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Ten Years of EWAS

Siyu Wei, Junxian Tao, Jing Xu, Xingyu Chen, Zhaoyang Wang, Nan Zhang, Lijiao Zuo,
Zhe Jia, Haiyan Chen, Hongmei Sun, Yubo Yan, Mingming Zhang, Hongchao Lv,
Fanwu Kong, Lian Duan, Ye Ma, Mingzhi Liao, Liangde Xu, Rennan Feng, Guiyou Liu,
The EWAS Project, and Yongshuai Jiang*

Epigenome-wide association study (EWAS) has been applied to analyze DNA
methylation variation in complex diseases for a decade, and epigenome as a
research target has gradually become a hot topic of current studies. The DNA
methylation microarrays, next-generation, and third-generation sequencing
technologies have prepared a high-quality platform for EWAS. Here, the
progress of EWAS research is reviewed, its contributions to clinical
applications, and mainly describe the achievements of four typical diseases.
Finally, the challenges encountered by EWAS and make bold predictions for its
future development are presented.

1. Introduction

1.1. Background

It has been 10 years since the concept of EWAS was introduced,
and the number of EWASs on common diseases has shown
an increasing trend. Similar to genome-wide association study
(GWAS), EWAS is a widely used method for identifying biomark-
ers in populations and discovering molecular mechanisms of
disease risk.[1] EWAS aims to use a variety of microarray-based
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or sequencing-based analysis techniques to
obtain the association between epigenetic
markers and phenotypes, which can ulti-
mately explain the cause of the disease bet-
ter and promote the development of new
therapies and diagnostic methods.[2]

1.2. Rationale

Epigenetics is a branch of genetics, which
aims to study the regulation of genes and
other genetic factors in eukaryotes, covering
DNA methylation, histone modification,

etc.[3–5] In recent years, the variation of the epigenome has be-
come a new research direction, and the most typical epigenetic
mark is DNA methylation.[6] Phenotypically affected cases can
be distinguished from normal samples based on the pattern
of changes in DNA methylation, and this approach is known
as EWAS. The commonly used EWAS analysis process usually
starts with a reasonable hypothesis. Then a suitable population
and tissue sample is selected. Blood samples are often used as it is
difficult to obtain disease-related tissue in most cases. However,
blood DNA methylation patterns may yield different conclusions
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Figure 1. Common analysis process of EWAS.

than those of tissue, so careful validation is required when us-
ing blood as a proxy. Next, it is important to choose a reasonable
DNA methylation microarray or sequencing technology for fac-
tors such as experimental protocol and cost. The results are then
validated and confounding factors are removed. When analyzing
methylation data, it is important to focus on regional variation,
identify differentially methylated regions and perform clustering
analysis of CpG sites. Afterward, functional enrichment analysis
will be performed to further understand the mechanisms of dis-
ease. Finally, visualization of all the analysis results is carried out
in order to show them in a more intuitive way[7] (Figure 1).

1.3. Aim

The purpose of this article is to review the important findings of
EWASs in biology and clinical translation. We reviewed the ori-
gin and research process of EWAS, and summarized the findings

of four typical diseases. At the end of this review, we analyzed the
limitations of the current experimental design and made predic-
tions about the future of EWAS.

2. Research Process of EWAS

EWAS is, in particular, intriguing as a method for studying the
pathogenesis of complex diseases and commonly used to analyze
methylation modifications and histone modifications etc. DNA
methylation is currently the most studied, which is partly due to
the better chemical and temporal stability of DNA methylation
and the limitations of the research tools.[8–10] DNA methylation
is a covalent modification with relatively good chemical stability
due to the covalent binding of methyl to CpG dinucleotides.[11,12]

From the other point of view, studies have demonstrated the
temporal stability of DNA methylation.[13,14] In terms of the devel-
opment of technical tools, there are several well established and
reliable methods for the identification of DNA methylation, such
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Figure 2. EWAS literature timeline. From 2011 to the end of 2020, the cumulative number of EWAS-related publications per year. The pie chart shows
the platforms used by EWASs in these publications.

as bisulfite conversion. And unlike histone modification, it is not
lost during the DNA extraction process.[15–17] These advantages
are the reason why DNA methylation has so far been the main
object of study in EWAS. In the future, as research techniques
advance, other epigenetic modifications will also be widely
used.

Among the methods for analyzing methylation levels, Illu-
mina microarrays are the most widely used. It was found that
in the presence of bisulfite, unmethylated cytosines of genomic
DNA can be converted to uracil, while methylated cytosines re-
main in the cytosine state.[18] Using the same principle, the Il-
lumina Infinium HumanMethylation27 BeadChip (27k) used an
Infinium I probe, while the Illumina Infinium HumanMethyla-
tion450 BeadChip (450 k) and Illumina HumanMethylationEPIC
BeadChip (EPIC) used one of two probe types (Infinium I and
Infinium II) to measure the methylation level of each CpG.[19]

Each CpG site in Infinium I is operated by two probes, one to de-
tect “methylated (M)” intensity and the other to detect “unmethy-
lated (U)” intensity. Infinium II uses only one probe per CpG site
to distinguish methylation intensity. The methylation level of a
CpG site can be expressed as a Beta value, calculated as 𝛽 = M
/ (M + U + 𝛼), where 𝛼 is a constant offset. For Illumina mi-
croarrays, 𝛼 is usually given as 100.[20,21] Beta values range from
0 (completely unmethylated) to 1 (completely methylated), cor-
responding to the percentage of cells with CpG methylation.[22]

