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A B S T R A C T   

Introduction: Data extraction from electronic health record (EHR) systems occurs through manual abstraction, 
automated extraction, or a combination of both. While each method has its strengths and weaknesses, both are 
necessary for retrospective observational research as well as sudden clinical events, like the COVID-19 pandemic. 
Assessing the strengths, weaknesses, and potentials of these methods is important to continue to understand 
optimal approaches to extracting clinical data. We set out to assess automated and manual techniques for col-
lecting medication use data in patients with COVID-19 to inform future observational studies that extract data 
from the electronic health record (EHR). 
Materials and methods: For 4,123 COVID-positive patients hospitalized and/or seen in the emergency department 
at an academic medical center between 03/03/2020 and 05/15/2020, we compared medication use data of 25 
medications or drug classes collected through manual abstraction and automated extraction from the EHR. 
Quantitatively, we assessed concordance using Cohen’s kappa to measure interrater reliability, and qualitatively, 
we audited observed discrepancies to determine causes of inconsistencies. 
Results: For the 16 inpatient medications, 11 (69%) demonstrated moderate or better agreement; 7 of those 
demonstrated strong or almost perfect agreement. For 9 outpatient medications, 3 (33%) demonstrated moderate 
agreement, but none achieved strong or almost perfect agreement. We audited 12% of all discrepancies (716/ 
5,790) and, in those audited, observed three principal categories of error: human error in manual abstraction 
(26%), errors in the extract-transform-load (ETL) or mapping of the automated extraction (41%), and 
abstraction-query mismatch (33%). 
Conclusion: Our findings suggest many inpatient medications can be collected reliably through automated 
extraction, especially when abstraction instructions are designed with data architecture in mind. We discuss 
quality issues, concerns, and improvements for institutions to consider when crafting an approach. During crises, 
institutions must decide how to allocate limited resources. We show that automated extraction of medications is 
feasible and make recommendations on how to improve future iterations.   

Abbreviations: EHR, electronic health record; IDR, institutional data repository; ED, emergency department; CDM, common data model; OMOP, observational 
medical outcomes partnership; SQL, structured query language; NDF-RT, National Drug File-Reference Terminology; ATC, Anatomical Therapeutic Chemical; κ, 
Cohen’s kappa; PABAK, prevalence-adjusted bias-adjusted kappa; PI, prevalence index; ETL, extract-transform-load. 
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1. Introduction 

Data collection from electronic health record (EHR) systems may be 
conducted through manual abstraction, automated extraction, or a 
combination of both. Manual abstraction, which involves trained 
personnel reviewing patient charts and completing case report forms, is 
often considered the gold standard for retrospective observational 
research. Many variables require manual adjudication by clinically 
trained personnel, depending on the complexity of institutional work-
flows, clinical questions, medical record structure, etc. [1–10]. Notably, 
Flatiron Health, with its data set for analytics generated through manual 
review, sold for nearly $2 billion to pharmaceutical company Roche, 
demonstrating the significant value of manually abstracted data [11]. 
Although considered the gold standard, manual abstraction has limita-
tions, as human reviewers are not infallible and can be less accurate in 
certain cases [12–17]. Importantly, manual abstraction consumes sig-
nificant time for clinically trained personnel who are needed for patient 
care and other capacities, especially during times of crisis as occurred in 
the COVID-19 pandemic. 

To address these challenges, studies have demonstrated that auto-
mated data extraction from the EHR, which involves direct database 
queries, can produce data sets of similar quality to manual abstraction 
for certain variables while saving time for study teams and reducing 
error [16,18–24]. Even so, automated extraction is similarly susceptible 
to data quality issues relating to high complexity or fragmentation of 
data across many EHR systems [25–28]. Manual abstraction and auto-
mated extraction both ultimately depend on the EHR, which is not an 
objective, canonical source of truth but rather an artifact with its own 
bias, inaccuracies, and subjectivity [29–35]. While previous work has 
explored these concepts, optimal approaches for acquiring data from 
EHR systems for research are unknown. 

