
DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs
in Life Science
Mufei Li,* Jinjing Zhou, Jiajing Hu, Wenxuan Fan, Yangkang Zhang, Yaxin Gu, and George Karypis

Cite This: ACS Omega 2021, 6, 27233−27238 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Graph neural networks (GNNs) constitute a class
of deep learning methods for graph data. They have wide
applications in chemistry and biology, such as molecular property
prediction, reaction prediction, and drug−target interaction
prediction. Despite the interest, GNN-based modeling is
challenging as it requires graph data preprocessing and modeling
in addition to programming and deep learning. Here, we present
Deep Graph Library (DGL)-LifeSci, an open-source package for
deep learning on graphs in life science. Deep Graph Library
(DGL)-LifeSci is a python toolkit based on RDKit, PyTorch, and
Deep Graph Library (DGL). DGL-LifeSci allows GNN-based modeling on custom datasets for molecular property prediction,
reaction prediction, and molecule generation. With its command-line interfaces, users can perform modeling without any
background in programming and deep learning. We test the command-line interfaces using standard benchmarks MoleculeNet,
USPTO, and ZINC. Compared with previous implementations, DGL-LifeSci achieves a speed up by up to 6×. For modeling
flexibility, DGL-LifeSci provides well-optimized modules for various stages of the modeling pipeline. In addition, DGL-LifeSci
provides pretrained models for reproducing the test experiment results and applying models without training. The code is distributed
under an Apache-2.0 License and is freely accessible at https://github.com/awslabs/dgl-lifesci.

1. INTRODUCTION

A large amount of the chemical and biological data
corresponds to attributed graphs, e.g., molecular graphs,
interaction networks, and biological pathways. Many of the
machine learning (ML) tasks that arise in this domain can be
formulated as learning tasks on graphs. For example, molecular
property prediction can be formulated as learning a mapping
from molecular graphs to real numbers (regression) or discrete
values (classification);1 molecule generation can be formulated
as learning a distribution over molecular graphs;2 reaction
prediction can be formulated as learning a mapping from one
set of graphs (reactants) to another set of graphs (products).3

A representation is a vector of a user-defined dimensionality.
Graph neural networks (GNNs) combine graph structures and
features in representation learning and they have been one of
the most popular approaches for learning on graphs.4,5 GNNs
have also attracted considerable attention in life science and
researchers have applied them to many different tasks.1−3,6−12

Despite significant research, it is often challenging for
experts in life science to use GNN-based approaches. To
unlock the power of GNNs requires clean interfaces for custom
datasets and robust and efficient pipelines. This is because
developing GNN pipelines by oneself requires a combined skill
set of programming, machine learning, and GNN modeling,
which is time-consuming to obtain. This calls for a set of ready-

to-run programs, which should make little assumption about
users’ background.
Prior efforts have greatly lowered the bar for GNN-based

modeling in life science, but none of them fully addresses the
problem. DeepChem13 is a package for deep learning in drug
discovery, materials science, quantum chemistry, and biology.
While it implements several GNN models, it still requires users
to program. Chainer Chemistry14 is a package for deep
learning in biology and chemistry, based on Chainer.15 It only
provides a command-line interface for GNN-based regression
on molecules and requires users to write code for other tasks.
PiNN16 implements a GNN variant for predicting potential
energy surfaces and physicochemical properties of molecules
and materials. It also requires users to program themselves.
Here, we present a python toolkit named Deep Graph

Library (DGL)-LifeSci. It provides high-quality and robust
implementations of seven models for molecular property
prediction, one model for molecule generation, and one model

Received: July 27, 2021
Accepted: September 24, 2021
Published: October 5, 2021

Articlehttp://pubs.acs.org/journal/acsodf

© 2021 The Authors. Published by
American Chemical Society

27233
https://doi.org/10.1021/acsomega.1c04017

ACS Omega 2021, 6, 27233−27238

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mufei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinjing+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiajing+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenxuan+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yangkang+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaxin+Gu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="George+Karypis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.1c04017&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?goto=recommendations&?ref=pdf
https://github.com/awslabs/dgl-lifesci
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/6/41?ref=pdf
https://pubs.acs.org/toc/acsodf/6/41?ref=pdf
https://pubs.acs.org/toc/acsodf/6/41?ref=pdf
https://pubs.acs.org/toc/acsodf/6/41?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


for chemical reaction prediction. For all of these models and
tasks, there is an associated command-line script for
predictions on custom datasets without writing a single line
of code. DGL-LifeSci also provides pretrained models for all
experiments. Compared with previous implementations, it
achieves a speed up by up to 6×.
In the following, we first provide a high-level overview of

how graph neural networks work over molecules. Then, we
discuss the implementation and package features of DGL-
LifeSci. After that, we present the results of evaluating DGL-
LifeSci in terms of robustness and efficiency. Finally, we
conclude with a discussion on future work.

