 0 day−1 Assumed

τmax
4 1 day−1 [42]

ν 1
7 day−1 [17]

ωi 0 day−1 Assumed

μ 1
21681 day−1 https://www.populationdata.net/pays/cameroun/www.populationdata.net

d 3.714847 × 10−3 day−1 Fitted

bi 3.193 × 10−2 day−1 https://www.populationdata.net/pays/cameroun/www.populationdata.net

�i 0 person × day−1m−2 Assumed

α1
1
14 day−1 [53]

α2 5.525729 × 10−1 day−1 Fitted

q 7.960346 × 10−3 day−1 Fitted

p 9.776358 × 10−1 percentage Fitted

γ1
1
7 day−1 [53]

γ2
1
7 day−1 [53]

γ3
1
7 day−1 [53]

γ4
1
7 day−1 [53]

� 2.74 × 10−3 day−1 [42]

ρ1
1
3 day−1 Assumed

ρ2 1 day−1 Assumed

R0 1.0759773 × 102 Fitted

T0 4.4791419 × 104 Fitted

S (0) 7.987228 person × m−2 https://www.populationdata.net/pays/cameroun/www.populationdata.net

E (0) 9.538403 × 10−4 person × m−2 Fitted

123

https://www.populationdata.net/pays/cameroun/
www.populationdata.net
https://www.populationdata.net/pays/cameroun/
www.populationdata.net
https://www.populationdata.net/pays/cameroun/
www.populationdata.net
https://www.populationdata.net/pays/cameroun/
www.populationdata.net


2722 D. J. Fotsa-Mbogne et al.

Table 2 continued Parameter Value Unit Source

I (0) 2.615628 × 10−4 person × m−2 Fitted

Q (0) = H (0) 0 person × m−2 Assumed

T (0) = R (0) 0 person × m−2 Assumed

D (0) = DI (0) = B (0) 0 person × m−2 Assumed

Y1 (0) 5.133665 × 10−5 virus × m−2 Fitted

Yi (0) i = 2, . . . , 9 5.133665 × 10−5 virus × m−2 Assumed

Y10 (0) 0 virus × m−2 Assumed

T1 = lim
t→+∞

−1

t

∫ t

0
ln

(
λ (s)

λ (0)

)
ds. (49)

T1 is an indicator of the rate of the potential conver-
gence of the disease dynamics toward an equilibrium.
Indeed, if T1 > 0 then there is an exponential conver-
gence to the disease free equilibrium. If T1 ≤ 0 then
there is an endemicity of the disease, in particular if
T1 is near to zero then we are in the neighborhood of
an endemic equilibrium. T1 is an estimation of the key
parameter α which permits according to Theorem 3,
to bound the average time the disease is expected to
disappear.

There are several methods for sensitivity analysis
in the literature (see [18,56] for example). The nor-
malized forward sensitivity index (of variable u with
respect to parameter p) ϒu

p = ∂u
∂p

p
u defined in [18]

provides an idea on effect of a local perturbations
around a given situation in terms of the values of
the parameter p. Paper [56] presents several alterna-
tive methods of assessing the global effect of vari-
ation on coefficients: Pearson correlation coefficient
(CC), Spearman rank correlation coefficient (RCC),
partial correlation coefficient (PCC), standardized cor-
relation coefficient (SCC), standardized rank correla-
tion coefficient (SRCC), partial rank correlation coef-
ficient (PRCC) and Extended Fourier amplitude sensi-
tivity test (eFAST). The authors in [56] recommended
PRCC and eFAST as robust sensitivity indexes to be
used, respectively, in cases of monotonic and non-
monotonic sensitivities. These indexes are based on
samples obtained through latin hyper cube sampling,
Monte-Carlo sampling or any other appropriate exper-
imental design [11,20,35]. Hence, there are statistics
and confidence intervals or region can be provided in
order to decide on their significance.

Table 3 Codification of factors values

Parameter Level −1 Level 0 Level +1

κ 1 4.5 8

q 0 24 48

ui 0 5 × 10−1 9.99 × 10−1

mi 0 5 × 10−1 1

ωi 0 24 48

We adopt the PRCC with a three levels9 (−1, 0,
+1) fractional experimental design with the factors
κ , q, mi , ui and ωi , i = 1, . . . , 10. Such an experi-
mental design allows us to get a statistical approxima-
tion of optimal parameters based on a quadratic model
obtained by regression. Ideally, strategies should be
specific to different compartments. However, since it
is difficult to know the status of people, it is reasonable
to apply the same strategies for similar” compartments.
Thus, we reduce the factors by considering the classes
[1] ≡ {1, 2, 3, 6, 7}, [4] ≡ {4, 5}, and [8] ≡ {8, 9, 10}.
We also assume that u8 = u9 = u10 = 0. Finally,
we have 10 factors with two responses T0 and T1. We
consider a 310−6 fractional experimental design with a
sample size 81. The experimental matrix is computed
using Box calculus for the aliases with second order
interactions. Table 3 provides us with the codification
of factors values that have been arbitrarily chosen but
appear realistic.

Figure 4 shows graphically the effects of control
parameters on R0, T0 and T1. u1, m1, ω1 and ω10 are
in decreasing order the more sensitive parameters with
respect toR0. Thus, an efficient control strategy should

9 See the references [11,20,35] for the definitions of concepts
in experimental design theory.
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Fig. 4 Effects of control parameters on R0, T0 and T1

prioritize the usage of mask, the reduction of mobility
and the disinfection in class [1] compartment, and the
disinfection of the environment. u1, ω1, ω4 and ω10

are in decreasing order the more sensitive parameters
with respect to T0. Thus, an efficient control strategy
based on T0 should prioritize the usage of mask in class
[1], and disinfection in classes [1], [2] and the environ-
ment. m1, u1, ω1, and ω10 are in decreasing order the
more sensitive parameters with respect to T1. Thus,
to accelerate the convergence toward the disease free
equilibrium the fighting policies should prioritize the
reduction of mobility in class [1], the frequent usage
of mask, the disinfection of people in class [1] and the
disinfection of the environment.

Globally, the usage ofmask in class [1] compartment
is the most sensitive control followed by the reduction
of mobility and the

disinfecting in class [1], and the disinfection of the
environment. As we can observe, the effects of the
social distancing and the screening, the effect of using
masks in class [4], and themobility in classes [4] and [8]
are not very significant. However, as we will observe in
Sect. 4, those controls have influence on the economical
point of view.

4 An optimal control analysis

4.1 Design of the control strategy

There are several works tackling the issue of optimal-
ity of fighting strategies against Covid-19 [19,46,47,
61,68,72]. The objective function to optimize is com-
monly expressed in the literature by the sum of a pos-
itive linear combination of disease states and a posi-
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tive quadratic combination of control parameters. Such
a formulation is a penalization approach to solve the
multiple objective problem which is to reduce both the
population size of disease compartments and the con-
trol energy. The quadratic dependence of the objective
functional with respect to control parameters makes
easier the optimization procedure since the problemhas
better chances to be convex [4,49]. Unfortunately, the
choice of penalization coefficients is very often not jus-
tified and there is no specific interpretation. Only few
papers tried a practical optimization in terms of social
and the economical impacts of the pandemic [47,81].
We follow the references [47,81] to define a realistic
new economical objective function since themain issue
of the fight against Covid-19 pandemic seems to eradi-
cate it with limited existing resources. We highlight the
contradictory costs, respectively, due to disease spread-
ing and disease containment strategies.

The control parameters we consider here are mainly
the limit density of population κ , the probability of
mobility m, the proportion of time spent on wearing a
mask u, the disinfection rateω and the reporting rate of
infectious (through screening test especially)q. Indeed,
those controls appear explicitly in the expression of the
threshold T0 which will play a similar role to the basic
reproduction number. Since the threshold T0 appears
important for the asymptotic behavior of the disease, it
could be interesting to minimize an analog to the effec-
tive reproduction number : T0 X1

N . Unfortunately, the
expression of T0 is very complex and it is not differen-
tiablewith respect to all its parameters. This irregularity
involves an additional complexity in the optimization
procedure. Thus, we will consider the infection rate
λX1 instead of T0 X1

N . λX1 takes into consideration the
dynamics of viruses.

