
Review (invited)

Differentiation of Human Pluripotent
Stem Cells Into Specific Neural Lineages

Chia-Yu Chang1,2,3 , Hsiao-Chien Ting1, Ching-Ann Liu1,2,3 ,
Hong-Lin Su4, Tzyy-Wen Chiou5, Horng-Jyh Harn1,6 ,
Shinn-Zong Lin1,7 , and Tsung-Jung Ho8,9,10

Abstract
Human pluripotent stem cells (hPSCs) are sources of several somatic cell types for human developmental studies, in vitro disease
modeling, and cell transplantation therapy. Improving strategies of derivation of high-purity specific neural and glial lineages from
hPSCs is critical for application to the study and therapy of the nervous system. Here, we will focus on the principles behind
establishment of neuron and glia differentiation methods according to developmental studies. We will also highlight the lim-
itations and challenges associated with the differentiation of several “difficult” neural lineages and delay in neuronal maturation
and functional integration. To overcome these challenges, we will introduce strategies and novel technologies aimed at improving
the differentiation of various neural lineages to expand the application potential of hPSCs to the study of the nervous system.
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Introduction

The human central nervous system (CNS) is majorly com-

posed of the brain and spinal cord, which comprise several

types of neurons and glial cells. These cells form complex

circuits and provide organized nerve functions that support

human behavior. Recently, imaging tools, single-cell analy-

ses, and other technologies have helped researchers to

demonstrate the existence of novel neural subtypes in the

human nervous system, including types of neurons that do

not exist in other animals1–4. However, the coordination

between different neuron types and formation of the com-

plex nervous system remains largely unknown. Many neu-

rological diseases are highly correlated with specific neural

types, for example, motor neurons in amyotrophic lateral

sclerosis (ALS)5, dopaminergic neurons (DA neurons) in

Parkinson’s disease (PD)6, cortical and striatum neurons in

Alzheimer’s disease (AD)7 and Purkinje cells in spinocere-

bellar ataxia (SCA)8,9. Nevertheless, the major causes and

processes of neuronal degeneration in these diseases are

largely unknown. For example, mutation of the PTEN-

induced kinase 1 (PINK1) gene alone causes DA neuron

degeneration in PD10,11 and superoxide dismutase 1 (SOD1)

gene mutation is dominant for motor neuron cytopathies in

ALS5. Why certain neuron types are specifically sensitive to
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these mutant proteins/cellular stresses remains a mystery.

Recreation of specific disease cytopathies and progression

of certain types of neurons outside the human body remains a

challenge for studying neurological disease mechanisms and

development of novel therapeutic methods.

Human pluripotent stem cells (hPSCs), including human

embryonic stem cells (hESCs)12 and induced pluripotent

stem cells (iPSCs)13,14, have the potential to differentiate

into cell types of the adult human body including neurons

and glial cells. This powerful stem cell technology provides

an in vitro source of cells for development studies, disease

models, and cell transplantation therapies15,16.

hPSC differentiation into specific neuron types occurs via

sequential steps according to the development of the human

nervous system17. Here, we will introduce the common prin-

ciples and strategies used for neuronal differentiation.

Furthermore, we will address the novel single-cell transcrip-

tome analysis, which has helped researchers to develop

methods for differentiating challenging neuron types.

Pluripotent Stem Cells to Neuroepithelial
(NE) Cells

NE cells are sources of neurons and glial cells. The neuroe-

pithelium is derived from the ectoderm during human embryo

gastrulation. In vitro, hPSCs can be driven into cell types of

the three germ layers in the absence of pluripotency mainte-

nance factors. For high-efficiency NE differentiation, hPSC

inhibition toward the mesoderm and endoderm is essential.

Bone morphogenic protein (BMP) and Wnt signaling path-

ways promote hPSC differentiation into the mesoendoderm

and lead to the generation of their downstream cell types18–20.

Transforming growth factor b1 (TGFb1) and activin A/Nodal

signaling pathways maintain the pluripotent state of hPSCs in

the presence of the basic fibroblast growth factor (FGF-basic,

also named as FGF-2)21–26, but promote endodermal differ-

entiation in the present of BMPs or Wnt, which suggests the

inhibitory role of TGFb1 on ectodermal differentiation27.