2. GRAPH NEURAL NETWORKS OVER MOLECULES

GNNs perform graph-based representation learning by
combining information from the topology of a graph and the
features associated with its nodes and edges. They iteratively
update the representation of a node by aggregating
representations of its neighbors. As the number of iterations
increases, the nodes gain information from an increasingly
larger local subgraph.
When applying GNNs to molecules as in molecular property

prediction, there are two phasesa message passing phase and
a readout phase. Figure 1 is an illustration of them.
2.1. Message Passing Phase. The message passing phase

updates node representations simultaneously across the entire
graph and consists of multiple rounds of message passing. In a
round of message passing, the representation of a node is

updated by applying learnable functions to its original
representation, the representations of its adjacent nodes, and
the representations of its incident edges. The operation is
similar to gathering messages from adjacent nodes. By
performing k rounds of message passing, we can aggregate
information from all of the nodes/edges that are within k hops
from each node.

2.2. Readout Phase. The readout phase computes a
representation for the entire graph. This representation is
computed by applying a potentially learnable function to the
representations of all of the nodes in the graph, e.g.,
summation over them. Once we obtain graph representations,
we can pass them to a multilayer perceptron (MLP) for final
prediction.

3.. PACKAGE FEATURES

DGL-LifeSci contains four components: (i) a set of ready-to-
run scripts for training and inference; (ii) programming APIs
for allowing researchers to develop their own custom pipelines
and models; (iii) a set of pretrained models that can either be
fine-tuned or directly used to perform inference; and (iv) a set
of built-in datasets for quick experimentation.
It provides models that can be used to solve three tasks. The

first task is molecular property prediction or quantitative
structure−activity relationship (QSAR) prediction. This can be
formulated as a regression or classification task for single
molecules. The second task is molecule generation. The third
task is chemical reaction prediction.

Figure 1. Illustration of the message passing phase (left) and readout phase (right).

Figure 2. Overview of modules in DGL-LifeSci and their usage.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04017
ACS Omega 2021, 6, 27233−27238

27234

https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.1. Usage. DGL-LifeSci provides command-line scripts for
each task. They are responsible for invoking the modeling
pipeline, which handles model training and model evaluation.
Users need to prepare their data in a standard format. They
can then use the command-line interface by specifying the path
to the data file along with some additional arguments. For
example, below is the command-line interface for regression
and classification problems in molecular property prediction.
Users need to prepare molecules in the form of SMILES
strings with their properties to predict in a CSV file.

DGL-LifeSci also provides an optional support for a hyper-
parameter search other than using the default ones. It uses
Bayesian optimization based on hyperopt17 for a hyper-
parameter search.

4.. IMPLEMENTATION

4.1. Dependencies. DGL-LifeSci is developed using
PyTorch18 and Deep Graph Library (DGL).19 PyTorch is a
general-purpose deep learning framework and DGL is a high-
performant GNN library. In addition, it uses RDKit20 for
utilities related to cheminformatics.
4.2. Modeling Pipeline and Modules. A general GNN-

based modeling pipeline consists of three stages: dataset
preparation, model initialization, and model training. The
dataset preparation stage involves data loading, graph
construction, representation initialization for nodes and
edges (graph featurization), and dataset interface construction.
The model training stage involves model update, metric
computation, and early stopping. As presented in Figure 2,
DGL-LifeSci is modularized for these various stages and stage
components so as to cater to the need of different uses. While
DGL-LifeSci allows users to perform GNN-based modeling
without programming, advanced users can also adapt these
modules for their own development.
4.3. Dataset Preparation. DGL-LifeSci provides dataset

interfaces for supporting both built-in datasets and custom
datasets. The interfaces are responsible for loading raw data
files and invoking graph construction and featurization.
Graph construction and featurization are two important

steps for GNN-specific data preparation. DGL-LifeSci provides
built-in support for constructing three kinds of graphs for
moleculesmolecular graphs, distance-based graphs, and
complete graphs. In all of these graphs, each node corresponds
to an atom in a molecule. In a molecular graph, the edges
correspond to chemical bonds in the molecule. The
construction of a distance-based graph requires a molecule
conformation and there is an edge between a pair of atoms if
the distance between them is within a cutoff distance. In a
complete graph, every pair of atoms is connected. For graph
featurization, DGL-LifeSci allows initializing various node and
edge features from atom and bond descriptors. Table 1 gives
an overview of them.
Users can split the dataset into training/validation/test

subsets or do so for k-fold cross-validation. DGL-LifeSci
provides built-in support for random split, scaffold split, weight
split, and stratified split.21 The random split performs a pure
random split of a dataset. The scaffold split separates
structurally different molecules into different subsets based
on their Bemis−Murcko scaffolds.22 The weight split sorts

molecules based on their weight and then splits them in order.
The stratified split sorts molecules based on their label and
ensures that each subset contains nearly the full range of
provided labels.