Themedicalmonitoring of a patient during his infec-
tious period has an economical cost c that can be eval-
uated depending on the time spent before recovery and
on the expenses during each stay in a disease com-
partment. The expression of c should depend on cg ,
the daily revenue of a person in health which will be
lost due to the disease. The application of each control
involves an economical cost proportional to the size of
the population and to the time. We will note the cost
per unit of time and per individual cu for u and cω for
ω. Reducing m and κ involves a relative reduction in
economical activities and subsequently a reduction of
gross domestic product assumed proportional to mκ

(G D P
def= g = 1527USD × preson−1 × year−1 in

2018.10) A screening test has a cost cs which is not
clearly defined according to the media.Wewill assume
that cs = 10 U SD in average. Since it is difficult to
really estimate unreported infectious, it seems better
to define general measures to be applied by everyone
independently of the status. Thus, we will assume here
that τ1,i = τ1, τ2,i = τ2, τ3,i = τ3, ui = u, ωi = ω,
ςi = ς ,mi = m. LetC = (κ, q, u, m, ω).We consider
the following functional cost per area A:

Z
(
T f , X, Y, C

) =
∫ T f

0
cλ (s) X1 (s) ds

+
∫ T f

0

(
cuu (s) + cωω (s)

ω + ω (s)

)
N (s) ds

+
∫ T f

0
csq (X1 (s) + X2 (s) + X3 (s) + X6 (s)

+X7 (s)) ds

−
∫ T f

0
g

κ (s) m (s) (X1 (s) + X2 (s) + X3 (s))

κ
ds (50)

where κ = 10 person × m−2 denotes the usual aver-
age density of population per unit of surface, and
ω = 1440s−1 is the rate of hands washing corre-
sponding to spending the half of time for disinfection.
The negative term in the expression of Z represents
the reduction of economic losses when people are free
to move around in their various economic activities. A
negative value of the cost means that globally the losses
due to Covid-19 are not greater than the production of
wealth.

We assume that an efficient hands washing takes
about 30s. Thus, if ω−1 = 60s the time spent on hands
washing is half of the time between two consecutive
washes. On the other hand, when ω tends to +∞ then
the proportion of time spent to wash hands is 1. A func-
tion of ω displaying the behavior explained above is

ω(s)
ω+ω(s) with ω = 1440s−1. We suppose that the disin-

fection costs is cω = 1.736×10−5 USD × person−1 ×
s−1 in average. We also assume that after using a mask
for a given time (4h) it is systematically changed for a
newmaskhaving a certain unitary cost (1USD).Hence,
cu = 0.25USD × person−1 × h−1.

Let Ti−2 and ci−2 denote, respectively, the time
spent by an individual in the compartment i = 2, . . . , 6
and the cost generated by unit of time. According to

10 https://www.populationdata.net/pays/cameroun/www.popu
lationdata.net.
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probabilistic properties of Poisson processes [15,25,
44], we have

T0 = 1

μ + α1
, (51)

T1 = T1 (q) = α1T0
q + μ + d + γ1

, (52)

T2 = T2 (q) = pqT1
α2 + μ + d + γ2

, (53)

T3 = T3 (q) = (1 − p) qT1 + α2T2
μ + d + γ3

and (54)

T4 = T4 (q) = γ1T1 + γ2T2 + γ3T3
μ + γ4

. (55)

One can associate a cost cd per person which is related
to his burial ceremony. The probability to die during
the stay in disease compartments I , Q and H is given
by

pd = (μ + d) (T1 + T2 + T3) . (56)

Hence,

c = c (q) = (
c1 + cg

)
T1 + (

c2 + cg
)

T2

+ (
c3 + cg

)
T3 + cd pd . (57)

Table 4 summarizes the different unit costs we men-
tioned above.

Let us consider the Hamiltonian

H
(
X, Y, X∗, Y ∗, C

) =
[ •

X
T •

Y
T ] [X∗

Y ∗
]

+ cλX1 +
(

cuu + cωω

ω + ω

)
N

+ csq (X1 + X2 + X3 (s) + X6 + X7)

− mg
κ (X1 (s) + X2 (s) + X3 (s))

κ
(58)

where the adjoint state

[
X∗
Y ∗
]
satisfies

⎡
⎣

•
X∗
•

Y ∗

⎤
⎦ = − (∇(X,Y )F

)T
[

X∗
Y ∗
]

− (∇(X,Y ) (∂t Z (t, X, Y, C))
)T (59)

and
[

X∗ (T f
)

Y ∗ (T f
)
]

=
[
0
0

]
. (60)

The optimal control C∗ will be given by the optimality
condition

∇C H = 0. (61)

Notice that C∗ is projected into the admissible set
CAd =]0, κ]×[0, q]×[0, umax]×[mmin, 1]×[0, ωmax]
where q = 48 (persons are tested in average every 30
minutes), umax = 0.9, mmin = 0, ωmax = 24. The
existence of a unique optimal strategy is guaranteed
by the fact that the strict convexity of the Hamiltonian
with respect toC and the regularity of the optimal feed-
back strategy C∗ (X, Y, X∗, Y ∗). For more details on
the determination of optimal control we refer to the
books [4,49] and references therein.

Theorem 4 There is a unique piecewise continuous
optimal control C∗ for the model (1)–(20 ) character-
ized by Algorithm 1–3.

4.2 Numerical simulations and discussion

In order to numerically determine the optimal control
strategy, we implement the forward-backward sweep
method described in Chapter 3, page 101 of [4]. It is an
iterative approach that consists of replacing the feed-
back by a guess value first, solving the forward state
problem, solving the backward adjoint problem and
then updating the feedback using the gradient direc-
tion with a step length obtained by the golden section
method. The algorithm stops when the updates of the
control does not significantly change its values accord-
ing to a chosen threshold. That method is similar to
the one given into the Chapter 3 of [49], but it per-
mits to better control the convergence. Notice that one
could also envisage a method which minimizes the dis-
tance between the final condition of the adjoint problem
obtained for a guess initial condition and the reference
final condition. That method could be a multidimen-
sional variant of the secant algorithm [26,39].

We found after several simulations that, if we glob-
ally consider the economic losses and gains then, no
specific control effort is needed additionally to take
care of hospitalized patients and putting in quarantine
of infectious reported individuals as it is already done.
Probably that is a consequence of the high recovery
rate of patients and the relatively small death probabil-
ity. However, since the logistic resources for quarantine
and hospitalization are limited, the economical losses
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Table 4 Baseline values of elementary costs

Parameter Value Unit Source

c1 0 USD × person−1 × day−1 Assumed

c2 2.83 USD × person−1 × day−1

https://fr.numbeo.com/prix-de-l%27immobilier/pays/
Camerounwww.numbeo.com

c3 500 USD × person−1 × day−1 Assumed

cd 1600 USD × person−1 Assumed

cg 3.9 USD × person−1 × day−1

http://www.journaldunet.com/business/salaire/cameroun/
pays-cmrwww.journaldunet.com

cs 145 USD × person−1 × day−1

https://blogs.mediapart.fr/edition/
transparence-dans-les-politiques-du-medicament/article/
140320/
covid-19-la-transparence-sur-le-prix-des-diagnosticswww.
mediapart.fr

cu 6 USD × person−1 × day−1 Assumed

cω 1.736 × 10−5 USD × person−1 × day−1 Assumed

g 4.183562 USD × person−1 × day−1

https://www.populationdata.net/pays/cameroun/www.
populationdata.net

in terms of gross domestic product (due to social dis-
tancing, reduction of mobility and lock-down) can be
penalized in the cost functional Z . That is done in the
rest of the section.