Thus, the combination of SMAD1/5/8 and SMAD2/3

inhibition via BMP and activin A/Nodal signaling with the

activation of FGF-2 signaling prevents hPSC self-renewal or

differentiation toward the mesoderm/endoderm, followed by

the differentiation of hPSCs toward NE cells17,28–31.

To arrest cell cycle and transfer hPSCs to a state that is

amenable to differentiation, hPSCs are dissociated and reag-

gregated into floating spheres termed embryoid bodies

(EBs). In the presence of short-term induction, the major

population of cells differentiate into NE cells or neural stem

cells (NSCs), for further neuron subtype patterning29,31–33.

In this method, external ligands trigger the initial stage of

neural induction exclusively. Subsequently, aggregated cells

interact with each other via the secretion of factors and cell-

cell adhesion communication. However, the EB methods

share the common challenge of instability of experimental

conditions. Cells in EBs are very sensitive to changes in the

environment of the cell-cell communication networks,

which leads to variations among neural induction cell

batches. Moreover, NSCs located at different sites of the

spheres may receive varying doses of morphogens and

become heterogeneous cells. To avoid this, an induction

method without the formation of EBs was developed. In the

adherent culture condition, hPSCs are induced into NE cells

or NSCs via the addition of dual SMAD inhibitors

(dSMADi), which suppresses BMP and TGFb1 signals (Fig.

1A)34. In this method, because of the reduction of cell-cell

interactions and lack of a three-dimensional (3D) structure,

external factors become more dominant and consistently

generate a homogeneous NSC population for the next step

of patterning. However, unlike that observed in EB methods,

the lack of a uniform cell-cycle arresting step prolongs the

essential neural induction period to about 1 week, to obtain

NE cells. Most neural induction laboratories use these two

methods. The adherent dSMADi method is a powerful tool

for high-purity, robust, homogeneous, and specific neuron-

type generation. To obtain spheres with functional layers or

mini organoids, the EB method provides an efficient way to

generate self-organized fetus-like nerve tissues. Alterna-

tively, some researchers use mixed methods based on these

two major approaches according to their research purpose.

Wnt signaling promotes mesoendodermal differentiation

of hPSCs. However, previously, we demonstrated that the

combination of FGF-2, a TGFb1 antagonist, and a Wnt ago-

nist promoted a robust NE differentiation using the EB

method35. These NE cells could pattern into several types

of neurons, indicating that the coordination of several signals

may promote an unexpected cell fate during differentiation.

Differentiation of Neural Stem Cells into
Specific Neural Types of CNS According to
A-P and D-V Axis

The developmental principle of the CNS basically follows the

dosage gradient of developmental regulators called

“morphogens.” Morphogens promote NSC differentiation

into specific types of neurons according to their position on

the neural tube (Fig. 2). sonic hedgehog (Shh), Wnt, and BMP

signals regulate the positioning of the dorsal-ventral (D-V)

axis, whereas Wnt and retinoic acid (RA) signals are involved

in the formation of the anterior-posterior (A-P) axis of the

neural tube36,37. Some morphogens directly promote NSC

differentiation into specific regional neural types including

cerebellar38 and midbrain-hindbrain boundary (MHB)39–43.

Regardless of the differentiation protocol (SFEB/dSMADi),

the naı̈ve fate of hPSC-derived NE cells is the dorsal forebrain

region, for further patterning to generate other region-specific

neural types in the neural tube. Without morphogen addition,

NE cells differentiate sporadically into the neural types of the

forebrain28,30,33,34. Wnt signaling plays a dominant role in A-P

determination. According to the dosage of Wnt signaling, NE

cells are driven into the midbrain/hindbrain37,44. However, the

Wnt protein is not an effective morphogen in vitro. The first Wnt
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Figure 2. Neural patterning principles in neural tube development. Morphogens Wnt, BMP, and Shh are involved in the D-V determination.
Wnt and RA regulate the A-P development. Thus, specific neural types are patterned according to their positions in the neural tube.