Alongside other academic medical centers, our institution, Weill 
Cornell Medicine, deployed informatics to support COVID-19 pandemic 
response efforts [36–48]. This included systematic data collection from 
the EHR, which at our institution occurred through a combination of 
manual abstraction and automated extraction. Prior investigations have 
compared manual to automated data collection techniques in conditions 
other than COVID-19, described informatics resources specific to 
COVID-19[47–49], and evaluated the performance of automated 
extraction in COVID-19 [47–49]. Such evaluations of automated 
extraction have included problem lists as well as natural language pro-
cessing extracting signs and symptoms [50–53]. To the best of our 
knowledge, no studies have compared manual to automated data 
acquisition of medications in COVID-19 data. Medication use data is 
critical to studying new diseases, especially concerning their risk factors 
and outcomes following certain treatments. For example, ACE inhibitors 
were debated early in the pandemic due to concerns about their role in 
exacerbating disease [54]. We sought to quantitatively assess the 
concordance between manual abstraction and automated extraction of 
EHR data for inpatient and outpatient medications using Cohen’s kappa 
while also qualitatively reviewing instances of discordance to under-
stand sources of error, similar to previous work [15–18,23]. The COVID- 
19 pandemic uniquely fueled parallel database creation through both 
manual and automated methods, given the dire need for information. In 
turn, this enabled us to compare these methods in ways not done pre-
viously, given the number of patients included, number of medications 
included, and the parallel creation of the databases. Through our com-
parison and suggestions, we hope to support institutions in improving 
data collection methods and in the allocation of resources in future ef-
forts, whether related to COVID or other clinical scenarios [49,55]. 

2. Materials and methods 

2.1. Setting 

This retrospective observational study occurred at Weill Cornell 

Medicine (WCM), the biomedical research and education unit of Cornell 
University, which has 1,600 attending physicians with faculty ap-
pointments in the WCM Physician Organization and admitting privileges 
to NewYork-Presbyterian. Affiliated facilities included NewYork- 
Presbyterian/Weill Cornell Medical Center (NYP/WCMC), an 862-bed 
teaching hospital; NewYork-Presbyterian Hospital/Lower Manhattan 
Hospital (NYP/LMH), a 180-bed community hospital; and NewYork- 
Presbyterian/Queens (NYP/Q), a 535-bed community teaching hospi-
tal. For inpatient and emergency settings, clinicians used the Allscripts 
Sunrise Clinical Manager EHR system. For outpatient settings, NYP/ 
WCMC and NYP/LMH clinicians used the Epic EHR system while NYP/Q 
clinicians used the Athenahealth EHR system. The study period was 03/ 
03/2020 (date of first COVID-positive admission to a WCM campus) to 
05/15/2020. The WCM Institutional Review Board approved this study 
(#20-03021681). 

2.2. System description 

To support institutional pandemic response efforts, we created the 
COVID Institutional Data Repository (IDR), comprised of data retrieved 
through manual abstraction and automated extraction from EHR systems. 
The COVID IDR used existing institutional infrastructure for secondary 
use of EHR data, including Microsoft SQL Server-based pipelines for data 
acquisition from ambulatory and inpatient EHR systems and research 
systems, described in prior work [56]. As illustrated in Fig. 1, the IDR 
includes many clinical domains and was designed to support diverse use 
cases, including clinical operations, quality improvement, and research 
with processes to determine access and oversee regulatory approval 
[56]. Data collected through manual abstraction and automated 
extraction in the IDR are ultimately derived from the EHR, which, as 
demonstrated by Hripcsak et al, constitutes an imperfect proxy for the 
true underlying patient state [30]. Inpatient and outpatient medication 
data examined in this study were derived from a few different sources. 
Inpatient medication data was derived from the medication adminis-
tration record present in Allscripts SCM, the electronic health record 
system in use at the time of the pandemic. Outpatient medication data 
was derived from a combination of free text mentions in clinical notes, 
“historical medication” orders entered into the EHR as the result of 
medication reconciliation at the time of admission, and prescriptions 
entered into the EHR either at discharge or at an ambulatory care visit. 

2.2.1. Manual abstraction 
A team of clinicians (PG, JC, HL, GW, MA, MS) identified data ele-

ments in the EHR and created a REDCap case report form [57]. The team 
provided training to furloughed medical students and other clinicians 
(the abstractors) on abstraction methods [58]. A daily query identified 
patients based on the inclusion criteria (admitted to or seen in the 
emergency department (ED) at NYP/WCMC, NYP/LMH, or NYP/Q AND 
positive RT-PCR for SARS-CoV-2). Abstractors followed these patients 
(n = 4,123) through their entire hospitalization until discharge, 
including any subsequent encounters for any of these same patients who 
presented to the ED again or were readmitted (n = 4,414 visits). The case 
report form included 14 sections: patient information, comorbidities, 
symptoms, home (outpatient) medications, ED course, mechanical 
ventilation, ICU stay, discharge, imaging, disposition, complications, 
testing, inpatient medications, and survey status. Reviewers relied 
principally on the inpatient EHR. For portions of the case report form 
regarding medications, abstractors answered a mix of binary (“yes” or 
“no”) and check box (“check all that apply”) questions. Medications 
were abstracted at the drug class level (e.g. Statins) or individual level 
(e.g. Hydroxychloroquine). To determine inpatient medication expo-
sure, abstractors used structured order entry and medication adminis-
tration record data to determine whether a patient received a given 
medication. To determine outpatient medication exposure (those drugs 
prescribed prior to the hospitalization), manual abstractors relied on 
outpatient medication orders from the ambulatory EHR system, 
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mentions of drug exposure in clinical notes, and “historical medication” 
orders entered into the inpatient order-entry system as a result of 
medication reconciliation after admission. The case report form listed 
examples of medications from drug classes for abstractors to reference. 
As a quality check prior to initial publication of registry data, a second 
abstractor reviewed 10% of records, calculating mean Cohen’s kappas of 
0.92 and 0.94 for categorical and continuous variables, respectively. 