Figure 5 is an illustration of the optimal control strat-
egy against Covid-19 and the evolution of the infection
forceλ.We canobserve that social distancing anddisin-
fection frequency are the main elements of the optimal
control strategy. The frequent oscillations of ω can be
explained by the sensitivity of the controlled system
behavior with respect to ω. Social distancing permits
to have no restriction on mobility. The use of mask is
useful but not necessary when social distancing and
regular disinfection are respected. Notice that if the
mask is misused it is useless, and it can promote other
respiratory complications. As the sensitivity analysis
showed the screening has no significant effect on dis-
ease behavior and it is economically better to keep q at
its minimal value corresponding to self decision to be
tested or the hospitalization of severe disease cases.

Figure 6 shows the progression of the SARS-CoV-
2 population (in terms of number of viruses per m−2)
and the disease prevalence either the optimal control
is applied or not. Relative prevalence of disease is
preferred over absolute prevalence because it is more
appropriate for scaling up. The peak of the disease

occurs earlier and with smaller values under optimal
control policy. We also observe that without control
there is a possibility to observe several peaks of the
disease. Without control, the peak of the disease (32%
prevalence) occurs after 57 days (about 8.5 weeks)
while under control it occurs after 26.37 days (about
4 weeks) with a weaker magnitude (0.4478% preva-
lence). With the initial compartmental population sizes
given in Table 2 and under the optimal control strat-
egy, the disease extinction in the human population is
reached after 9.571A×10−3 day×m−2 while it occurs
in the virus population after 2.023A × 10−1 day ×
m−2. If we consider the maximal disease prevalence
I1 and the virus population size (NV ) is equal to its
upper bound CV given in Proposition 1, then the dis-
ease extinction in the human population is reached after
5.499A× 103 day × m−2. Similarly, the extinction in
virus population is reached after 9.8321A×104 day ×
m−2. Thus, the sooner the control measures are taken,
the sooner the disease can disappear. The dependence
of the disease extinction timewith respect to the surface
A clearly highlights the importance of lock-down. As
we can observe, the extinction can be very slower in the
virus population than in the humanpopulation. The cost
of the optimal strategy has been computed for 180days
corresponding to half of the year. It has been evaluated
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Fig. 5 Optimal control dynamics of Covid-19 prevalence
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Fig. 6 Controlled dynamics of Covid-19 prevalence

atAZ� = 3.978USD × A × m−2 which corresponds
on average to 0.0221USD × A × m−2 × day−1.

5 Conclusion

This work is concerned with the mathematical mod-
eling of the severe acute respiratory corona virus 2.
According to governmental data and World Health
Organization, the corona virus made several millions
of dead in the world. It spreads very rapidly and affects
not only the public health sector, but also the global
economy. The transmission of the disease can occur
through direct contact with an infectious individual or
through indirect contacts via the environment. The high
complexity of the disease spreading suggested numer-
ous modeling activities. Indeed, through a mathemat-
ical model it is possible to rigorously study fighting
policies against corona. Hence, the goals we aimed
to achieve were to propose a realistic model for the
Covid-19 dynamics, to estimate the parameters of the
proposed model according to the available real data,
to study asymptotic behaviors depending on some fea-
tured control parameters related to WHO and govern-
mental recommendations, and to design control strate-
gies that are optimal with regards to socio-economical
constraints.

We have constructed a two scale compartmental
model with 20 classes corresponding to 10 human
population states (macroscopic scale) and 10 viruses
locations (microscopic scale). Indeed, we considered

Susceptible (S), Infected (E), Infectious (I ), Quaran-
tined (Q), Hospitalized (H), Treated (T ), Recovered
(R), Non-Infectious dead (D), Infectious dead (DI ),
Buried (B). Each individual was assumed to have an
external viral load on his body while there were free
viruses in the environment. Themodel has been labeled
SE I Q H T RDDI B−VS VE VI VQ VH VT VR VDVDI VF

as described graphically in Fig. 1. To better access the
effects of social distancing, the units of state vari-
ables have been taken in terms of person per unit area
and virus per unit of surface. The parameters of the
model have been successfully fitted using a Cameroo-
nian dataset and a semi-empiric procedure. Addition-
ally to the quantitative study of the system, we carried
out a qualitative analysis of the model.

The existence of equilibriums has been studied.
Contrarily to the endemic equilibrium, the disease free
equilibrium (DFE) exists unconditionally. The DFE is
globally asymptotically stable if a threshold T0 is less
or equal to one. We also provided a formula for the
basic reproduction number R0 which has a biological
interpretation regarding themodel: the average number
of new viruses generated by an introduced virus during
its lifespan. T0 has a similar biological interpretation.
A convergence index T1 has been defined. Under an
exponential convergence hypothesis, the times of dis-
ease extinction respectively in human population (T �

H )
and virus population (T �

V ) are determined. A sensitiv-
ity analysis ofR0, T0 and T1 have been done using the
partial rank correlation coefficient (PRCC). We found
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that the sensitive parameters are in descending order
the proportion of time of wearing mask, the proportion
of time spent on disinfecting people and the environ-
ment, and the mobility probability. Through a concept
of specific areaA, the importance of lock-down is high-
lighted. Indeed, the times of extinction are proportional
toA knowing that 1− A

AG
is the lock-down level. Since

the disease and the application of the different control
strategies generate economical costs, an optimal con-
trol analysis has been already carried out.

In order to guarantee effectiveness of control strate-
gies and to reduce the expenses generated by Covid-
19, we defined a functional cost to be minimized. The
existence and the uniqueness of the optimal control
is established and its characterization is given. By the
sweep decent method the optimal strategies are com-
puted according to some practical constraints materi-
alized by an admissible control set. We found that if
one globally considers the economical losses and gains,
then no specific control effort is needed additionally to
take care of hospitalized patients and putting in quar-
antine of infectious reported individuals as it is already
done. However, since the logistic resources for quar-
antine and hospitalization are limited, the economical
losses in terms of gross domestic product (due to social
distancing, reduction of mobility and lock-down) can
be penalized in the functional cost. That has been done
and we computed new optimal strategies.

According to the simulations, we observed that
social distancing and disinfection frequency are the
main elements of the optimal control strategy. Social
distancing permits to have no restriction on mobil-
ity. The use of mask is useful but not necessary when
social distancing and regular disinfection are respected.
Screening has no significant effect on disease behavior
and it is economically better to keep q at its minimal
value corresponding to self decision to be tested or the
hospitalization of severe disease cases. Under the opti-
mal control policy, the peak of the disease occurs earlier
and with smaller values.

The current work has several perspectives. The first
one is to take into consideration the effects of the avail-
able vaccine against Covid-19 both in the asymptotic
behavior analysis and in the optimization of the con-
trol strategy. Another aspect is to consider the spatial
heterogeneity in terms of available logistic resources,
population densities, attractiveness of specific places
at given periods of a day, cultural and religious habits,
and others significant factors. An ongoing work is try-

ing to tackle the problem regarding those aspects. The
model can also be extended using the promising theory
of fractional calculus [1,2,5,6,59,60,64].
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A Proofs of different results

Proof (Proof of Proposition 1 )
Assume that the initial condition is taken in �. Using
Cauchy=-Lipschitz Theorem there exists a maximal
solution of the system (22) . Assume that the solution
is defined and remains nonnegative on a set

[
0, T f

]
.