Figure 1. Differentiation processes and guidelines of specific neuron and glial cell types from hPSCs. (A) The differentiation steps of specific
neurons and glial cells, including NE differentiation, specific neural progenitor patterning, and neuro/glio-genesis. (B) Specific neuronal and
glial types can be differentiated from hPSCs under the principles of neural tube development, including the CNS/PNS stem cell differentia-
tion, D-V and A-P determination.
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agonist, BIO45, did not possess dosage dependence, via which it

can only pattern neurons to the most posterior types.

CHIR99021, a GSK3b inhibitor that can modulate Wnt signal-

ing according to the treatment dosage, helped researchers per-

form in vitro A-P axis patterning46–49. Consecutively, RA is the

key morphogen in spinal cord patterning and coordinates with

CHIR99021 to promote NE cell differentiation into spinal cord

neurons50,51. Some morphogens, for example, Wnt1 and FGF-

8b are highly expressed in the MHB region. However, Wnt1

and FGF8b exhibit very poor efficiency to drive the differen-

tiation of NE cells into MHB neuron types in vitro48,52. A

similar concept was also demonstrated by Prof. Muguruma’s

work on Purkinje cell differentiation53,54. Exogenous Wnt and

FGF-8b did not promote the differentiation of NE cells into

Purkinje cells, whereas treatment with FGF-2 activated the

endogenous expression of Wnt1 and FGF8b, thus promoting

differentiation into Purkinje cells. However, the roles of endo-

genous and exogenous morphogens and how they cooperate to

regulate neural fate warrant further clarification.

Shh, BMP, and Wnt signaling pathways are the key reg-

ulators of D-V patterning in the neural tube55. Shh secreted

from the floor plate promotes the differentiation of neurons

into ventral types, whereas the Wnt and BMP signals

secreted from the root plate drive neurons toward a dorsal

type fate and against each other56. Previous reports have

suggested that Shh is the dominant morphogen for D-V deci-

sion and can influence the other two signals during embryo-

nic neural tube specific neuron diffeentiation47. According

to this principle, it is not difficult to generate the most ven-

tral/dorsal neuron types using Shh or its antagonist, respec-

tively. Exogenous Shh is essential for differentiation into

ventral neural types, for example, interneurons, and motor

neurons. The naı̈ve fate of the hPSC-derived NSCs in the

forebrain is the cortical-neuron type, which represent the

most dorsal brain part. Patterning according to Shh dosage

pushes NSCs toward a lateral ganglionic eminence and med-

ial ganglionic eminence fate, which will become the striatum

spiny neurons and GABA interneurons57–65. In some cases,

the inhibition of Shh signaling is essential for receiving dor-

sal neurons in the neural tube. However, because of the lack

of a dosage-dependent antagonist of Shh, Shh inhibition for

the generation of dorsal neural types is inefficient66.

Overall, A-P and D-V patterning principles provide

guidelines (Fig. 1B) to generate specific neural types in

vitro. However, several challenges remain regarding the

identification of some neural types that may have more com-

plex patterning principles during human CNS development.

Differentiation of Neural Stem Cells into
CNS Glial Cells

Neurological diseases are not caused by the dysfunction of a

single type of neuron; rather, most of these pathogenic pro-

cesses are derived from the interactions among neurons, glial

cells, and other cell types. The in vitro generation of glial cells

via differentiation is extremely important for the exploration of

disease processes. Glial cells are derived from NE cells via the

transition of neurogenesis to gliogenesis. Astrocytes and oli-

godendrocytes are differentiated using different procedures.

The astrocyte differentiation procedure includes three steps.