Tables 2 and 3 in Appendix A show the results from this secondary 
extraction in the “Validation” columns. The entirety of these methods 
has been described previously [36]. For the manual abstraction data 
dictionary, see Appendix B. 

2.2.2. Automated extraction 
Automated extraction captured data for all patients tested for SARS- 

CoV-2 and/or diagnosed with COVID-19 as documented by EHR systems 
in the study period. Data were transferred from their underlying raw 
format (vendor-specific proprietary EHR data models) and loaded into a 
Microsoft SQL Server database designed with a custom schema. Data 
were stored in tables corresponding to clinical domains (Appendix C). 
Instead of using an existing common data model (CDM) such as the 
Observational Medical Outcomes Partnership (OMOP) or PCORnet 
CDM, we used a simplified format based on OMOP to include data ele-
ments not always assigned reference terminology in EHR source data 
and to present data in keeping with clinical preconceptions (e.g. sepa-
rating in-hospital medication administration from outpatient pre-
scriptions to preserve their distinct provenance and usage rather than 
combining both into a single table)[59,60]. 

2.3. Research methods of comparison 

First, we characterized both constituent elements of the IDR: its 
manually abstracted and automatically extracted components. For both 
data sets, we determined how many patients were included, tallied total 
observations, and determined basic demographic characteristics. Sec-
ond, for all patient visits (as some patients had multiple hospitalizations) 
with data collected through both manual abstraction and automated 
extraction, we quantitatively assessed agreement between the methods 
using Cohen’s kappa. Third, we audited a subset of discrepancies be-
tween the results of the automated and manual processes for each 
medication or drug class to determine the underlying error. Of note, in 
this comparison of manual abstraction and automated extraction, we did 
not assume either to be the gold standard, instead seeking objective 
strengths and weaknesses of each approach and the concordance be-
tween their data. Past studies have used this approach to compare 
strengths and weaknesses of manual and automated data collection 
[15–18,23]. Individual medications and drug classes were studied to 

Fig. 1. COVID Institutional Data Repository – architectural overview.  

Table 1 
Characteristics of patients included in the COVID-19 manual abstraction effort 
and the IDR.   

Patients with 
manually 
abstracted data 
(N = 4123) 

Patients with only 
automated 
extracted data (N 
= 20821) 

Patients with data 
through manual 
abstraction, automated 
extraction, or both (N =
24944) 

Race/ 
Ethnicity    

Asian, non- 
Hispanic 

640 (15.5%) 1835 (8.8%) 2475 (9.9%) 

Black, non- 
Hispanic 

433 (10.5%) 2966 (14.2%) 3399 (13.6%) 

White, 
non- 
Hispanic 

896 (21.7%) 6732 (32.3%) 7628 (30.6%) 

Other non- 
Hispanic 

434 (10.5%) 1718 (8.3%) 2152 (8.6%) 

Hispanic/ 
Latino 

1213 (29.4%) 4375 (21.0%) 5588 (22.4%) 

Unknown 507 (12.3%) 3195 (15.3%) 3702 (14.8%) 
Sex    
Female 1711 (41.5%) 12,907 (62.0%) 14,618 (58.6%) 
Male 2397 (58.1%) 7892 (37.9%) 10,289 (41.2%) 
Other 1 (0.0%) 5 (0.0%) 6 (0.0%) 
Missing 14 (0.3%) 17 (0.1%) 31 (0.1%) 
Age    
0–18 16 (0.4%) 791 (3.8%) 807 (3.2%) 
18–35 245 (5.9%) 4292 (20.6%) 4537 (18.2%) 
35–50 571 (13.8%) 5752 (27.6%) 6323 (25.3%) 
50–65 1129 (27.4%) 4438 (21.3%) 5567 (22.3%) 
65–89 1785 (43.3%) 4764 (22.9%) 6549 (26.3%) 
89+ 363 (8.8%) 767 (3.7%) 1130 (4.5%) 
Missing 14 (0.3%) 17 (0.1%) 31 (0.1%)  
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better understand both common and specific causes of discrepancies 
within the two methods and allow for more targeted recommendations 
for improvement. 