Then, on
]
0, T f

[
, N satisfies

•
N =

9∑
i=1

(�i + bi Xi )

(
1 − N

κ

)
− ρ1X8 − ρ2X9

≤
9∑

i=1

(�i + bi Xi )

(
1 − N

κ

)
. (62)

Thus, the orbit of N is clearly converges to the set [0, κ].
X8, X9 and X10 satisfy respectively

•
X8 = �8

(
1 − N

κ

)
+ μ (X1 + X2 + X6 + X7) − ρ1X8

≤ �8 + μκ − ρ1X8, (63)
•
X9 = �9

(
1 − N

κ

)
+ (μ + d) (X3 + X4 + X5) − ρ2X9

≤ �8 + (μ + d) κ − ρ2X9 and (64)
•
X10 = ρ1X8 + ρ2X9 ≥ 0. (65)

Hence, X10 ≥ 0 and the orbits of X8, X9 converge,
respectively, to the sets [0, CD] and

[
0, CDI

]
. On the
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other hand,

•
N V = −νNV +

10∑
i=1

(πi Xi − ωi Yi )

≤ −
(

ν + min
i=1,...,10

ωi

)
NV + κ sup

i=1,...,10
πi . (66)

Looking carefully the system (1)–(20), we can see that

∀i = 1, . . . , 10,
•

Xi (respectively,
•

Yi ) is nonnegative
when Xi = 0 (respectively, Yi = 0). This proves the
positivity of the solution which is finally global since
it is bounded by the attractiveness of �. ��
Proof (Proof of Proposition 2)

(i) Regarding the form of the model (22), it is plain
that it admits the equilibrium given by X = Y = 0.

(ii) Again, regarding the form of the model (22) the
DFE exists if and only if λ = 0 and b1 (κ − X1) =
μκ . Indeed, at the equilibrium X2 = λX1

μ+α1
. So it is

necessary to have λ = 0.
(iii) Once more, regarding the form of the model (22)

the EE exists only if λ > 0 and

c7� +
7∑

i=1

⎛
⎝bi

⎛
⎝1 − X1

κ

7∑
j=1

c j

⎞
⎠
⎞
⎠− μ − λ = 0.

Solving the last equation leads to the expression
of X E E

1 given above. The linear relation X E E
i =

ci X E E
1 come from matrix M . ��

Proof (Proof of Proposition 3)

(i) Looking at the expression of J in {0}9 × R+ ×
{0}10, we can see that J1,2 = 0 and both matrices
J1,1 and J2,2 have all their eigenvalues negative
except J1,1 (10, 10)which is null (the compartment
of buried individuals is a sink). This shows that the
set {0}9×R+×{0}10 is locally asymptotically stable
(LAS) if b1 ≤ μ.

(ii) If bi ≤ μ, i = 1, . . . , 7 then it suffices to look at

the equation of
•
N to get that the null equilibrium

X = Y = 0 is GAS. Indeed,

•
N =

9∑
i=1

(�i + bi Xi )

(
1 − N

κ

)

− μN − d X3 − d X4 − d X5

≤
7∑

i=1

bi Xi

(
1 − N

κ

)
− μN

= − N

κ

7∑
i=1

bi Xi +
7∑

i=1

(bi − μ) Xi .

Since the Xi s are nonnegative, if bi ≤ μ, i =
1, . . . , 7 then N converges to 0 and necessarily
X and Y converge to zero by construction of the
model.

(iii) From (i) other equilibrium than the null equi-
librium is unstable if b1 ≤ μ. So, it is neces-
sary to have b1 > μ. The disease free equilib-
rium is locally asymptotically stable (LAS) if J
is Metzler stable. That is the case if J1,1, J2,2 and
J1,1−J1,2 J−1

2,2 J2,1 are allMetzler stable (see Propo-
sition 3.1 in [41]). J1,1 and J2,2 are unconditionally
Metzler stable. So it remains the stability of the
matrix J1,1 − J1,2 J−1

2,2 J2,1.
(iv) Assume that b1 > μ and λ = 0. Due to the linear

form of Eqs. ( 2)–(7), ( 9) we can easily see that
Xi , i = 2, . . . , 7, 9 tends to zero. Hence, regarding
equations ( 1) and (8) we can check that X1 tends

to XDFE
1 while X8 tends to

μXDFE
1

ρ1
. ��

Proof (Proof of Lemma 1) The solution of (25)–( 26)
is given by

U (t) = et AU (0) − A−1
(

et A − I
)

C (67)

V (t) = et AV (0) − A−1
(

et A − I
)

C

+ et A
∫ t

0
v (s) e−s A Bds. (68)

Let α (A) < 0 denote the stability modulus of the
matrix A. We have

‖U (t) − V (t)‖

≤
∥∥∥et A

∥∥∥
(

‖U (0) − V (0)‖ +
∫ t

0
v (s)

∥∥∥e−s A
∥∥∥ ‖B‖ ds

)

≤ eα(A)t

(
‖U (0) − V (0)‖ + t ‖B‖ sup

t∈[0,+∞[
v (t)

∥∥∥e−t A
∥∥∥
)

.

(69)

The results follows. ��

Proof (Proof of Theorem 1) From Proposition 3, if
b1 > μ and λ = 0 then the DFE is GAS. Using Lemma
1 the result is immediate. ��
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Proof (Proof of Theorem 2) The proof is based on the
quasilinear form of the model (22). Indeed, the model
22) can be rewritten as

⎡
⎣

•
X
•
Y

⎤
⎦ =

[
M (X, Y ) K (X, Y )

P (X, Y ) Q (X, Y )

] [
X − X DF E

Y

]
(70)

where M1,1 = − b1X1
(
N−X DF E

1

)
κ
(
X1−X DF E

1

) − a1τ4X1Y1
(a2+Y1)

(
X1−X DF E

1

) ,

K2,1 = a1τ4X1
a2+Y1

, ∀ (i, j) �= (2, 1) , Ki, j = M2,1 = 0,

∀ (i, j) /∈ {(1, 1) , (2, 1)} , Mi, j = Mi, j , P (i, i) =
ςiπi Xi , i = 1, . . . , 9, P10, j = π j

(
1 − ς j

)
X j , j =

3, . . . , 6. The model has an almost triangular form and
is Metzler with a negative diagonal. The matrix M is
Metzler stable by its particular form (M1,1 is a nega-
tive eigenvalue and the complementary diagonal block
is triangular and Metzler stable). The matrix Q is Met-
zler and stable since its transpose is strictly diagonal
dominant. Using Proposition 3.1 in [41], the stabil-
ity is ensured if G = M − K Q−1P is Metzler sta-

ble. We have −Q−1 = D−1 + ∑+∞
k=1 D−1

(
RD−1

)k
,

0 ≤ (−K Q−1P
)
2, j ≤ r1π j K2,1

D1,1(1−r2)
, i = 3, 4, 5, 6

and
(−K Q−1P

)
i, j = 0 otherwise. Hence, G2, j =(−K Q−1P

)
2, j , j = 3, 4, 5, 6 and Gi, j = Mi, j oth-

erwise. G is therefore a Metzler. The stability of G is
equivalent to the one of the sub-matrix

(
Gi, j

)
2≤i, j≤6

due to the particular form of G. Again, using Proposi-
tion 3.1 in [41], the stability is ensured if

0 >G2,2 − G2,3G3,2

G3,3
+ G2,4G3,2G4,3

G3,3G4,4
+ G2,5G3,2

(
G4,4G5,3 − G4,3G5,4

)

G3,3G4,4G5,5

+ G2,6G3,2
(
G4,3G5,4G6,5 − G4,3G5,5G6,4 − G4,4G5,3G6,5 + G4,4G6,3G5,5

)

G3,3G4,4G5,5G6,6
(71)

We have

G2,2 − G2,3G3,2

G3,3
+ G2,4G3,2G4,3

G3,3G4,4
+ G2,5G3,2

(
G4,4G5,3 − G4,3G5,4

)

G3,3G4,4G5,5

+ G2,6G3,2
(
G4,3G5,4G6,5 − G4,3G5,5G6,4 − G4,4G5,3G6,5 + G4,4G6,3G5,5

)

G3,3G4,4G5,5G6,6

≤G2,2 − G2,3G3,2

G3,3
− G2,4G3,2

G4,4
− G2,5G3,2

G5,5
− G2,6G3,2

G6,6
≤ G2,2 −

6∑
j=1

G3,2

G j, j

r1π j K2,1

D1,1 (1 − r2)
. (72)

Thus, the stability holds if

r1G3,2K2,1

D1,1G2,2 (1 − r2)

6∑
j=3

π j

G j, j
< 1. (73)