The first step is hPSC differentiation into NE cells. The second

step comprises NE cell transit from a neurogenic to a gliogenic

state with the prolongation of the maintenance of NSCs to

avoid neurogenesis. FGF-2 and epidermal growth factor treat-

ment for 4 months can promote the transition of neurogenic

NSCs into glial-competent NSCs. At the final stage, BMPs and

ciliary neurotrophic factor promote the transition of astrocyte

progenitors into mature astrocytes with functional activi-

ties67,68. As the transition of neurogenic NSCs into glial-

competent progenitors takes an extremely long time, several

modified protocols that accelerate this stage have been devel-

oped. However, most protocols accelerate this step via fetal

bovine serum (FBS) addition, which may cause astrocyte acti-

vation to the A1 state, thus potentially altering the outcome of

the in vitro modeling69,70. Recently, a key regulator of the

neural-glial transition was discovered within a short time by

three research groups. Overexpression of the nuclear factor 1

A-type (NFIA) in NE cells led to the successful shortening of

the neural-glial transition stage to 1-2 months using a genetic

manipulation method71–73. Tchieu et al. further identified G1

phase arrest as the key modulator of the promotion of NF1A

expression in NSCs, which become glial-competent astrocyte

progenitors (Fig. 1A). These authors also discovered that the

stepwise treatment of NSCs with TGFb1 and leukemia inhibi-

tory factor (LIF) promotes their differentiation toward a glial

cell fate to become astrocytes73. However, the exact efficiency

of astrocyte generation using this method was not evaluated.

Thus, an improved approach may be warranted.

Oligodendrocytes are derived from the subventricular

zone (SVZ), ventral part, and dorsal part of the spinal cord.

In vitro differentiated oligodendrocyte progenitor cells

(OPCs) are mostly driven toward a ventral spinal cord fate.

The differentiation of oligodendrocytes is divided into three

steps. The first step includes their differentiation into NE

cells. The second step is NE cell patterning into motor-

neuron-capable NSCs using Shh and RA. To prevent these

OPCs from becoming motor neurons, the maintenance of

Shh, platelet-derived growth factor, and insulin-like growth

factor 1 treatment sustains the OPC fate and promotes OPCs

to become mature oligodendrocytes with the sequential

expression of O4 and MBP74–81. The whole process takes

about 6 months. The screening of potential mitogens is a

major part of the promotion of OPC maturation and may

shorten oligodendrocyte differentiation.

Differentiation of Pluripotent Stem Cells
into Peripheral Nerve System Neurons and
Glial Cells

Neural crest cells (NCCs) are derived from the borderline

between the neural plate and non-neural ectoderm. During
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neural tube formation, NCCs from the roof plate of the

neural tube differentiate into several cell types including

melanocytes, craniofacial cartilage, bone, smooth muscle,

peripheral, enteric neurons, and glia82,83. These NCCs pro-

vide neural types (including enteric neurons, sensory neu-

rons, and Schwann cells) important to mimic neurological

diseases such as Riley-Day syndrome and diabetes-related

peripheral neuropathy84,85. Tchieu et al. demonstrated the

principles underlying the generation of all major ectoderm

cell types from hPSCs, including NCCs (Fig. 1B). Applica-

tion of dSMADi for 2 days, followed by sequential activa-

tion by Wnt and low-dosage BMP signaling, can yield NCCs

with >60% purity. At day 23-25 of differentiation, cells were

purified by fluorescence-activated cell sorting, to obtain

high-purity NCCs based on the SOX10 reporter and surface

marker CD49d. To obtain Schwann cells, NCCs were pat-

terned using CHIR99021 and gamma-Secretase Inhibitor IX

(DAPT) to generate Schwann cell progenitors. Further cell

culturing with FBS for >80 days is essential for Schwann cell

maturation. A similar protocol was also applied to sensory

neurons and enteric nervous system neurons86–92. However,

generation of high-purity NCCs using the current protocol is

dependent on reporter-activated cell sorting. Moreover, the

detailed procedure used to pattern NCCs into their derivate

types warrants further fine tuning.

3D Culture to Generate CNS Organoids

There are currently few suitable simulations to identify the

development and circuits of neurons within the human brain.

In 2008, Eiraku et al. demonstrated that neural EB spheres

can form forebrain-like structures containing neural layers93.

With this concept, these authors established eye-cup-like 3D

organoids for the first time94,95. In 2013, Lancaster et al.

generated organoids with early forebrain structures and cor-

tical layers and basically recapitulated the processes of

human brain development using Matrigel-encapsulated, 3D

stirring EBs96–98. However, the long differentiation period

and reproducibility problems have restricted the applications

of brain organoids. Moreover, challenges remain regarding

the generation of well-polarized and well-organized brain

organoids. To overcome these, several approaches have been

developed based on mini-bioreactors99, biomaterial scaffold-

ing100, and air-liquid interface culturing101. For forebrain

polarization, Cederquist et al. (2019) found that a Shh gra-

dient promoted in vivo-like topographic organization of

major forebrain subdivisions within organoids102. The orga-

noid technology has also been applied to the generation of

midbrain organoids, telencephalic tissue, and cerebellar tis-

sue53,103–106. To understand how neurons form circuits

between different brain regions, fusion organoids have been

generated107. This model was applied to the research of

microcephaly, ZIKA virus infection and other brain dis-

eases98,99,108–112. To expand the applications of brain orga-

noids, several challenges need to be addressed to enlarge

organoids to contain mature neurons with functional circuits.