2.3.1. Data transformation 
Because the data set formats differed, both required transformation 

before comparison. For example, medication data from manual 
abstraction were stored as dichotomous variables on a per-patient basis, 
while automated extraction stored them on a per-order basis. In order to 
compare, we developed Structured Query Language (SQL) queries with 
outputs displaying the presence or absence of agreement between the 
two methods (example of query output displayed in Appendix A, 
Table 1). SQL code for queries is available on Github (https://github. 
com/wcmc-research-informatics/covid_comparison). Queries were 
designed to align with the instructions given to manual abstractors. For 
example, they did not use RxNorm-derived definitions of drug classes, 
such as the National Drug File-Reference Terminology (NDF-RT) or 
Anatomical Therapeutic Chemical (ATC) hierarchies, instead using 
generic names from the manual abstractors’ instructions and clinical 
discretion of members of the research team (AY, WG, PG, JC) who 
participated in the manual abstraction. Queries identified inpatient 
medications from the automated extraction database if the date of 
administration fell within the dates of a given hospitalization. Queries 
identified outpatient medications based on whether the medication was 
actively prescribed for a patient at the time of admission to the hospital. 
It is important to note that a closed system to guarantee medication 
administration does not exist in the outpatient setting as it does in the 
inpatient setting. 

2.3.2. Measuring agreement between manual abstraction and automated 
extraction 

For each medication or drug class in the query (both inpatient and 
outpatient), we calculated Cohen’s kappa (κ), a statistic commonly used 
to measure interrater reliability, to quantify the agreement between data 
obtained through manual abstraction and automated extraction. We 
used the scale developed by McHugh to determine the strength of 
agreement based on the following thresholds: “almost perfect” (κ > 0.9), 
“strong” (0.9 > κ > 0.8), “moderate” (0.8 > κ > 0.6), “weak” (0.6 > κ >
0.4), “minimal” (0.4 > κ > 0.2), and “none” (0.2 > κ > 0.0) [61]. 95% 
CIs were calculated for each medication. To assess whether having 
previous records in our system improved data quality, we calculated κ 
values based on whether patients had EHR documentation of a prior 
outpatient, inpatient, or emergency visit to our healthcare system. To 
account for different prevalence in medications (i.e. some had very low 

prevalence) in the data set, we calculated the prevalence-adjusted bias- 
adjusted kappa (PABAK) and prevalence index (PI) [62]. 

2.3.3. Explaining discrepancies 
For each medication or drug class, we randomly audited 10% of the 

identified discrepancies or 20 discrepancies, whichever was greater. 
Two members of the research team (AY and WG) adjudicated discrep-
ancies in the results of the manual abstraction and automated extraction 
to determine the cause of error and determine the correct output. In 
order to do this, they reviewed both information from inpatient and 
outpatient EHRs as well as the manual abstraction and automated 
extraction data. ES adjudicated cases of disagreement between AY and 
WG. We classified discrepancies into three principal categories based on 
whether each was attributable to error in the manual abstraction, in the 
automated extraction, or to errors that could not be attributed to either 
method specifically. Respectively, these categories are: 1) human error 
in manual abstraction, 2) automated extraction error in the extract- 
transform-load (ETL) or mapping process, or 3) unattributable error 
due to abstraction-query mismatch between the instructions supplied to 
manual abstractors and the extraction query that flattened automated 
data for comparison. Although designed closely, the manual abstraction 
process was designed first, with instructions that did not necessarily 
consider the logic of automated extraction. We calculated descriptive 
statistics of the distribution of error types across these three categories. 

3. Results 

During the study period, manual abstraction yielded data for 4,123 
patients while automated extraction collected data for 24,944 patients, 
including the 4,123 patients from manual abstraction. Table 1 describes 
the distribution of patient characteristics collected through manual 
abstraction and automated extraction. 

All 25 medications (16 inpatient and 9 outpatient) in the manual 
abstraction process were included. The 4,123 patients identified in the 
manual abstraction process had a total of 4,414 visits, as some patients 
had multiple hospitalizations during the study period. Based on the 
manual abstraction, the percent of visits receiving a certain medication 
or drug class ranged from 0% to 60% (e.g. protease inhibitors in 0 of 
4,414 visits; hydroxychloroquine in 2,656 of 4,414 visits). Prevalence of 
each medication or drug class in the manual abstraction and automated 
extraction can be seen in Table 2. For all counts, percentages, and a more 
detailed breakdown of the data, see Appendix A, Tables 2 and 3. 

Table 2 
Prevalence of each medication/drug class in the manual abstraction and automated extraction data. Data show the number of visits (out of the total 4,414) in which 
each medication was administered (inpatient medications) or an active prescription at the time of hospitalization (outpatient medications).   