Using the boundedness of X1 and NV , we have
K2,1 ≤ κa1τ4(b1−μ)

a2b1
and we get the sufficient condi-

tion T0 < 1. Since X1 < X DF E
1 and NV < κπ

ν+ω
, the

stability holds if T0 ≤ 1. ��
Proof (Proof ofTheorem3)LetS= S

S+E+I+Q+H+T +R ,

I = E+I+Q+H+T
S+E+I+Q+H+T +R and assume that ∀t ≥ 0,

λ (t) = λ0e−αt , α > 0. From the model (1)–(20 ) we
have according to probabilistic properties of Poisson
processes [15,25,44],

•
I =λS + bN

κ
I − (b + β (1 − pd)) I

− (βpd − μ) (1 − I) I
≤λ − (β (1 − pd)) I. (74)

Indeed, the real phenomenon is a tuple of Poisson
processes which jumps with rates given by different
transition rates. The average time between two con-
secutive jumps is the inverse of the jumping rate and
almost surely only one process in the tuple jumps at a
given time. Hence, the average time 1

β
spent by an indi-
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vidual from his entry in the compartment E to his exit
from the compartment T is the sum of average times
he spent in of each the compartment E , I , Q, H and
T respectively. If σ1 = min {α, β (1 − pd)} then using
the resolvent operator we have ∀t ≥ 0,

I (t) ≤I (0) e−(β(1−pd ))t

+
∫ t

0
e−(β(1−pd ))(t−τ)λ (τ ) dτ (75)

=I (0) e−(β(1−pd ))t

+ λ0e−(β(1−pd ))t
∫ t

0
e(β(1−pd )−α)τ dτ (76)

≤I (0) e−(β(1−pd ))t + λ0te−σ1t

≤ I (0)

β (1 − pd) et
+ 4λ0

σ 2
1 e2t

. (77)

The last inequality comes from the fact that tne−kt ≤( n
ke

)n for k, n ∈ N
∗ and t ∈ R+. Since N (t) ≤ N (t) ≤

κ , ∀t ≥ 0, we have

I (t) N (t) ≤ κI (0)

β (1 − pd) et
+ 4κλ0

σ 2
1 e2t

. (78)

Let σ2 = min
{
ν + ω , β (1 − pd)

}
and σ3 =

min
{
ν + ω , σ1

}
. We have

•
N V ≤ − (

ν + ω
)

NV + πIN

≤ − (
ν + ω

)
NV + κπI. (79)

Again, using the Gronwall’s Lemma we have

NV (t) ≤ NV (0) e−(ν+ω)t + κπe−(ν+ω)t

∫ t

0
e(ν+ω)s

(
I (0) e−(β(1−pd ))s + λ0se−σ1s

)
ds

≤NV (0) e−(ν+ω)t + κπI (0) e−(ν+ω)t

×
∫ t

0
e−(β(1−pd )−ν−ω)sds

+ κπλ0e−(ν+ω)t
∫ t

0
se(ν+ω)se−σ1sds

≤NV (0) e−(ν+ω)t + κπI (0) te−σ2t + κπλ0

2
t2e−σ3t

≤NV (0) e−(ν+ω)t + 4κπI (0)

σ 2
2 e2t

+ 27κπλ0

2σ 3
3 e3t

≤ NV (0)(
ν + ω

)
et

+ 4κπI (0)

σ 2
2 e2t

+ 27κπλ0

2σ 3
3 e3t

. (80)

Hence, the respective first times T �
H and T �

V such
that, respectively,AIG (t) N (t) ≤ 1 andANV (t) ≤ 1
satisfy

T �
H ≤ κAI (0)

β (1 − pd) e
+ 4κλ0A

σ 2
1 e2

(81)

and

T �
V ≤ ANV (0)(

ν + ω
)

e
+ κπA

(
8eσ 3

3 I (0) + 27σ 2
2 λ0

)

2σ 2
2 σ 3

3 e3
.

(82)

��
Proof (Proof of Theorem 4) The existence of the opti-
mal control is guaranteed by the boundedness of the
solution of (1)–(20) and subsequently, the bounded-
ness of the functional cost Z which is continuously
differentiable with respect to its parameters. The rest
of the proof is essentially based on the study of the
gradient of the Hamiltonian. Indeed, the minimization
consists in moving according to the opposite direction
of the gradient of the Hamiltonian while it is possible
and necessary. Precisely, when the gradient is the null
vector then a singular point is reached. If the gradient
is not zero but it is not possible to move again, then
the optimum is reached at the boundary of the eligible
region.11 We have

∂ H

∂ω
= cωωN

(ω + ω)2
−

9∑
j=1

Y j Y
∗
j , (83)

∂ H

∂κ
= N

κ2

9∑
i=1

�i X∗
i + N

κ2 X∗
1

7∑
i=1

bi Xi

−mg
(X1 (s) + X2 (s) + X3 (s))

κ
, (84)

∂ H

∂m
=

9∑
i=1

⎛
⎝

9∑
j=1

(
τmax
3, j − τmin

3, j

)
Y j +

(
τmax
2, j − τmin

2, j

)
Y10

⎞
⎠

Xi

N
Y ∗

i

+
9∑

j=1

((
τmax
1, j − τmin

1, j

)
Y j −

(
τmax
2, j − τmin

2, j

) X j

N
Y10

)
Y ∗
10

−
9∑

j=1

((
τmax
1, j − τmin

1, j

)
+
(
τmax
3, j − τmin

3, j

))
Y j Y

∗
j

11 See the book [4] for more details.
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−gκ
(X1 (s) + X2 (s) + X3 (s))

κ
, (85)

∂ H

∂u
= a1X1Y1

(
X∗
1 − X∗

2 − c
) (

τmax
4 − τmin

4

)

a2 + Y1

+ a1Y 2
1

(
τmax
4 − τmin

4

)

a2 + Y1

(
Y ∗
1 − Y ∗

2

)

+
9∑

j=1

(
ςmax

j − ςmin
j

) (
Y ∗
10 − Y ∗

j

)
π j X j + cu N and

(86)

∂ H

∂q
=cs (X1 + X2 + X3 + X6 + X7) − X3X∗

3 + pX3X∗
4 + (1 − p) X3X∗

5

+ �a1X1Y1 (μ + d + γ1)
(
τmax
4 − u

(
τmax
4 − τmin

4

))

(a2 + Y1) (q + μ + d + γ1)
2 with (87)

� = (q + μ + d + γ1)
2

(μ + d + γ1)

∂c

∂q

= −
((

c1 + cg
)+ cd (μ + d)

)
α1T0

(μ + d + γ1)

+
((

c2 + cg
)+ cd (μ + d)

)
pα1T0

α2 + μ + d + γ2

+
((

c3 + cg
)+ cd (μ + d)

)
(pα2 + (1 − p) (α2 + μ + d + γ2)) α1T0

(α2 + μ + d + γ2) (μ + d + γ3)
. (88)

If the optimal control exists then Algorithm 1–
3 describes it such as a piecewise continuous feed-
back which is locally Lipschitz with respect to the
state variable and the adjoint state variable. Thus, by
the Cauchy–Lipschitz Theorem the optimal control is
unique. ��

B Computation of the optimal control
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Algorithm 1 : Optimal control (part 1)
κ∗ = κ

q∗ = 0
u∗ = 0
m∗ = 1
ω∗ = 0

tmp1 =
9∑

i=1
Xi Y ∗

i

(
9∑

j=1

(
τmax
3, j −τmin

3, j

)
Y j +

(
τmax
2, j −τmin

2, j

)
Y10

)

g(X1+X2+X3)N

+
9∑

j=1

((
τmax
1, j −τmin

1, j

)
Y j −

(
τmax
2, j −τmin

2, j

) X j
N Y10

)
Y ∗
10

g(X1+X2+X3)