Challenges in Obtaining “Difficult”
Neuronal Lineages

Methods that induce hPSCs to differentiate into several

neural subtypes with high efficiency are available. However,

efficient differentiation protocols remain insufficient for

several “difficult” neural or glial cell types, such as DA

neurons, Purkinje cells, and hypothalamus neurons. More-

over, several differentiation methods for neural lineages are

undeveloped, such as CA1–CA4 specific neural subtypes in

the hippocampus and specialized neural types in the

cerebellum53,54,61,113.

The differentiation of specific neural types reflecting the

development of the nervous system provides guidelines for

the efficient generation of some neural lineages. Morpho-

gens, signaling pathways, and cell–cell interactions have

been explored during studies on CNS development. This

basic information enables other investigators to establish

guidelines for the development of specific neuron types;

however, there are still several challenges for patterning

specific neurons while following the developmental

principles.

The first challenge is the difficulty in mimicking cell–cell

direct interactions in vitro (Fig. 3A). Cell fate during CNS

development is determined by not only the dosage of mor-

phogens but also the cell–cell interactions that are not easy to

recapitulate in the cell culture dishes. Moreover, mechan-

isms underlying cell fate determination by cell–cell interac-

tions remain largely unknown.

The second challenge is the combination of morphogens

(Fig. 3B). An example is the generation of DA neurons.

Although the differentiation protocol for DA neurons was

identified years ago, patterning efficiency is still insufficient.

Most reports demonstrate 20%–30% efficiency for DA neu-

ron differentiation, and the best efficiency to date is 50%–

60%46,48,49,114–118. The emerging position of DA neurons is

in the most ventral midbrain, the middle part of the A-P axis.

Thus, applying dosage-dependent or regional specific mor-

phogens is a possible strategy to obtain high-purity DA neu-

rons. CHIR99021 is a dose dependent GSK-3b inhibitor

allow researchers to modulate Wnt signaling pathway as

an A-P regulator. Low-dose CHIR99021 (0.4–0.8 mM) could

promote NSCs into midbrain neurons46,49. However, deli-

cate work is required to push only 50–60% of NSCs into

DA neurons, based on the exposure level of every cell under

the influence of morphogen. Several morphogens exhibit

high-level expression at the midbrain–hindbrain boundary

(MHB), and these molecules are termed MHB regional spe-

cific morphogens. Examples include FGF8b and Wnt1.

However, these morphogens cannot induce NSCs to differ-

entiate into midbrain neurons efficiently. Compared with

“more challenging” neural type such as Purkinje cells, DA

neurons are much easier because we only need to worry

about the A-P patterning dosage. DA neurons are at the most

ventral site of the D-V axis. However, for patterning of

neural subpopulations that are not at the terminal points of

Chang et al 5



A-P and D-V axes, the stability of morphogen combinations,

dosage, and exposure level of every cell still needs further

development.

The basic steps for inducing specific neural type include

neural induction (promoting PSCs into NSCs) and neural

type patterning (promoting NSCs into specific neural pro-

genitors). However, patterning periods show a major impact

on differentiation efficiency. Some neural types, such as

motor neurons, are capable of late patterning51. The pattern-

ing process start late (start after >15 days of differentiation)

can still yield high-purity motor neurons. Conversely, DA

neurons need early-state patterning immediately after NSC

induction, or DA neuron generation efficiency would be

low49. Therefore, the timing of patterning should be consid-

ered during the development of methods for “difficult neural

types.”

The A-P and D-V axis principle is not the only guideline.