Beta mixture quantile normalization (BMIQ) indicates that a beta
value greater than or equal to 0.75 is considered fully methy-
lated. Beta value less than or equal to 0.25 is considered fully

unmethylated. Beta value between 0.25 and 0.75 is considered
hemimethylated.[23,24]

In addition to Illumina microarrays, whole genome bisul-
fite sequencing (WGBS) is the most efficient method for de-
termining the methylation status of the genome and is also
the most widely used method for EWAS in next-generation
sequencing.[25,26] WGBS also exploits the principle that bisulfite
can selectively deaminate cytosines.[27] Following bisulfite treat-
ment, polymerase chain reaction (PCR) amplification and next-
generation sequencing will be performed. Finally, untreated se-
quences are compared to bisulfite-treated sequences to deter-
mine which nucleotide sites are methylated.[28] Single molecule
real time (SMRT) sequencing technology in the third-generation
sequencing allows direct detection of DNA methylation without
the need for bisulfite conversion. In SMRT sequencing, DNA
polymerase catalyses the binding of fluorescently labelled nu-
cleotides to complementary nucleic acid strands. Information on
polymerase kinetics is derived from the arrival time and duration
of the resulting fluorescent pulse. Since various modifications
have different effects on polymerase kinetics, the kinetic signal
can be used to identify methylation levels.[29]

Innovations in epigenetic methods and the reduction in the
cost of EWAS have contributed to the rapid development of re-
search. This contributes to the fact that the number of EWASs
on common diseases is increasing every year (Figure 2). So far,
DNA methylation microarrays, next-generation sequencing and
third-generation sequencing remain the common methods for
doing high-throughput EWAS analysis.
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2.1. Illumina 27k

Early work on EWAS used the Illumina 27k, which contains
27 578 individual CpG loci distributed across 14 495 genes, ac-
counting for <0.1% of the 28 million CpG loci in the human
genome.[30] Illumina 27k was early applied to researches on com-
mon complex diseases, the effects of drug exposure on human
DNA methylation and the prediction of cancer risk.[31–34] These
studies were at that time all achieving milestones and the high
accuracy of Illumina 27k has been demonstrated, leading to the
conclusion that Illumina 27k is feasible for most experiments.
In a study shortly after the introduction of EWAS, Breitling et al.
used Illumina 27k to explore differences in DNA methylation as-
sociated with smoking.[35] A smoker-specific hypermethylation
site cg03636183 (F2RL3), which had never been identified, was
found to be strongly associated with smoking-induced disease.[36]

However, due to the small number of samples and controls used
in experiments, replicate experiments are still required to im-
prove the accuracy of the results. Due to the lack of coverage of
CpG loci in Illumina 27k and the small experimental sample size,
there are more valuable CpG loci yet to be analyzed, which will
need to be confirmed in future studies.

2.2. Illumina 450k

As experimental techniques continue to be refined, the most
widely used methylation microarray is the Illumina 450k, which
contains more than 485 000 methylation sites, covering 94%
of Illumina 27k microarray, as well as involves CpG sites on
CpG island shores, 5’UTR, 3’UTR, first exon region, and pro-
moter regions.[16,37]. The Illumina 450k is the most commonly
used tool for EWAS due to its wide coverage. After several
years of application, researchers have recognized 1460 smoking-
related CpG sites in the EWASs with the use of the Illumina
450k.[38] The CpG loci (genes) highlighted in several differ-
ent studies are cg05575921 (AHRR), cg03636183 (F2RL3), and
cg19859270 (GPR15), which have been clearly linked to a va-
riety of inflammation-induced diseases, such as cardiovascular
diseases, metabolic diseases and cancer,[39–41] There is no doubt
that EWAS has made further a big stride forward with the assis-
tance of Illumina 450k. Nevertheless, the Illumina 450k has its
drawbacks. For example, its methylation site coverage is far from
complete. Illumina has now released the EPIC, with new content
specifically targeting regions lacking in 450k.

2.3. Illumina EPIC

Illumina EPIC detects the methylation status of approximately
868 564 CpG sites across the human genome, including more
than 90% of the original 450K microarray (most of the loci that
are not involved have been shown to perform poorly) and an
additional 413 745 sites. Compared to Illumina 450k, not only
does EPIC maintain comprehensive coverage of CpG islands and
gene promoter regions, it also adds probe coverage of enhancer
regions and gene coding regions.[37] Advances in experimental
techniques have made it possible to measure almost twice as
many CpG sites in EPIC than in Illumina 450K and to accu-

rately analyze the impact of DNA methylation on common dis-
eases in a wider range of regulatory regions. In an EWAS using
EPIC in 2019, six new CpG loci (genes) were revealed, including
cg17739917 (RARA), cg14051805 (FSIP1), cg12956751 (ALPP),
cg22996023 (PIK3R5), cg07741821 (KIAA0087), and cg05086879
(MGAT3), to be strongly associated with cancer production and
progression.[42] In recent years, there has been a growing number
of EWASs using EPIC, which has become an indispensable tool
for the study of epigenetic modifications with respect to human
development and disease.[43,44]

2.4. Next-Generation Sequencing

During the past 15 years, next-generation sequencing (NGS)
has experienced high-speed development.[45,46] NGS has signif-
icantly reduced sequencing costs compared to Sanger sequenc-
ing, while increasing sequencing speed and maintaining high
accuracy.[47] The emergence of NGS technologies has greatly
influenced the development of epigenomic research and en-
hanced the understanding of biology and disease. One of the
more widely used techniques is whole genome bisulfite se-
quencing (WGBS), which converts epigenetic differences into se-
quence differences and is used for genome-wide DNA methyla-
tion detection.[28,48] The first study using WGBS to investigate
Down syndrome (DS) found thousands of differentially methy-
lated regions, with RUNX1 being the most significant factor alter-
ing epigenetic modifications in DS.[49] Although the advantages
of next-generation sequencing are huge, it is much shorter than
the first-generation sequencing technology in terms of sequence
read length, which also gives room for the development of third-
generation sequencing.