−
9∑

j=1

((
τmax
1, j −τmin

1, j

)
+
(
τmax
3, j −τmin

3, j

))
Y j Y ∗

j

g(X1+X2+X3)

if X∗
1 < 0 and tmp1 ≥ 1 then

m∗ = 0
end if
if X∗

1 = 0 then
κ∗ = κtmp1

end if
if tmp1 > 0 then

m∗ = 0
end if
if X∗

1 > 0 then
if tmp1 > 0 then

κ∗ = κtmp1

m∗ = κ N X∗
1

g(X1+X2+X3)(κ∗)2

7∑
i=1

bi Xi

else

κ∗ =
√

κ N X∗
1

g(X1+X2+X3)

7∑
i=1

bi Xi

end if
end if

if
9∑

j=1
Y j Y ∗

j > 0 then

tmp1 = cω N − ωY1Y ∗
1

if tmp1 < 0 then
ω∗ = ωmax

else

ω∗ =
√

cωωN

(
9∑

j=1
Y j Y ∗

j

)− 1
2

− ω

ω∗ = max {0,min {ω∗, ωmax}}
end if

� = −
((

c1 + cg
)+ cd (μ + d)

)
α1T0

(q + μ + d + γ1)
2 +

((
c2 + cg

)+ cd (μ + d)
)
(μ + d + γ1) pα1T0

(q + μ + d + γ1)
2 (α2 + μ + d + γ2)

+
((

c3 + cg
)+ cd (μ + d)

)
(pα2 + (1 − p) (α2 + μ + d + γ2)) (μ + d + γ1) α1T0

(q + μ + d + γ1)
2 (α2 + μ + d + γ2) (μ + d + γ3)

tmp2 = cs (X1 + X2 + X3 + X6 + X7) − X3X∗
3 + pX3X∗

4 + (1 − p) X3X∗
5

tmp3 = �a1X1Y1(μ+d+γ1)
a2+Y1

end if
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Algorithm 2 : Optimal control (part 2)
if � < 0 then

if (q + μ + d + γ1)
2 tmp2 + τmin

4 tmp3 < 0 then
q∗ = q

else
if (μ + d + γ1)

2 tmp2 + τmin
4 tmp3 > 0 then

q∗ = 0
else

if Y1 = 0 then
q∗ = q

else
tmp4 = a1X1Y1

(
τmax
4 −τmin

4

)
a2+Y1

tmp5 = X∗
1 − X∗

2 + cu N
tmp4

if tmp5 < 0 then
q∗ = q

else
tmp6 =

α1T0
(
cd (μ + d) + (

c1 + cg
))

tmp6 = tmp6
μ+d+γ1

if tmp5 > tmp6 then
q∗ = 0

else
tmp6 = tmp5 − � −
α1T0

(
cd (μ + d) + (

c1 + cg
))

q∗ = α1T0
(
cd (μ + d) + (

c1 + cg
)) −

tmp5 ∗ (μ + d + γ1)

q∗ = q∗/tmp6
end if

end if
end if

end if
end if

end if
if � = 0 then

if (q + μ + d + γ1)
2 tmp2 + τmin

4 tmp3 < 0 then
q∗ = q

else
q∗ = 0

end if
end if
if � = 0 then

if (q + μ + d + γ1)
2 tmp2 + τmin

4 tmp3 < 0 then
q∗ = q

else
q∗ = 0

end if
end if

Algorithm 3 : Optimal control (part 3)
if � > 0 then

if (q + μ + d + γ1)
2 tmp2 + τmin

4 tmp3 < 0 then
q∗ = q

else
if (μ + d + γ1)

2 tmp2 + τmin
4 tmp3 > 0 then

q∗ = q
else

if Y1 = 0 then
q∗ = 0

else
tmp4 = a1X1Y1

(
τmax
4 −τmin

4

)
a2+Y1

tmp5 = X∗
1 − X∗

2 + cu N
tmp4

if tmp5 < 0 then
q∗ = 0

else
tmp6 = q

(
� + α1T0

(
cd (μ + d) + (

c1 + cg
)))

tmp6 = tmp6+α1T0
(
cd (μ + d) + (

c1 + cg
))

tmp6 = tmp6
q+μ+d+γ1

if tmp5 > tmp6 then
q∗ = q

else
tmp6 = tmp5 − � −
α1T0

(
cd (μ + d) + (

c1 + cg
))

q∗ = α1T0
(
cd (μ + d) + (

c1 + cg
)) −

tmp5 ∗ (μ + d + γ1)

q∗ = q∗/tmp6

tmp7 =
9∑

j=1

(
ςmax

j − ςmin
j

) (
Y ∗
10 − Y ∗

j

)
π j X j

end if
end if

end if
end if

end if
end if
if Y1 �= 0 or tmp7 �= 0 then

tmp6 = q∗ (� + α1T0
(
cd (μ + d) + (

c1 + cg
)))

tmp6 = tmp6 + α1T0
(
cd (μ + d) + (

c1 + cg
))

tmp6 = tmp6
q∗+μ+d+γ1

tmp7 = tmp7 + tmp4 ∗ (
X∗
1 − X∗

2 − tmp6
) + cu N +

a1Y 2
1

(
τmax
4 −τmin

4

)
a2+Y1

(
Y ∗
1 − Y ∗

2

)
if tmp7 < 0 then

u� = 1
end if
if tmp7 = 0 and � �= 0 then

u� = (q�+μ+d+γ1)
2tmp2

tmp3

u� = τmax
4 −u�

τmax
4 −τmin

4

u� = min {1,max {0, u∗}}
end if

end if

123



2736 D. J. Fotsa-Mbogne et al.

References

1. Ahmad, S., Ullah, A., Al-Mdallal, Q.M., Khan, H., Shah,
K., Khan, A.: Fractional order mathematical modeling of
covid-19 transmission. Chaos Solitons Fractals 139, 112256
(2020)

2. Ahmad, S., Ullah, A., Shah, K., Salahshour, S., Ahmadian,
A., Ciano, T.: Fuzzy fractional-order model of the novel
coronavirus. Adv. Differ. Equ. 2020(1), 1–17 (2020)

3. Alberti, T., Faranda, D.: On the uncertainty of real-time pre-
dictions of epidemic growths: a Covid-19 case study for
china and Italy. Commun. Nonlinear Sci. Numer. Simul. 90,
105372 (2020)

4. Anita, S., Capasso, V., Arnautu, V.: An Introduction to Opti-
mal Control Problems in Life Sciences and Economics:
From Mathematical Models to Numerical Simulation with
MATLAB. Springer, Berlin (2011)

5. Arqub, O.A.: Computational algorithm for solving singu-
lar Fredholm time-fractional partial integrodifferential equa-
tions with error estimates. J. Appl. Math. Comput. 59(1),
227–243 (2019)

6. Arqub, O.A., Rashaideh, H.: The rkhs method for numerical
treatment for integrodifferential algebraic systems of tempo-
ral two-point bvps. Neural Comput. Appl. 30(8), 2595–2606
(2018)

7. Auger, P.,Magal, P., Ruan, S.: Structured PopulationModels
in Biology and Epidemiology, vol. 1936. Springer, Berlin
(2008)

8. Batista, M.: Estimation of the final size of the second phase
of Coronavirus epidemic by the logistic model. MedRxiv
(2020)

9. Bekiros, S., Kouloumpou, D.: SBDiEM: a new mathemat-
ical model of infectious disease dynamics. Chaos Solitons
Fractals 136, 109828 (2020)

10. Belgaid, Y., Helal, M., Venturino, E.: Analysis of a model
for Coronavirus spread. Mathematics 8(5), 820 (2020)

11. Berger, P.D., Maurer, R.E., Celli, G.B.: Experimental
Design:WithApplication inManagement, Engineering, and
the Sciences. Springer, Berlin (2017)

12. Bowong, S., Kurths, J.: Modeling and parameter estimation
of Tuberculosis with application to Cameroon. Int. J. Bifurc.
Chaos 21(07), 1999–2015 (2011)

13. Bowong, S., Mountaga, L., Bah, A., Tewa, J., Kurths, J.:
Parameter and state estimation in a Neisseria meningitidis
model: a study case of Niger. Chaos Interdiscip. J. Nonlinear
Sci. 26(12), 123115 (2016)