Some brain nuclei contain many distinct specialized

subregions, such as the cerebellum, hippocampus, and

hypothalamus (Fig. 3C). To date, developmental regulators

of these regions are still not fully understood. Thus, neurons

in these secondary structures pass through several stages that

cannot be patterned with simple A-P/D-V principles. This

process may be one issue that underlies challenges with

Purkinje cells, CA1–CA4 specific, and hypothalamus

neurons.

Strategies and Future Directions for
Obtaining “Difficult” Neuronal Lineages

Several present and future approaches may be successful in

addressing difficult neuronal types for cell transplantation

and disease modeling. Advanced morphogen combinations

may be workable for generating difficult neuronal lineages.

Several morphogens can control the A-P and D-V axes

simultaneously57. Patterning neural types between the most

dorsal and ventral axes might yield the combinations of Shh

and Wnt agonists CHIR99021 that provide ideal neural types

Figure 3. Challenges in obtaining “difficult” neuronal lineages. (A) The lack of in vivo like cell-cell interaction in culture dishes. (B) The major
causes that influence the stability of dose dependent patterning protocol. (C) Specialized structures in the CNS.

6 Cell Transplantation



based on the balance of D-V morphogen intensity57. Another

morphogen, BMP, regulates the D-V axis exclusively and

potentially participates in the precise patterning of some

difficult neuron types that cannot be generated from the end-

point of D-V axis. For example, high-efficiency motor neu-

ron differentiation protocols from embryonic stem cells are

long since established. However, when we applied these

protocols to our PSCs, we found that ventral spinal cord

markers such as oligo2 and islet1 were expressed, but

expression efficiency of the motor neuron-specific marker,

HB9, varies batch to batch. Du et al. demonstrated that

CHIR99021 (a dosage-dependent Wnt agonist) could drive

the oligo2þ ventral spinal cord neural progenitors into

nkx2.2� motor neuron progenitors instead of the p3 nkx2.2þ

interneuron progenitors, thus stabilizing HB9þmotor neuron

differentiation efficiency51. This concept of applying mor-

phogen combinations with opposite functions for the specific

neuronal type is a novel direction for investigating difficult

neuronal types. Purkinje cells are located at the MHB, near

the most dorsal granule cells. For A-P patterning, dosed

CHIR99021 plays a key role in pushing NSCs into an MHB

fate, and the coordination of Shh, CHIR99021, and BMP

may provide the balance of D-V patterning necessary to

generate Purkinje cells (Fig. 4B).

The second strategy is the co-culture or organoid

approach (Fig. 4A). For some neuronal types that are in

specialized structures, both the regional morphogens and

cell–cell interactions are extremely important. Organoid

approaches show promising effects in some cases. Mugur-

uma et al. demonstrated that Purkinje cells could be retrieved

from in vitro self-organized cerebellum organoids53,54,113.

Another report suggested the differentiation of functional

hippocampal neurons from the embryonic stem cell-

derived dorsomedial telencephalic tissue104. These observa-

tions highlight the application potential of organoid

approach to obtain specific neurons. A similar strategy is the

co-culture of NSCs with stromal cells, glial cells, and spe-

cific primary neural types. In the early development of PSC

differentiation protocols, co-culture methods were widely

applied to induce neuronal types119. Some defined protocols

were developed from these co-culture methods. Similarly,

this approach could be a starting point for difficult neuronal

types or for understanding control points for neuronal

lineages.

The third approach is the overexpression of regional spe-

cific proteins by genetic modification. Zhang et al. demon-

strated that overexpression of Ngn2 could promote PSCs into

glutamate neurons, even bypassing the two-step differentia-

tion principle120. This publication suggests the potential for

specific gene overexpression methods to obtain specific

types of neurons within a short time. Presently, genetic engi-

neering should not be overly difficult. Transgenic methods,

site-specific gene editing tools (zinc finger nuclease,

TALENs, and CRISPR/Cas9), inducible expression systems,

and fingerprint-free transposons provide ideal tools for a

range of experimental purposes and lower the influences or

risks of genetic modifications on stem cells.