Number of visits in which medication was administered 
during hospitalization  

Number of visits in which medication was actively prescribed at the 
time of hospitalization 

Inpatient Manual Automated Outpatient Manual Automated 

Hydroxychloroquine 2656 2576 Statin 1323 1425 
Antibiotics 2513 2138 NSAID 1021 1270 
Statins 1115 986 ACEi/ARB 1090 1180 
NSAID 878 698 PPI 624 619 
Vasopressors 747 646 Steroids 360 595 
Diuretics 706 275 Immunosuppressives 279 305 
Steroids 697 880 Hydroxychloroquine 83 126 
ACEi/ARB 334 267 Antivirals 69 148 
Remdesivir 188 0 Oseltamivir 50 24 
Tocilizumab 171 168    
Oseltamivir 75 77    
Inotropes 62 49    
Sarilumab 27 0    
IVIG 21 19    
Lopinavir/Ritonavir 1 5    
Protease Inhibitors 0 0     
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3.1. Measuring agreement between manual abstraction and automated 
extraction 

For inpatient medications, we compared data from 16 different 
medications or drug classes and report the resulting Cohen’s kappa (κ) 
values for each category in Fig. 2. To see the data used to calculate κ 
values, see Appendix A, Table 2. Based on McHugh’s benchmark, 
agreement between manual abstraction and automated extraction was 
almost perfect for 3 (19%) inpatient medications, strong for 4 (25%), 
moderate for 4 (25%), weak for 1 (6%), and minimal or none for 4 
(25%). The median κ for inpatient medications was 0.75. 

For outpatient medications, we compared data from 9 different 
medications or drug classes and report the resulting Cohen’s kappa (κ) 
values in Fig. 3. To view the data used to calculate the κ values, see 
Appendix A, Table 3. Based on McHugh’s benchmark, agreement be-
tween manual abstraction and automated extraction was moderate for 3 
(33%) outpatient medications, weak for 3 (33%), minimal for 2 (22%), 
and none for 1 (11%). The median κ for outpatient medications was 
0.56. 

3.2. Classifying discrepancies 

We audited 716 discrepancies, representing 12.37% of the 5,790 
total discrepancies detected. For inpatient medications, we audited 
13.2% (346/2,621) of all discrepancies and found that in 31% (107/ 
346) the automated extraction was correct and there was human error in 
the manual abstraction, in 27% (94/346) ETL or mapping error led to 
error in the automated extraction, and in 42% (145/346) abstraction- 
query mismatch occurred where the logic in the automated extraction 
did not match that of the manual abstraction. Fig. 4 shows the break-
down of errors by individual inpatient medications and drug classes. 

For outpatient medications, we audited 11.68% (370/3,169) of all 
discrepancies and found that 21% (77/370) were due to human error in 
the manual abstraction, 54% (199/370) to ETL or mapping error in the 
automated extraction, and 25% (94/370) to abstraction-query mismatch 
where errors could not be attributed to either manual abstraction or 
automated extraction. For a breakdown of errors by individual inpatient 
medications and drug classes, see Fig. 5. 

In addition to identifying the 3 primary underlying causes of error (i. 
e. human, ETL/mapping, or abstraction-query mismatch), we identified 
8 sub-categories to further characterize the observed discrepancies. The 
largest of these 8 causes were missing data (31%), predominantly in 
outpatient medication data; mismatches between the query and the data 
format (30%); and human errors in manual abstraction (26%), including 
both missed and inappropriately included information. These issues, 
along with descriptions and examples, are listed in Table 3. 

4. Discussion 

4.1. Findings 

In a comparison of data collected through manual abstraction and 
automated extraction for COVID-19 patients at the height of the 
pandemic, we observed that automated extraction performed equal to 
manual abstraction for many inpatient medications and poorly for most 
outpatient medications. This suggests that future efforts to collect 
inpatient medication data need not rely on manual abstraction, allowing 
institutions to direct valuable human resources toward other needs. 

For inpatient medications, 44% (7/16) medications or drug classes 
reached strong agreement or higher, many of which were the more 
prevalent medications (e.g. statins, hydrochlorothiazide, etc.). The 25% 
(4/16) of inpatient medications with minimal to no agreement (Cohen’s 
kappa < 0.4) were due to formulary related errors in the ETL/mapping 
of the automated extraction (remdesivir, sarilumab), or infrequent 
clinical usage (protease inhibitors, lopinavir/ritonavir) making kappa 
incalculable. Query related challenges in matching time-specific manual 

Table 3 
Classifications of discrepancies between manual and automated detection of 
medications. Issues were generally categorized into one of 3 groups: human 
error, ETL or mapping error, and abstraction-query mismatch. Descriptions and 
examples of each issue are provided.  