14. Brauer, F., Castillo-Chavez, C., Castillo-Chavez, C.: Math-
ematical Models in Population Biology and Epidemiology,
vol. 2. Springer, Berlin (2012)

15. Britton, T., Pardoux, E., Ball, F., Laredo, C., Sirl, D., Tran,
V.C.: Stochastic EpidemicModels with Inference. Springer,
Berlin (2019)

16. Castilho, C., Gondim, J.A., Marchesin, M., Sabeti, M.:
Assessing the efficiency of different control strategies for
the Covid-19 epidemic. Electron. J. Differ. Equ. 64(2020),
1–17 (2020)

17. Chin, A., Chu, J., Perera, M., Hui, K., Yen, H.-L., Chan, M.,
Peiris, M., Poon, L.: Stability of SARS-CoV-2 in different
environmental conditions. MedRxiv (2020)

18. Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining
important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model. Bull. Math.
Biol. 70(5), 1272 (2008)

19. Djidjou-Demasse, R., Michalakis, Y., Choisy, M., Sofonea,
M.T., Alizon, S.: Optimal COVID-19 epidemic control until
vaccine deployment. MedRxiv (2020)

20. Easterling, R.G.: Fundamentals of Statistical Experimental
Design and Analysis. Wiley, New York (2015)

21. Eikenberry, S.E., Mancuso, M., Iboi, E., Phan, T., Eiken-
berry, K., Kuang, Y., Kostelich, E., Gumel, A.B.: To mask
or not to mask: Modeling the potential for face mask use
by the general public to curtail the COVID-19 pandemic.
Infect. Dis. Modell. (2020)

22. Espinoza, B., Castillo-Chavez, C., Perrings, C.: Mobility
restrictions for the control of epidemics: When do they
work? PLoS ONE 15(7), 0235731 (2020)

23. Fanelli, D., Piazza, F.: Analysis and forecast of COVID-19
spreading inChina, Italy andFrance.ChaosSolitonsFractals
134, 109761 (2020)

24. Faranda, D., Castillo, I.P., Hulme, O., Jezequel, A., Lamb,
J.S., Sato, Y., Thompson, E.L.: Asymptotic estimates of
SARS-CoV-2 infection counts and their sensitivity to
stochastic perturbation. Chaos Interdiscip. J. Nonlinear Sci.
30(5), 051–107 (2020)

25. Foata, D., Fuchs, A.: Processus stochastiques: Processus de
Poisson, chaînes de Markov et martingales (2002)

26. Fortin, A.: Analyse numérique pour ingénieurs. Presses inter
Polytechnique (2011)

27. Garabed, R.B., Jolles, A., Garira, W., Lanzas, C., Gutierrez,
J., Rempala, G.:Multi-scale dynamics of infectious diseases
(2020)

28. Garira, W.: A complete categorization of multiscale models
of infectious disease systems. J. Biol. Dyn. 11(1), 378–435
(2017)

29. Garira, W.: The research and development process for mul-
tiscale models of infectious disease systems. PLoS Comput.
Biol. 16(4), 1007734 (2020)

30. Garira, W., Mafunda, M.C.: From individual health to com-
munity health: towards multiscale modeling of directly
transmitted infectious disease systems. J. Biol. Syst. 27(01),
131–166 (2019)

31. Garira,W.,Mathebula, D., Netshikweta, R.: Amathematical
modelling framework for linked within-host and between-
host dynamics for infections with free-living pathogens in
the environment. Math. Biosci. 256, 58–78 (2014)

32. Gilbert, M., Pullano, G., Pinotti, F., Valdano, E., Poletto,
C., Boëlle, P.-Y., dOrtenzio, E., Yazdanpanah, Y., Eholie,
S.P., Altmann, M., et al.: Preparedness and vulnerability
of African countries against importations of COVID-19: a
modelling study. The Lancet 395(10227), 871–877 (2020)

33. Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Fil-
ippo, A., Di Matteo, A., Colaneri, M.: Modelling the Covid-
19 epidemic and implementation of population-wide inter-
ventions in Italy. Nat. Med. 26(6), 855–860 (2020)

34. Götz, T., Heidrich, P.: Early stage COVID-19 disease
dynamics in Germany: models and parameter identification.
J. Math. Ind. 10(1), 1–13 (2020)

35. Goupy, J., Creighton, L.: Introduction aux plans
d’expériences, vol. 3. Dunod Paris (2006)

123



Estimation and optimal control of the multiscale dynamics 2737

36. Harmand, J., Lobry, C., Rapaport, A., Sari, T.: The Chemo-
stat: Mathematical Theory of Microorganism Cultures.
Wiley, New York (2017)

37. Hilton, J., Keeling, M.J.: Estimation of country-level basic
reproductive ratios for novel Coronavirus (SARS-CoV-
2/COVID-19) using synthetic contact matrices. PLoS Com-
put. Biol. 16(7), 1008031 (2020)

38. Hu, Z., Cui, Q., Han, J., Wang, X., Wei, E., Teng, Z.: Evalu-
ation and prediction of the COVID-19 variations at different
input population and quarantine strategies, a case study in
Guangdong province, China. Int. J. Infect. Dis. 95, 231–240
(2020)

39. Jedrzejewski, F.: Introduction aux méthodes numériques.
Springer, Berlin (2005)

40. Kaffo, C., Noubactep, C., Akamba Bekono, J.C., Tchekote,
H.: Les cérémonies funéraires à l’Ouest-Cameroun: Entre
mutations des pratiques sociétales, reconstruction des
économies locales et aménagement de l’espace.Géographie
et cultures, (110):13–32 (2019)

41. Kamgang, J.C., Sallet, G.: Computation of threshold condi-
tions for epidemiological models and global stability of the
disease-free equilibrium (DFE). Math. Biosci. 213(1), 1–12
(2008)

42. Kassa, S.M., Njagarah, J.B., Terefe, Y.A.: Analysis of the
mitigation strategies for COVID-19: from mathematical
modelling perspective. Chaos Solitons Fractals 138, 109968
(2020)

43. Khajanchi, S., Sarkar, K., Mondal, J., Nisar, K.S., Abdelwa-
hab, S.F.: Mathematical modeling of the covid-19 outbreak
with intervention strategies. Results Phys. 104285 (2021)

44. Kingman, J.: Poisson Processes. Oxford University Press,
Oxford (1993)

45. Kouakep, Y., Tchoumi, S., Fotsa, D., Kamba, F., Ngounou,
D., Mboula, E., Kamla, V., Kamgang, J.: Modelling the anti-
Covid19 individual or collective containment strategies in
Cameroon. Appl. Math. Sci. 15(2), 63–78 (2021)

46. Kouidere, A., Khajji, B., El Bhih, A., Balatif, O., Rachik,
M.: A mathematical modeling with optimal control strategy
of transmission of COVID-19 pandemic virus. Commun.
Math. Biol. Neurosci. (2020) Article–ID, 2020

47. La Torre, D., Malik, T., Marsiglio, S.: Optimal control
of prevention and treatment in a basic macroeconomic-
epidemiological model. Math. Soc. Sci. 108, 100–108
(2020)

48. Lejeune, M.: Statistique: La théorie et ses applications.
Springer, Berlin (2004)

49. Lenhart, S.,Workman, J.T.:OptimalControlApplied toBio-
logical Models. CRC Press, London (2007)

50. Li, M.-T., Sun, G.-Q., Zhang, J., Zhao, Y., Pei, X., Li, L.,
Wang, Y., Zhang, W.-Y., Zhang, Z.-K., Jin, Z.: Analysis of
COVID-19 transmission in Shanxi province with discrete
time imported cases. Math. Biosci. Eng. 17(4), 3710 (2020)

51. Liu, X., Stechlinski, P.: Infectious Disease Modeling: A
Hybrid System Approach, vol. 19. Springer, Berlin (2017)

52. Liu, Z., Magal, P., Seydi, O., Webb, G.: A COVID-19 epi-
demicmodelwith latency period. Infect. Dis.Model. 5, 323–
327 (2020)