2.5. Third-Generation Sequencing

The advantages of third-generation sequencing over next-
generation sequencing technology involve faster sequencing,
higher accuracy, and direct detection of DNA methylation.[50] In
addition to its long read lengths, the PacBio SMRT sequencing
technology in third-generation sequencing, more importantly, al-
lows the identification of methylation sites for epigenetic studies
and is currently used in EWAS.[29,51–54] In a recent EWAS using
single-molecule real-time bisulfite sequencing (SMRT-BS) to as-
sess the impact of methylation of smoking-associated regions on
schizophrenia, allele-specific methylation regions were identified
in the smoking-affected genes AHRR and IER3.[55] Methylation
CpG loci found at AHRR (cg05575921) and IER3 (cg06126421)
have been shown to be significantly associated with smoking,
and be useful in assessing lung cancer risk in the smoking
population.[56–58] The results suggest that the prediction model
based on DNA methylation which incorporates allele-specific in-
formation can be applied with higher accuracy in disease re-
search and clinical settings. As the third-generation sequencing
technology is gradually demonstrating its unique advantages, it
is being used more and more in the field of epigenetics.

3. A Decade of EWAS Achievements

EWAS provides a systematic approach to identify epigenetic vari-
ations as biomarkers in complex diseases.[59,60] Biomarkers play a
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role in disease identification, early diagnosis, the search for drug
targets and the monitoring of drug response. In recent years,
it has been found that epigenomes are more likely to serve as
biomarkers than transcriptomes due to their stability.[61] Explor-
ing and discovering valuable epigenetic biomarkers is gradually
becoming a hot topic in disease research.[6] Driven by this situ-
ation, a wide variety of EWAS-related databases and tools have
been created in response to the trend.

3.1. Prediction of Disease Risk

EWAS can be used to predict specific disease risk by identify-
ing specific DNA methylation loci as biomarkers.[62,63] In some
heritable diseases, disease-specific biomarkers have been iden-
tified by correlating specific epigenetic traits across generations
with disease.[64] In this way, it is possible to determine the likeli-
hood of the disease before it actually strikes. A study developed
a methylation risk score (MRS) based on levels of methylation
change. Researchers used this score together with information
on 187 CpG loci associated with obesity to predict the risk of de-
veloping type 2 diabetes (T2D) in the future. The research results
suggest that the MRS predicts T2D over traditional evaluation
criteria like body mass index (BMI).[65] Epigenetic markers are
emerging as valuable predictors of human disease susceptibility,
and are expected to be widely used in clinical trials in the future.

3.2. Early Diagnosis of Disease

Early diagnosis of the disease in a timely manner will greatly im-
prove the outcome of the disease treatment. Indicating biomark-
ers early in the disease process can help alter the disease process
or even stop its progression.[66] Differentially methylated regions
associated with autism spectrum disorders (ASD) were detected
in cord blood in an EWAS.[67] This study explains the progression
of ASD from an epigenetic standpoint and provides new perspec-
tives for the early diagnosis of ASD. The accurate identification of
biomarkers that can be used for early diagnosis is even more im-
portant in the treatment of cancer. An EWAS has identified three
CpG loci that can be used as biomarkers for the early diagno-
sis of colorectal cancer (CRC).[68] Among them, cg04036920 and
cg14472551 are located near the KIAA1549L transcription start
site, another CpG site, cg12459502, is located in the BCL2 body
region, and all of them have high sensitivity. To date, the use of
epigenetic biomarkers for early diagnosis in the clinical setting
is not widespread, and biomarkers with higher accuracy are still
to be discovered.

3.3. Identifying Drug Targets

Epigenetic drugs, as a novel therapeutic tool, are currently used
mostly in cancer research. One effective way to fight cancer
is to inhibit methylation, and epigenetic drugs can have an
impact on DNA methylation patterns.[69,70] Several epigenetic
drugs targeting histone methyltransferases and DNA methyl-
transferases are currently available for the treatment of many
types of cancer.[71] For instance, Zebularine, Azacitidine, and

Chaetocin have been broadly used in the clinical practice.[72] Epi-
genetic drugs are also involved in the application of neurological
diseases, immunological diseases, and metabolic diseases. In an
EWAS analyzing differential DNA methylation associated with
childhood asthma, several genes (loci) were confirmed as drug
targets, including IL5RA (cg01310029, cg10159529), and KCNH2
(cg24576940, cg23147443, cg18666454).[73] These targets have
been widely used in a variety of drugs. KCNH2 is the target of
amiodarone hydrochloride, dofetilide, and sotalolol, IL5RA is the
target of Benralizumab, a drug used in severe asthma patients.[74]

From these findings, it is clear that EWAS plays an important role
in the identification of novel drug targets.