Common Issues Description Example 

Human Error   
Abstractors overlook 

desired 
information (false 
negative) 

In 16% of discrepancies, 
the manual abstractors 
overlooked a medication 
that should have been 
included based on 
instructions 

Patient received 
hydroxychloroquine during 
admission, but was 
categorized by the manual 
abstractor as not having 
received hydroxychloroquine 

Abstractors include 
inappropriate 
information (false 
positive) 

In 10% of discrepancies, 
complex drug classes or 
questions led manual 
reviewers to classify 
patients as having been 
exposed to a medication 
when they were not 

Patient classified by manual 
abstractor as exposed to 
NSAIDs despite only receiving 
acetaminophen (a non-NSAID 
drug) during hospitalization 

ETL/Mapping Error   
Missing data leading 

to query error 
In 31% of discrepancies, 
data missing in the EHR 
led to the query 
incorrectly categorizing 
patients as having 
continued exposure to a 
given drug 

Outpatient medications were 
only included by manual 
abstractors if the patient was 
exposed based on admission 
documentation, but many 
orders in the outpatient EHR 
lack end dates, requiring 
further work for appropriate 
automated calculation 

Local errors In 5% of discrepancies, 
issues with missing 
reference terminology in 
source systems caused 
failure to detect some 
medications during 
automated extraction of 
data 

Remdesivir and sarilumab 
were not coded to RxNorm 
vocabulary due to 
investigational status and 
exposures to these drugs were 
not detected in the automated 
extracted data 

Patient identifier 
inconsistency 

In 4% of discrepancies, 
patient identifiers were 
either missing or 
incorrect, leading to 
discrepancies in specific 
drug exposures 

Two patients shared the same 
enterprise master patient 
index, resulting in conflation 
of their data 

Cross institutional 
differences 

In 1% of discrepancies, 
data were not mapped 
correctly between 
differing hospital 
campuses, which led to 
incorrectly classified drug 
classes in the data 
extracted by automated 
methods 

The formulary from one 
hospital was mapped to the 
formulary from another, 
yielding incorrect classes for 
some drugs 

Abstraction-Query 
Mismatch   

Mismatch between 
query and data 
format 

In 30% of discrepancies, 
for inpatient medications 
where duration of 
administration was 
important, the query 
overlooked medications 
that were ordered daily as 
opposed to ordered 
continuously as order 
duration was used to 
measure duration of 
administration. 

Diuretics were commonly 
ordered as single doses each 
day, thus although a patient 
could receive diuretics for 
consecutive days, the query 
only detected doses as having 
a 24-hour duration when 
instructions for manual 
abstraction asked for a 
minimum 48-hour duration. 

Complex 
instructions/ 
confounding 
medications 

In 3% of discrepancies, 
lack of clarity in some 
special instructions for 
specific medication 
categories created 
challenges in developing 
the query 

Manual abstractors were 
instructed to only capture 
protease inhibitor exposure if 
the drug was part of an HIV 
regimen – the automated 
extraction method and query 
did not take this into account. 
Confounding medication 
names also led to 
inappropriate inclusion.  
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extraction instructions affected diuretics, NSAIDs, statins, antibiotics, 
and ACEi/ARBs. Of the 9 outpatient medications and drug classes, 33% 
(3/9) reached moderate agreement, while none achieved strong or 
almost perfect agreement. Based on our audit, these outcomes were 
driven by poor data quality in the EHR. Outpatient medications are not 
recorded with the same rigor of inpatient medications given the inability 
to truly confirm if a patient is taking a prescription. Additionally, 
outpatient medications often lack “end dates” in the EHR as medications 
commonly go unreconciled or have undefined order lengths. Thus, the 
query categorized these as “active” (the alternative being broad under- 
detection of home medications), even if the medication was neither 
included in admission documentation nor recorded by manual 
abstraction. 

Interrater reliability was not consistently increased or decreased in 

patients with previous visits to our health system for inpatient or 
outpatient medications (i.e. patients with a previous visit did not 
consistently have a higher kappa value). This variation likely stems from 
a double-edged benefit: more data enriches the EHR, but entries of 
previous medications that have poor/missing documentation lead to 
erroneous detection. 

In considering data sources for retrospective observational research, 
manual abstraction is often considered the gold standard. Although 
manual abstractors can navigate interface errors, read free text, and 
generally benefit from use of clinical judgement to interpret data, they 
are a limited resource and susceptible to human error [12–14]. Auto-
mated abstraction, while theoretically capable of flawlessly mirroring 
data in the EHR, is subject to several prominent issues impacting the 
utility and fitness of the data for secondary use [25,26,29–32]. Because 

Fig. 2. Interrater reliability (Cohen’s kappa) between manual and automated methods of detecting inpatient medications. Data for each medication category are 
shown as “All” (includes all 4,123 patients; with 95% CIs overlaid), and then as two separate groups (PE: prior exposure to our health system; NPE: no prior 
exposure). ACEi/ARB: ACE Inhibitors and Angiotensin II Receptor blockers; NSAID: Non-steroidal anti-inflammatory drugs; IVIG: Intravenous Immunoglobulin. 