53. Liu, Z.,Magal, P., Seydi, O.,Webb, G.: Understanding unre-
ported cases in the COVID-19 epidemic outbreak inWuhan,
China, and the importance of major public health interven-
tions. Biology 9(3), 50 (2020)

54. Magal, P., Webb, G.: The parameter identification problem
for SIR epidemic models: identifying unreported cases. J.
Math. Biol. 77(6–7), 1629–1648 (2018)

55. Mandal, M., Jana, S., Nandi, S.K., Khatua, A., Adak, S.,
Kar, T.: Amodel based study on the dynamics ofCOVID-19:
Prediction and control. Chaos Solitons Fractals 136, 109889
(2020)

56. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A
methodology for performing global uncertainty and sensi-
tivity analysis in systems biology. J. Theor. Biol. 254(1),
178–196 (2008)

57. Martcheva, M., Tuncer, N., StMary, C.: Coupling within-
host and between-host infectious diseases models. Biomath
4(2), 1510091 (2015)

58. Mischaikow, K., Smith, H., Thieme, H.R.: Asymptotically
autonomous semiflows: chain recurrence and Lyapunov
functions. Trans. Am.Math. Soc. 347(5), 1669–1685 (1995)

59. Momani, S., Abu Arqub, O., Maayah, B.: Piecewise opti-
mal fractional reproducing kernel solution and convergence
analysis for the Atangana-Baleanu-Caputo model of the
Lienards equation. Fractals 28(08), 2040007 (2020)

60. Momani, S.,Maayah, B., Arqub,O.A.: The reproducing ker-
nel algorithm for numerical solution of van der pol damping
model in view of theAtangana-Baleanu fractional approach.
Fractals 28(08), 2040010 (2020)

61. Nah, K., Chen, S., Xiao, Y., Tang, B., Bragazzi, N., Hef-
fernan, J., Asgary, A., Ogden, N., Wu, J.: Scenario tree and
adaptive decision making on optimal type and timing for
intervention and social-economic activity changes to man-
age the Covid-19 pandemic. Eur. J. Pure Appl. Math. 13(3),
710–729 (2020)

62. Ngonghala, C.N., Iboi, E., Eikenberry, S., Scotch, M., Mac-
Intyre, C.R., Bonds, M.H., Gumel, A.B.: Mathematical
assessment of the impact of non-pharmaceutical interven-
tions on curtailing the: novel Coronavirus. Math. Biosci.
325, 108364 (2019)

63. Ngonghala, C.N., Iboi, E.A., Gume, A.B.: Could masks cur-
tail the post-lockdown resurgence of COVID-19 in the US?
MedRxiv (2020)

64. Nisar, K.S., Ahmad, S., Ullah, A., Shah, K., Alrabaiah, H.,
Arfan, M.: Mathematical analysis of sird model of covid-19
with caputo fractional derivative based on real data. Results
Phys. 21, 103772 (2021)

65. Nkwayep, C.H., Bowong, S., Tewa, J., Kurths, J.: Short-
term forecasts of the COVID-19 pandemic: study case of
Cameroon. Chaos Solitons Fractals 140, 110106 (2020)

66. Prem, K., Cook, A.R., Jit, M.: Projecting social contact
matrices in 152 countries using contact surveys and demo-
graphic data. PLoS Comput. Biol. 13(9), 1005697 (2017)

67. Rabi, F.A., Al Zoubi,M.S., Kasasbeh, G.A., Salameh, D.M.,
Al-Nasser, A.D.: SARS-CoV-2 and Coronavirus disease
2019: what we know so far. Pathogens 9(3), 231 (2020)

68. Richard, Q., Alizon, S., Choisy,M., Sofonea,M.T., Djidjou-
Demasse, R.: Age-structured non-pharmaceutical interven-
tions for optimal control of COVID-19 epidemic. MedRxiv
(2020)

69. Roda, W.C., Varughese, M.B., Han, D., Li, M.Y.: Why is
it difficult to accurately predict the COVID-19 epidemic?
Infect. Dis. Model. 5, 271–281 (2020)

123



2738 D. J. Fotsa-Mbogne et al.

70. Rothman, K.J., Greenland, S., Lash, T.L.: Modern Epidemi-
ology. Lippincott Williams & Wilkins, London (2008)

71. Sardar, T., Nadim, S.S., Rana, S., Chattopadhyay, J.: Assess-
ment of lockdown effect in some states and overall India:
a predictive mathematical study on COVID-19 outbreak.
Chaos Solitons Fractals 139, 110078 (2020)

72. Sasmita,N.R., Ikhwan,M., Suyanto, S., Chongsuvivatwong,
V.: Optimal control on a mathematical model to pattern
the progression of coronavirus disease 2019 (covid-19) in
indonesia. Global Health Res Policy 5(1), 1–12 (2020)

73. Serhani, M., Labbardi, H.: Mathematical modeling of
COVID-19 spreading with asymptomatic infected and inter-
acting peoples (2020)

74. Tchoumi, S., Diagne, M., Rwezaura, H., Tchuenche, J.:
Malaria and covid-19 co-dynamics: a mathematical model
andoptimal control.Appl.Math.Model.99, 294–327 (2021)

75. Tchoumi, S., Kouakep, Y., Fotsa Mbogne, D., Kamgang, J.,
Kamla, V., Bekolle, D.: Covid-19 modeling with caution in
relaxing control measures and possibilities of several peaks
in Cameroon. Appl. Appl. Math. Int. J. (AAM) 16(1), 37
(2021)

76. Thieme, H.R.: Convergence results and a Poincaré–
Bendixson trichotomy for asymptotically autonomous dif-
ferential equations. J. Math. Biol. 30(7), 755–763 (1992)

77. Ud Din, R., Seadawy, A.R., Shah, K., Ullah, A., Baleanu,
D.: Study of global dynamics of covid-19 via a new mathe-
matical model. Results in Phys. 19, 103468 (2020)

78. van den Driessche, P.: Reproduction numbers of infectious
disease models. Infect. Dis. Model. 2(3), 288–303 (2017)

79. Van den Driessche, P., Watmough, J.: Reproduction num-
bers and sub-threshold endemic equilibria for compartmen-
tal models of disease transmission. Math. Biosci. 180(1–2),
29–48 (2002)

80. Van den Driessch, P., Watmough, J.: Further notes on the
basic reproduction number. In:Mathematical Epidemiology,
pp. 159–178. Springer (2008)

81. Volpert,V.,Banerjee,M., d’Onofrio,A., Lipniacki, T., Petro-
vskii, S., Tran, V.C.: Coronavirus-Scientific insights and
societal aspects (2020)

82. Wang, Q., Xie, S., Wang, Y., Zeng, D.: Survival-convolution
models for predictingCOVID-19 cases and assessing effects
of mitigation strategies. MedRxiv (2020)

83. Zhang, X., Ma, R., Wang, L.: Predicting turning point, dura-
tion and attack rate of COVID-19 outbreaks in major West-
ern countries. Chaos Solitons Fractals 135, 109829 (2020)

84. Zhou, L., Wu, K., Liu, H., Gao, Y., Gao, X.: CIRD-F: spread
and influence of COVID-19 in China. J. Shanghai Jiaotong
Univ. (Sci.) 25, 147–156 (2020)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Estimation and optimal control of the multiscale dynamics of Covid-19: a case study from Cameroon
	Abstract
	1 Introduction
	2 The model and its general features
	2.1 Definition of parameters
	2.2 Description of the model
	2.3 Equilibriums and asymptotic behaviors

	3 A focus on Cameroonian context 
	3.1 Early estimation of the parameters of the disease dynamics
	3.2 Effects of controls on disease dynamics

	4 An optimal control analysis
	4.1 Design of the control strategy
	4.2 Numerical simulations and discussion

	5 Conclusion
	Acknowledgements
	A Proofs of different results
	B Computation of the optimal control
	References