3.4. Measuring Drug Response by Monitoring Drug-Induced
Epigenetic Changes

Examining drug-induced epigenetic changes is a novel way to
measure drug response and evaluate prognostic ability in recent
years. As epigenetic markers can offer additional perspectives on
changes in biological processes, they can provide a better frame-
work for the study of events at different stages. Longitudinal
methylation studies are of great advantage in this regard.[75] The
main advantage is that it can explain interindividual differences
in response after drug use, which is important for determining
whether the drug accurately alters the response pathway asso-
ciated with the disease.[76] This is finally used as a criterion for
drug replacement or improvement.[77] In an epigenomic study
on small cell lung cancer (SCLC) in 2020, the association between
drug response and DNA methylation was analyzed for 526 phar-
maceutical agents.[78] Numerous of these drugs exhibit a strong
association with TREX1 methylation and expression. Targeting
the epigenetic mechanisms of TREX1 may be a new way to de-
velop novel antitumor drugs.

3.5. The Collation of Data and Knowledge Facilitates the
Researcher

As epigenetics is demonstrating a strong influence in the study
of complex diseases, the new development of EWAS-related
databases provides researchers with a powerful tool. In 2013,
EWASdb was released as the first database to store EWAS results,
allowing researchers to look for epigenetic association results
between diseases and DNA methylation.[79] EWASdb contains
1319 EWASs results associated with 302 diseases/phenotypes.
Furthermore, it can also search for DNA methylation markers,
KEGG pathways, and GO categories that are significantly as-
sociated with certain diseases/phenotypes, which is definitely
beneficial to researchers. Shortly afterward, the EWAS Atlas, a
comprehensive database of EWAS knowledge, was launched.[80]

EWAS Atlas selects, organizes, standardizes, and presents
EWAS knowledge from a wide range of publications dedicated
to helping researchers understand the molecular mechanisms
of epigenetic modifications. Recently, the release of the EWAS
Data Hub has provided a tremendous support in resolving
epigenetic mechanisms.[81] It collects DNA methylation data
from 75 344 samples (across 81 tissue/cell types, 6 ancestry
categories, and 67 diseases) and uses efficient normalization
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methods to eliminate batch effects. All of these data resources
have been used extensively in various EWAS experiments.

3.6. The Development of Tools Promotes New Discoveries

The development of practical tools related to EWAS also pro-
vides researchers with a convenient means to do so. These tools
mainly perform the following functions: 1) identification of dif-
ferentially methylated regions/loci (e.g., HPG-DHunter, DMR-
caller), 2) analysis of the association between epigenetic varia-
tion and disease/phenotype (e.g., EWAS2.0, EWAS1.0), 3) com-
prehensive analysis of DNA methylation data (e.g., GLINT, TAB-
SAT), 4) prediction of histone modifications and DNA methyla-
tion level (e.g., Pancancer DNA Methylation Trackhub, Epigram),
5) prediction of complex traits based on methylation (e.g., TAN-
DEM, OmicKriging), 6) identification of differential cell types
based on methylation (e.g., CellDMC, BPRMeth), and 7) methy-
lation data processing and normalization (e.g., omicsPrint, Fun-
tooNorm). The following list (Table 1) of tools is organized ac-
cording to the functionality of the tool, which includes function
profile, the year of release, details about the implementation,
such as programming language (R, Python, Java, etc.) or web-
based browser, software availability, and PubMed ID.

4. Four Exemplars of EWAS Success

Published results of EWASs have addressed a variety of com-
mon diseases including autoimmune diseases (e.g., rheuma-
toid arthritis, asthma, and allergy), metabolic diseases (e.g.,
metabolic syndrome, obesity, and T2D), psychiatric disorders
(e.g., alzheimer’s disease, depression, and schizophrenia), and
cancer (Figure 3). At this point, we highlight a subcategory from
each of the four broad disease categories as a typical example to il-
lustrate some of the significant advances that were brought about
by the important findings of EWASs.

4.1. Rheumatoid Arthritis

Epigenetics plays an important role in the pathogenesis of au-
toimmune diseases. In the last decade, EWAS has contributed
significantly to a better understanding of the pathogenic rele-
vance of immune-mediated diseases. The most representative
one is rheumatoid arthritis (RA), a common autoimmune disease
influenced by genetic factors and environmental exposures.[82,83]

4.1.1. Biological Significance

Thousands of differential methylation sites associated with RA
have been observed in nearly a decade of EWASs.[84–86] The hu-
man major histocompatibility complex (MHC) has a strong epi-
genetic association with the pathogenesis of RA.[87] A recent
study detected 74 unique methylated CpG loci in the MHC re-
gion, with 22 genes containing 32 of these differentially methy-
lated CpG motifs. These genes are involved in the antigen presen-
tation process as well as interfering with the role of immune cells

in autoimmunity.[88] Another study also confirmed that differ-
ences in DNA methylation within the MHC region are strongly
associated with RA progression.[89] In addition to the MHC re-
gion, immune cells also have epigenetic association with RA.

Cellular and humoral immunity are the primary pathways that
lead to the production of autoantibodies by immune cells that
secrete inflammatory factors.[90] Since RA is highly correlated
with B, T, and other lymphocytes, accurate detection, and alter-
ation of specific cell types can be achieved to effectively treat RA.
Through an EWAS for RA, it was found that abnormal hyper-
methylation and hypomethylation of two loci, cg18972751 and
cg03055671 (CD1C and TNFSF10), are associated with RA.[91]

The overexpression of CD1C in B cells enhances self-antigen re-
activity, which is one of the main causes of RA pathogenesis.[92]

TNFSF10 (also known as TRAIL) belongs to the tumor necrosis
factor (TNF) superfamily of cytokines, and it has been shown that
TRAIL acts as a barrier against autoimmunity in RA.[93] These re-
sults all clarify the causal relationship between epigenetic modi-
fications and RA disease onset, while supporting the importance
of epigenetics as a method to uncover novel molecular mecha-
nisms in autoimmune diseases.