Fig. 3. Interrater reliability (Cohen’s kappa) between manual and automated methods of detecting outpatient medications. Data for each medication category are 
shown as “All” (includes all 4,123 patients; with 95% CIs overlaid), and then as two separate groups (PE: prior exposure to our health system; NPE: no prior 
exposure). ACEi/ARB: ACE Inhibitors and Angiotensin II Receptor Blockers; NSAID: Non-steroidal anti-inflammatory drugs; PPI: Proton Pump Inhibitor. 
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we observe errors in both methods, our findings suggest there is not a 
one-size-fits-all solution to generating research data sets using the EHR 
and that the conceptualization of “data quality” should be expanded in 
these contexts to better consider the provenance of the data in question 
and the nature of the downstream use case. Inpatient medications were 
thoroughly documented in the EHR, and automated extraction 

techniques performed well, suggesting manual efforts could target other 
areas such as outpatient medications or other domains requiring inter-
pretation of context or setting such as provider notes. We believe that 
many observed issues could be improved in future work by designing 
studies to account for automated extraction logic. In Table 4, we suggest 
ways to address common errors presented in Table 3. 

Fig. 4. Proportion of inpatient errors as attributable to the 3 major categories of error: human error, ETL or mapping error, and abstraction-query mismatch. The 
number in parentheses represents the total number of discrepancies audited for a given medication. ACEi/ARB: ACE Inhibitors and Angiotensin II Receptor Blockers; 
NSAID: Non-steroidal anti-inflammatory drugs; IVIG: Intravenous Immunoglobulin. 

Fig. 5. Proportion of outpatient errors as attributable to the 3 major categories of error: human error, ETL or mapping error, and abstraction-query mismatch. The 
number in parentheses represents the total number of discrepancies audited for a given medication. ACEi/ARB: ACE Inhibitors and Angiotensin II Receptor Blockers; 
NSAID: Non-steroidal anti-inflammatory drugs; PPI: Proton Pump Inhibitor. 
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4.2. Relevance to previous work 

While previous work on COVID-19 data has evaluated the quality of 
extraction for problem lists and natural language processing for signs 
and symptoms [50–53], to our knowledge, our work is the first evalu-
ating manual abstraction and automated extraction of EHR medication 
data relevant to COVID-19. Previous studies comparing manual 
abstraction and automated extraction have usually reviewed fewer pa-
tients or focused on theoretical principles [16,18–25]. To support future 
studies of this kind—particularly recent needs to create a widely- 
available data set of COVID-19 cases such as N3C—we hope this work 
provides a roadmap and highlights new variables eligible for automated 
extraction with high accuracy (i.e. inpatient medications), allowing 
valuable clinical resources needed for manual abstraction to be redir-
ected toward other domains [47–49,63]. Similarly, automated extrac-
tion methods as demonstrated here can be the foundation for more 
closely adhering to certain best practice methods for data quality stan-
dards and assessment [64,65]. 

The current study demonstrates the viability of automated extraction 

of many inpatient medications or drug classes from the medical record, 
with outpatient medications showing weaker results. Institutions with 
large databases should be capable of employing similar methods for 
automated data extraction. Given the size and thorough auditing, this 
study demonstrates the importance of avoiding a ‘one-size-fits-all’ 
mentality in data extraction. Instead, it is important to be rigorous about 
data sources and transparent about the methods used, accepting that 
different errors will occur and different resources will be required in 
manual abstraction and automated extraction. It is also important to 
consider that refinement of automated techniques can systematically 
improve accuracy, while manual abstraction can face the challenges of 
staff turnover, training, and ongoing quality improvement. Lastly, 
automated approaches allow access to significant amounts of data for 
analysis. Manual data abstraction consisted of mainly binary variables to 
describe the parameters of each of the 4,414 patient visits, including 15 
comorbidities and 25 medications. Over the same period of time, auto-
mated extraction holistically captured 3,997,956 diagnoses, 758,448 
prescriptions, and 22,533,020 laboratory values from 2,036,243 EHR 
encounters, including data on a host of comorbidities and prescriptions 
not captured in the manual abstraction effort. As of April of 2021, over 
318,000 patients have had automated data extracted, with 53 users 
executing approximately 26,000 queries. 