Fluorescence-activated cell sorting (FACS) provides a

promising tool for specific neuronal types. From the previ-

ous reports, Corin and LRTM1 are surface proteins that

apply to DA progenitor FACS for higher-purity DA neu-

rons116,117. Similarly, Corl2 was applied to Purkinje cell

progenitor purification113. Thus, the discovery of neuronal

specific surface markers from developmental knowledge or

transcriptome analysis is a key step for specific neuronal

types. The development of an expansion method for specific

neuronal lineages is another major focus for amplifying ideal

neuronal types. An established method to specifically

amplify motor neural progenitors in defined factors51 sug-

gested the potential to expand specific neuronal lineages

after or without FACS. These two strategies provide future

directions for challenging neuronal type differentiation.

The shortage of knowledge of the nerve system develop-

ment and gene expression patterns of specific neuron limits

the development of neuron differentiation protocols. Thus,

single-cell RNA sequence technology provides a powerful

tool for exploring genet expression pattern of every cell

during mammalian CNS development or stem cell differen-

tiation. After transcriptome comparison, the identification of

correlations between gene expression and neural populations

is possible121–125. Furthermore, correlation analysis will

increase the possibility of defining novel surface markers,

specific pathway activators, and miRNA regulators for the

development of specific purification and differentiation stra-

tegies for specific neural precursors (Fig. 5).

Future Improvement of Neural
Differentiation

Single-cell RNA sequencing might provide possibilities for

novel differentiation methods for challenging neuronal types

and identify currently unrecognized neuronal subpopula-

tions. Kirkeby et al. (2017) discovered that ventral midbrain

regional neural precursors might not benefit PD mice as

much as expected. The most commonly used DA progenitor

markers, that is, FOXA2, Lmx1a, Corin, and Nurr1, did not

provide DA neurons at high yield or behavioral recovery

after transplantation therapy. After the comparison of RNA

sequencing with transplantation outcomes, authors found

that key markers EN1 and Pax8 are directly linked to DA

neuron yield after transplantation. According to these results,

a protocol to generate caudal midbrain DA neurons was

established for better therapeutic effects and add these fac-

tors into the differentiation system126. Recent years, studies

showed novel DA neural subtypes and specific markers with

single-cell RNA sequencing121,124. The realization of differ-

entiation regulation and the major function of these DA sub-

types might increase the therapeutic effects of iPSC derived

DA neurons on PD therapy.

Protocols aimed at accelerating the maturation and func-

tional integration of hPSC-derived neurons and glial cells are

Chang et al 7



key for their application to in vitro nervous system modeling or

transplantation therapy. The maturation of hPSC-derived neu-

rons always takes >1 month. In some cases, such as Purkinje

cells, >100 days are required for maturation. To develop drug

screening platforms, researchers demonstrated that the over-

expression of Ngn2 and other genes using genetic manipulation

methods accelerate neuronmaturation toonly1 week120,127,128.

Without using artificial strategies, treatment with Notch inhi-

bitor, compound E and DAPT, pushed neural progenitors into a

functional neuron fate in 2–4 weeks129,130. The efficiency of

this approach remains limited and varies according to neural

type, and it highlights the possibility of screening for

compounds that can benefit neuron maturation. For therapeutic

transplantation, the rebuilding of nerve circuits between trans-

planted neurons and existing neurons is extremely important.

Optogenetic and chemogenetic technologies provide tools to

promote neural network formation. The light/chemical stimu-

lation of optogenetic/chemogenetic receptors that express in

human neurons triggers the expression of synaptic responses

and the formation of circuits using mouse brain neurons in in

vitro culture. Furthermore, optogenetics/chemogenetics were

used to form neuromuscular junctions in vitro and

motor circuits in a PD animal model after DA neuron

transplantation131–134.

Figure 4. Potential strategies in obtaining “difficult” neuronal lineages. (A) Combination of morphogens to target specific neural lineage. (B)
Organoid method for obtaining specialized tissue like structures for specific neural lineages. (C) Sorting and expansion method for high
purity interested neural types. (D) Over-expression of specific genes for obtaining interested neural lineages.
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Generally, the differentiation of hPSCs into functional

neural types still faces challenges regarding differentiation

methods, cell purity, neural maturation, circuit formation,

quality stability, and large-scale preparation. Fortunately,

biological techniques improve daily. Novel tools, such as

next-generation sequencing, 3-D printing, and robotic

screening systems, may shed light on the development of

neural subtype differentiation strategies and expand the

application of stem cells to the nervous system.
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