4.1.2. Clinical Translation

DNA methylation, as an epigenetic modification affected en-
vironmental exposures covering pharmacotherapy, has been
widely used in the drug discovery. Although biologic drug ther-
apies have made tremendous advances in RA, only a minority
of patients have effective control of their disease.[94,95] Etaner-
cept is the most common drug used to treat RA, and an exper-
iment characterized five drug-sensitive methylation sites associ-
ated with it.[96,97] Given that some biologics are expensive and in-
effective to produce, it is increasingly important to provide pa-
tients with personalized treatments and medications for RA.

4.2. Metabolic Syndrome

Complex diseases like metabolic syndrome (MetS) have multiple
pathogenic causes, such as epigenetic mechanisms (including
DNA methylation and histone modifications) along with the role
of environmental factors.[98] Among noncommunicable diseases,
MetS has become one of the most morbid and mortal diseases.[99]

MetS is a combination of several diseases, covering obesity and
diabetes, which significantly increases the risk of death from hep-
atitis, cardiovascular disease, and cancer.[100–102] Due to the rapid
development of EWAS in recent years, major breakthroughs have
been made in the study of the etiology of MetS, factors influenc-
ing disease progression, and drug therapy.

4.2.1. Biological Significance

MetS is extensively influenced by environmental factors, and
diet is one of the most routine environmental factors that
everyone faces in their daily lives.[103,104] A number of diet-
influenced methylation sites have been identified as being
involved in metabolism-related regulatory pathways, includ-
ing those related to lipid metabolism, immunity, and cellular
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Table 1. Summary of EWAS-related tools.

Tools Detail Year Implementation Software availability PMID

Detection of differentially methylated region/loci

HPG-DHunter[172] Detection of differentially methylated regions 2020 Software https://grev-uv.github.io/ 32631226

DMRcaller[173] Differentially methylated regions caller 2018 R package http://bioconductor.org/packages/
DMRcaller/

29986099

DiMmeR[174] Discovery of multiple differentially methylated
regions

2017 Java package http://dimmer.compbio.sdu.dk 27794558

MethylDMV[175] Detection of differentially methylated regions 2017 R package http://www.ams.sunysb.edu/∼pfkuan/
softwares.html#methylDMV

27896998

WFMM[176] Identification of differentially methylated loci 2016 Software https://biostatistics.mdanderson.org/
SoftwareDownload

26559505

MethylAction[177] Detection of differentially methylated regions 2016 R package http://jeffbhasin.github.io/methylaction 26673711

AmpliMethProfiler[178] Identification of methylated/unmethylated
regions

2016 Python package http://amplimethprofiler.sourceforge.net 27884103

iDNA-Methyl[179] Identification of differentially methylated loci 2015 Webserver http://www.jci-bioinfo.cn/iDNA-Methyl 25596338

swDMR[180] Detection of differentially methylated regions 2015 Software http://sourceforge.net/projects/swDMR 26176536

EpiDiff[181] Identification of differential epigenetic
modification regions

2013 Software http://bioinfo.hrbmu.edu.cn/epidiff 24109772

Analysis of the association between epigenetic variation and disease/phenotype

EWAS2.0[182] Analysis of the association between epigenetic
variation and disease/phenotype

2018 Software http://www.ewas.org.cn 29566144

EWAS1.0[183] Analysis of the association between epigenetic
variation and disease/phenotype

2016 Software http://www.ewas.org.cn 27892496

DEMGD[184] Extraction of associations of methylated genes
and diseases

2013 Webserver http://www.cbrc.kaust.edu.sa/demgd 24147091

Comprehensive Analysis of DNA Methylation Data
GLINT[185] Analysis of high-throughput DNA-methylation

array data
2017 Python package https://github.com/cozygene/glint/

releases
28177067

TABSAT[186] Analysing targeted bisulfite sequencing data 2016 Software http://demo.platomics.com 27467908

BioVLAB-mCpG-SNP-
EXPRESS[187]

Various integrated analyses such as
methylation vs. gene expression and
mutation vs methylation are performed

2016 Webserver http://biohealth.snu.ac.kr/software/
biovlab_mcpg_snp_express

27477210

RefFreeDMA[188] Differential DNA methylation analysis 2015 Software http://RefFreeDMA.computational-
epigenetics.org

26673328

MethGo[189] Analyzing whole-genome bisulfite sequencing
data

2015 Python package http://paoyangchen-
laboratory.github.io/methgo

26680022

MethylSig[190] DNA methylation analysis 2014 R package http://sartorlab.ccmb.med.umich.edu/
software

24836530

Methy-pipe[191] Whole genome bisulfite sequencing data
analysis

2014 Software http://sunlab.lihs.cuhk.edu.hk/methy-
pipe

24945300

RnBeads[192] DNA methylation analysis 2014 Software http://rnbeads.mpi-inf.mpg.de 25262207