4.3. Limitations 

This study has certain limitations. Although the findings and impli-
cations of this work are more broadly applicable, both abstraction 
methods were tailored to our hospital system. Other hospital systems 
should create queries specific to their own data architecture. Second, 
although the audit process was extensive, the process focused on dis-
crepancies rather than a complete random audit of all results. Certain 
errors may have existed among agreeing results (e.g. manual and 
automated approaches may have both detected a medication that a 
patient didn’t receive or vice versa). The Cohen’s kappa calculation is 
unaffected by this and there may be other errors that were not charac-
terized. Third, systematic data quality issues may have affected certain 
patient populations, such as reduced clinical resources in certain hos-
pitals during the peak of the crisis. Although extracting across 3 different 
hospitals is an overall strength of the study, it also introduces variation 
in the staff, procedures, and patient populations. Future work hopes to 
deliver similar analyses for other data points such as comorbidities, 
outcomes, etc. Future work will also explore some concepts that are 
outside of the scope of this current work, including both further pursuit 
of data quality improvement topics in Table 4 as well as better charac-
terization of the timeline and context in which these errors in the data 
occur. 

5. Conclusion 

COVID-19 has changed the landscape of healthcare, creating op-
portunities to improve data infrastructures. The current study assessed 
agreement on outpatient and inpatient medication exposure between 
data collected through manual abstraction and automated extraction, 
exploring underlying causes of discrepancies and offering ways to avoid 
them. It demonstrates that automated collection of medication data is 
feasible and, for many inpatient medications, could save time and re-
sources required for manual abstraction. As with many institutions 
during this pandemic, institutions must make tough decisions about 
where to allocate resources. This work outlines quality issues for in-
stitutions to be aware of and improvements that could be made. 

Summary Table 
Already known on this topic:  

• Data extraction from electronic health record (EHR) systems occurs 
through manual abstraction, automated extraction, or a combination 

Table 4 
Recommendations for avoiding discrepancies between manual and automated 
data extraction. Issues were generally categorized into one of 3 groups: human 
error, ETL or mapping error, and abstraction-query mismatch. Suggestions for 
future implementations are provided for each issue.  

Common Issues Suggestions for improvement 

Human Error  
Manual abstractors overlook desired 

information. 
Provide instructions with as complete a list as 
possible of inclusion examples. Rapid 
extraction efforts limited the time available 
for data collectors to meticulously consider 
all possible responses. 

Manual abstractors include 
inappropriate information. (false 
positive) 

Explain complex drug classes, confusing 
content, and any foreseeable misconceptions 
(with examples), otherwise reported data 
will reflect this confusion. 

ETL/Mapping Error  
Missing data Increase use of health information exchanges 

(HIEs) and foster adoption of HIE data into 
research repositories. Encourage more robust 
data capture within the EHR (e.g. recording 
end dates of medication orders). Incorporate, 
where possible, medication fill data into 
research repositories. 

Local errors Actively surveil and address mapping issues 
by hardcoding placeholder reference 
terminology (e.g. RxNorm code 2284718) in 
ETL code for investigational agents (e.g. 
remdesivir). 

Patient identifier inconsistency Work with existing health information 
management teams within the clinical 
informatics domain to address observed 
issues in identity management. 

Cross institutional differences Ensure that differences between EHR systems 
at subsites of large hospital systems are 
properly addressed before incorporating 
their data. Implement “sanity checks” on 
mappings to identify errors before pushing 
new data. 

Abstraction-Query Mismatch  
Mismatch between query and data 

format 
Develop imputation logic for extending 
repeated standing orders into continuous 
drug exposure variable. Develop abstraction 
instructions that either consider the logic of 
automated processes or clarify inclusion 
criteria. 

Complex instructions Minimize conditional chart review 
instructions where possible and ensure 
contingent logic is necessary to yield 
clinically meaningful data. Minimize 
ambiguity by providing lists of acceptable 
responses and examples of chart review in 
ambiguous conditions.  
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of both, with each process having its strengths and weaknesses 
depending on setting and data type.  

• Prior investigations have compared manual to automated data 
collection techniques in conditions other than COVID-19, described 
informatics resources specific to COVID-19 and evaluated the per-
formance of automated extraction in COVID-19, including problem 
lists and natural language processing to extract signs and symptoms. 

What this study adds:  

• Automated extraction performed equal to manual abstraction for 
many inpatient medications and poorly for most outpatient medi-
cations, suggesting future efforts to collect inpatient medication data 
need not rely on manual abstraction and allowing institutions to 
direct valuable human resources toward other needs.  

• Both automated extraction and manual abstraction have strengths 
and weaknesses that must be considered in any data extraction effort. 
Institutions can now be more aware of the potential trade-offs and 
areas of improvement. 
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