APEG[193] Analyze the functions of epigenomic
modifications

2013 Software http://systemsbio.ucsd.edu/apeg 24339764

GBSA[194] Analysing whole genome bisulfite sequencing
data

2013 Python package http://ctrad-csi.nus.edu.sg/gbsa 23268441

EpiExplorer[195] Analysis of large epigenomic datasets 2012 Software http://epiexplorer.mpi-inf.mpg.de 23034089

IMA[196] Analysis of Illumina 450K 2012 R package http://www.rforge.net/IMA 22253290

BiQ analyzer HT[197] Locus-specific analysis of DNA methylation by
high-throughput bisulfite sequencing

2011 Software http://biq-analyzer-ht.bioinf.mpi-
inf.mpg.de

21565797

CNAmet[198] Comprehensive analysis of high-throughput
copy number, DNA methylation and gene
expression data

2011 R package http://csbi.ltdk.helsinki.fi/CNAmet 21228048

Methyl-analyzer[199] DNA methylation analysis 2011 Python package http://github.com/epigenomics/
methylmaps

21685051

(Continued)

Adv. Sci. 2021, 8, 2100727 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2100727 (7 of 16)



www.advancedsciencenews.com www.advancedscience.com

Table 1. Continued.

Tools Detail Year Implementation Software availability PMID

Prediction of histone modifications and DNA methylation level

Pancancer DNA
Methylation
Trackhub[200]

Depicting the overall DNA methylation status 2018 Webserver http://maplab.cat/tcga_450k_trackhub 29605850

LR450K[201] Prediction of methylation levels 2016 R package http://wanglab.ucsd.edu/star/LR450K 26883487

Epigram[202] Predicts histone modification and DNA
methylation patterns from DNA motifs

2015 Software http://wanglab.ucsd.edu/star/epigram 25240437

MLML[203] Estimates of DNA methylation and
hydroxymethylation levels

2013 Software http://smithlab.usc.edu/software/mlml 23969133

DMEAS[204] Estimates methylation levels 2013 Software http://sourceforge.net/projects/dmeas/
files

23749987

Prediction of complex traits

TANDEM[205] Measure drug response 2016 R package http://ccb.nki.nl/software/tandem 27587657

OmicKriging[206] Prediction of complex traits, such as disease
risk or drug response

2014 R package http://www.scandb.org/newinterface/
tools/OmicKriging.html

24799323

ITFoM[207] Prediction of health risks, progression of
diseases, and selection and efficacy of
treatments

2013 Webserver http://www.itfom.eu 23165094

Identification of differential cell types

BPRMeth[208] Predicting gene expression levels or clustering
genomic regions or cells

2018 R package http://bioconductor.org/packages/
BPRMeth

29522078

CellDMC[209] Identification of differentially methylated cell
types

2018 R package https://github.com/sjczheng/EpiDISH 30504870

eFORGE[210] Identifying cell type-specific signal 2016 Webserver http://eforge.cs.ucl.ac.uk 27851974

Methylation data processing and normalization

OmicsPrint[211] Detection of data linkage errors in multiple
omics studies

2018 R package http://bioconductor.org/packages/
omicsPrint

29420690

FuntooNorm[212] Normalization of DNA methylation data 2016 R package https://github.com/GreenwoodLab/
funtooNorm

26500152

Beclear[213] Correction of batch effects in DNA methylation
data

2016 R package http://bioconductor.org/packages/
release/bioc/html/BEclear.html

27559732

Jllumina[214] Handling of 450 k and EPIC data 2016 Java package http://dimmer.compbio.sdu.dk/
download.html

28187410

SMETHILLIUM[215] Spatial normalization method for Illumina
infinium HumanMethylation BeadChip

2011 R package http://bioinfo.curie.fr/projects/
smethillium

21493659

differentiation.[105–107] One of the more investigated methylation
sites, cg00574958, has shown significant correlation with MetS
in several EWASs.[108,109] It was shown that carbohydrate intake
leads to cg00574958 hypermethylation, which reduces the risk of
MetS. Conversely, fat intake leads to cg00574958 hypomethyla-
tion, thereby increasing the risk of MetS.[110]

In an EWAS based on peripheral blood mononuclear cells
(PBMC), methylation status of SOCS3 (cg18181703), a gene
which participates in the regulation of leptin and insulin sig-
naling, was found to be significantly associated with obesity
and was inversely proportional to BMI.[105] Else, numerous
studies have demonstrated that repression of SOCS3 expres-
sion holds promise for the treatment of metabolic diseases like
obesity.[111–113] The contribution of epigenetics to T2D, a complex
multifactorial disease, is even greater, with hundreds of methyla-
tion difference loci now identified.[114–116] cg06500161 (ABCG1)
is a well-studied and significantly associated methylation site for
T2D.[117] The protein encoded by ABCG1 is involved in intracel-

lular as well as extracellular signaling and lipid transport, where
hypermethylation of this site increases the prevalence of MetS,
T2D, and obesity.[98] In summary, the onset and development of
MetS and related diseases (e.g., obesity and T2D) are to some ex-
tent caused by epigenetic modifications (e.g., DNA methylation).

4.2.2. Clinical Translation

The EWAS on MetS provides multiple pathways for clinical
translation. First, lifestyles like dietary habits alter DNA methy-
lation patterns to varying degrees. Through several EWASs, it is
clear that vitamin D, fat and alcohol intake all have impacts on
MetS. Moderate alcohol and tea consumption reduces the risk of
T2D and obesity, but smoking and excessive dietary fat increase
the likelihood of causing T2D.[118–120] Second, due to the addition
of epigenetics, researchers have found promising epigenetic
markers associated with T2D.[115,121] A study found that DNA
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Figure 3. Word cloud of traits in EWASs. Top 100 traits in EWAS, including phenotypes, behaviors, environmental factors, cancer and noncancer diseases.

methylation of ABCG1 (cg06500161) affects triglyceride levels,
and a drug called Pemafibrate, developed based on ABCG1,
showed a high-quality effect in treating T2D.[122,123] Third, identi-
fying the effects of therapeutic drugs on DNA methylation based
on epigenetic approaches could lead to a better understanding of
the physiological pathways impacted by the drugs.[124] This leads
to the goal of promoting personalized therapies, developing
novel diagnostic techniques and more effective medicines.[105]

4.3. Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disease, the
most prevalent form of dementia, affecting millions of peo-
ple worldwide.[125] Although the identification of psychiatric-
associated differential methylation sites started late, with the
gradual maturation of EWAS, impressive results have been
demonstrated in recent years in AD.[126,127]

4.3.1. Biological Significance

The potential role of epigenetic mechanisms in AD has been
gradually uncovered since the first EWAS that has identified 948
CpG loci associated with AD using Illumina 27k in 2012.[128] The
differentially methylated sites cg11823178 and cg05066959 iden-
tified in the ANK1 gene have been clearly pointed out in several
EWASs.[129–131] In addition, a large number of aberrantly methy-
lated CpG site-pending genes are enriched in the mitotic cell cy-
cle regulation and Wnt signaling pathways, suggesting a hidden

role for aberrant Wnt signaling in neurodegenerative diseases
and promising a new drug target for AD treatment.[132–134]

Most EWASs for AD assess DNA methylation differences in
brain tissue,[135,136] however, there are many sites identified in
brain tissue that are not detected in blood, such as the early pop-
ular gene ANK1.[66,129] In a recent study, examining DNA methy-
lation patterns in whole blood from AD patients, differential
methylation regions were identified in gene HOXB6, and abnor-
mal hypermethylation of sites within HOXB6 (cg17179862 and
cg03803541) affected granulocyte and monocyte production.[137]

Even more intriguingly, the same CpG sites also exhibit differ-
ent or even opposite methylation patterns in the brain and blood.
OXT (encoding oxytocin) is one of the most influential genes in
the brain and blood for AD.[138] In brain tissue, 10 CpG sites of
OXT show decreased methylation levels in AD patients.[139] Con-
versely, these sites detected elevated methylation levels in the pe-
ripheral blood. Although there are some patterns of association
between the brain and blood, not all differences associated with
AD in the blood are related to processes occurring in the brain,
and the way in which they interact remains to be investigated.

4.3.2. Clinical Translation

Epigenetics has become an important area of research in the de-
velopment of drug relocalization, and the identification of protein
targets based on epigenetics is now becoming the mainstream of
overcoming AD.[140,141] Screening from known AD drugs was per-
formed to extract 14 epigenetic drugs for relocalization based on
epigenetic drug-target network (EP-DTN).[142] There are currently
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no drugs that target abnormal DNA methylation loci in AD, but
with the development of epigenomics and advances in pharma-
ceutical technology, epigenetic drugs will eventually be developed
to effectively treat AD.

4.4. Breast Cancer

Breast cancer is the most common cancer in the female popula-
tion, and its incidence is increasing every year.[143,144] A variety of
environmental factors can contribute to the incidence of breast
cancer, for instance, age, hormones, BMI, etc.[145] EWAS can ef-
fectively analyze the impact of these factors on breast cancer for
the purpose of supplying diagnostic and therapeutic measures.

4.4.1. Biological Significance

Age is one of the risk factors for breast cancer.[146] Recent EWASs
have reported that some methylation sites which change with
age are associated with breast cancer risk and prognosis.[145] The
first EWAS of age-associated methylation changes showed that
they were broadly spread throughout the genome.[146] Subse-
quent studies have cumulatively identified over eight hundred
age-related CpG loci associated with breast cancer.[14,147] These
results all go some way to explaining the increase in breast can-
cer incidence with age.

In addition to age, hormone therapy (HT) is a recognized
causative factor.[148] Several studies have shown that estrogen or
other hormone exposure can also lead to changes in DNA methy-
lation in the blood that can affect the risk of breast cancer.[149,150]

An EWAS identified 694 CpG loci associated with estrogen
exposure.[151] Another EWAS illustrated 527 CpG sites with al-
tered levels of DNA methylation in HT users.[152] Twelve of these
loci were all highly significant, such as cg01382688 (ARHGEF4).
These findings all confirm that hormone exposure and epigenetic
alterations are correlated, providing assistance in the prevention
of breast cancer.

BMI may be implicated in a number of mechanisms to influ-
ence the development of breast cancer and its role should not be
overlooked.[153] Increased DNA methylation at cg46801642 was
found to be associated with a 1.35-fold increase in breast can-
cer risk in an EWAS in 2020 using blood DNA samples.[154] In
an EWAS of breast tissue, the methylation levels of 935 probes
increased with increasing BMI and obesity was significantly as-
sociated with differential methylation in 21 CpG sites.[155] These
studies suggest that BMI may affect methylation levels at sites
associated with breast cancer.

4.4.2. Clinical Translation

Despite the remarkable success of current treatments for breast
cancer, a number of patients’ lives are hampered or suffer from
cancer metastasis due to late detection. Extracting DNA from pe-
ripheral blood and analyzing its methylation change pattern help
to find biomarkers for breast cancer risk and early detection.[156]

This can definitely enhance the survival rate of patients signifi-
cantly. Discoveries in recent years have demonstrated the poten-
tial of epigenetic studies to assess cancer risk.[157] An early study

showed that reduced methylation levels of cg27091787 (HYAL2)
were associated with an increased risk of breast cancer.[158] This
was followed by the generation of a large number of EWASs
for the identification of DNA methylation-related biomarkers for
early detection.[159,160] Although dozens of biomarkers have been
revealed, most of them show only very limited distinguishing
power.[157] Therefore, efforts are still needed to explore sensitive
markers for the purpose of implementing effectively diagnostic
and preventive strategies.

5. Discussion

We outline the development of methylation detection technolo-
gies over the last decade and then summarize the major discov-
eries together with associated resource tools generated by EWAS.
We finally describe the biological significance and clinical trans-
lational applications of four typical diseases. In addition to these
four well-known disorders, EWAS provides strong support for
the study of asthma and depression disorder in relation to methy-
lation.

Asthma is a global disease that is influenced by environmen-
tal factors as well as epigenetic changes.[161] Several EWASs have
been published in recent years to investigate asthma suscepti-
bility and mechanisms. To date, experiments using nine cohorts
have yielded a total of 179 CpG loci and 36 differentially methy-
lated regions associated with asthma.[73,162] Most CpG loci have
strong associations with eosinophils, effector T cells, memory T
cells, and natural killer cells. Currently, the main research direc-
tion for asthma-associated EWASs is drug development, and fur-
ther evaluation of methylation variants will help in the typing of
asthma, which is expected to enable personalized treatment.

Depression is a common psychiatric disorder that is thought
to be influenced by a combination of genetics and environment.
In 2018, three methylation loci associated with depressive symp-
toms were identified in an EWAS that used DNA methylation
in blood to identify epigenetic mechanisms of depression.[163]

cg04987734, cg12325605, and cg14023999 have all been associ-
ated with axon guidance pathways and may have an important
role in assessing the pathology as well as the clinical role of
depression.[164] In an EWAS last year based on the association
between DNA methylation in brain tissue and depression, reli-
able CpG loci were identified in the YOD1 exon, PFKFB2 intron,
UGT8, FNDC3B, and SLIT2 regions.[165] Of these, YOD1 has
been shown to be associated with mechanisms of multiple neu-
rodegenerative diseases and UGT8 is a known biomarker gene
for depressed mood.[166,167] These CpG loci hold promise as epi-
genetic markers of depression and for application in clinical drug
development trials.

Recent researches on complex diseases, covering cancer, have
been supported by EWAS due to its ability to recognize epigenetic
changes that are not possible with previous technologies. EWAS
is more applied to the study of the influence of environmental
factors on disease mechanisms, which provides a deeper under-
standing of the causes and progression of diseases so that more
diverse therapeutic options can be generated to achieve the goal
of precision medicine.

Despite the significant achievements of EWAS, its limitations
are still significant and it will face numerous challenges in the
future. 1) Since epigenetic modifications are mainly influenced
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by environment and genetics, methylation patterns at each CpG
site may be highly variable across geographic regions and races.
To date, Europeans have accounted for a large proportion of the
numerous EWAS subjects, although studies of Asian and African
ethnicities have increased in recent years, but not nearly as much
as Europeans. It has been shown that certain DNA methylation
patterns vary considerably by ethnicity,[168–170] which reinforces
the importance of increasing the sample size and ethnic diver-
sity of experiments, as well as to better achieve the goal of per-
sonalized treatment. 2) The number of factors that can influ-
ence epigenetic modifications is numerous, therefore high qual-
ity EWAS requires that confounding factors be considered in the
design of experiments so that they can be effectively controlled
in subsequent analyzes.[61] Because epigenetic modifications dif-
fer between cell types and tissue types, EWAS is sometimes con-
founded by the cellular heterogeneity or tissue specificity of the
sample. Because of the different biological characteristics of cells
from different sources, whether blood samples accurately reflect
the methylation patterns of the target tissues needs further vali-
dation. 3) Since methylation changes are extremely influenced by
the environment, longitudinal studies are needed to analyze how
epigenetic modifications change before, after the onset and fol-
lowing pharmacological interventions.[171] Longitudinal studies
allow for the detection of methylation levels in patients at mul-
tiple time points to determine the causal relationship between
methylation and disease. Another advantage of longitudinal stud-
ies is the ability to access changes in epigenetic factors over the
life cycle, which can help recognize biomarkers that precede the
onset of disease. However, such EWAS are extremely rare be-
cause of the high costs involved and the long study duration. 4) To
date, the vast majority of data sources used for EWAS are still sup-
ported by Illumina 27k or Illumina 450k, but they provide only a
limited number of genomic regions, which may result in the loss
of important methylation regions. The newly-developed Illumina
EPIC and three-generation sequencing technologies have greatly
improved this deficiency.[37] However, the application of the new
technology is not yet widespread, so future research is expected
to yield more comprehensive results.

In the future, EWAS needs to find appropriate ways to ad-
dress these challenges. Research also needs to move focus from
methylation site discovery to biological understanding and clin-
ical translation. For example, discovering more accurate diag-
nostic modalities and novel therapeutic approaches. Epigenetic
changes in complex diseases will still remain a major research
topic in the coming years, and for the foreseeable future the re-
sults obtained from EWAS will have a considerable impact on
clinical applications.
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