4.4. Models Included. Table 2 lists the models
implemented. Graph Convolutional Network (GCN)23 and

Graph Attention Network (GAT)24 are two popular GNNs
initially developed for node classification and we extend them
for graph regression/classification. Originally, GCN and GAT
output node representations. We compute graph-level
representations from node-level representations by two
operations. The first operation performs a weighted sum of
the representations of nodes in a graph, where the weights are
determined by passing the node representations to a linear
layer followed by a sigmoid function. The second operation
takes the element-wise maximum of the representations of
nodes in a graph. We then concatenate the results of the two
operations and pass them to an MLP for final prediction.
Neural Fingerprint (NF)1 and Weave25 are among the earliest
models that extend rule-based molecular fingerprints with
graph neural networks. Message Passing Neural Network
(MPNN)9 unifies multiple GNNs for quantum chemistry.
AttentiveFP26 extends GAT with gated recurrent units.27

Table 1. Descriptors for Feature Initializationa

descriptors possible values

atom type C, N, O, etc.
atom degree excluding hydrogen atoms non-negative integers
atom degree including hydrogen atoms non-negative integers
atom explicit valence non-negative integers
atom implicit valence non-negative integers
atom hybridization S, SP, SP2, SP3, SP3D, SP3D2
total number of hydrogen atoms
attached

non-negative integers

atom formal charge integers
number of radical electrons of an atom non-negative integers
whether an atom is aromatic 1 (true), 0 (false)
whether an atom is in a ring 1 (true), 0 (false)
atom chiral tag CW, CCW, unspecified, other
atom chirality type R, S
atom mass non-negative real numbers
whether an atom is chiral center 1 (true), 0 (false)
bond type single, double, triple, aromatic
whether a bond is conjugated 1 (true), 0 (false)
whether a bond is in a ring 1 (true), 0 (false)
stereo configuration of a bond none, any, OZ, OE, CIS, TRANS
direction of a bond none, end-up-right, end-down-

right
aFor non-numeric discrete-valued descriptors, one-hot encoding is
used in featurization. For numeric discrete-valued descriptors, either
raw number or one-hot encoding can be used in featurization.

Table 2. Models Implemented

task model

molecular property
prediction

GCN,23 GAT,24 NF,1 Weave,25 MPNN,9

AttentiveFP26

GIN + context prediction/deep graph infomax/
edge prediction/attribute masking32

molecule generation JTVAE2

reaction prediction WLN3

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04017
ACS Omega 2021, 6, 27233−27238

27235

https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?fig=&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


One difficulty in developing learning-based approaches for
molecular property prediction is the gap between an extremely
large chemical space and extremely limited labels for molecular
properties. It is estimated that the number of drug-like
molecules is between 1023 and 1060 while most datasets have
less than tens of thousands of molecules in Molecule-
Net.21,28−31 Hu et al.32 propose to approach this problem by
utilizing millions of unlabeled molecules in pretraining the
weights of a GIN model for general molecule representations.
One can then fine-tune the model weights for predicting
particular properties. We directly include four models
pretrained from their work in DGL-LifeSci. The details of
the datasets used for pretraining can be found in Section 5.1 of
their paper. The models were pretrained with a same strategy
for supervised graph-level property prediction as described in
Section 3.2.1 of their paper. Each model was pretrained with a
different strategy for self-supervised learning as described in
Sections 3.1 and 5.2 of their paper. We distinguish the models
by the associated strategies for self-supervised learning, which
are context prediction, deep graph infomax, edge prediction,
and attribute masking.
Junction Tree Variational Autoencoder (JTVAE)2 is an

autoencoder that utilizes both a junction tree and a molecular
graph for the intermediate representation of a molecule.
Weisfeiler−Lehman Network (WLN)3 is a two-stage model for
chemical reaction prediction. It first identifies potential bond
changes and then enumerates and ranks candidate products.

5.. RESULTS AND DISCUSSION
5.1. Molecular Property Prediction. We test against six

binary classification datasets in MoleculeNet and evaluate the
model performance by ROC-AUC averaged over all tasks.21

To evaluate the model performance on unseen structures, we
employ the scaffold split and use 80, 10, and 10% of the dataset
for training, validation, and test, respectively. We train six
models (NF, GCN, GAT, Weave, MPNN, AttentiveFP) from
scratch using the featurization proposed in DeepChem, which
is described in Table 3. GCN and GAT take initial node
features only and they do not take initial edge features. We also
fine-tuned the four pretrained GIN models. For non-GNN
baseline models, we train an MLP and a k nearest-neighbor
classifier (KNN, k = 1) taking Extended-Connectivity
Fingerprints (ECFPs).
For all of the settings, we perform a hyperparameter search

for 32 trials and choose the best hyperparameters based on the
performance on the validation set. Within each trial, we train a
randomly initialized model and perform an early stopping if the
performance on the validation set no longer improves for 30
epochs. Finally, we evaluate the model achieving the best
validation performance on the test set. Table 4 presents the
summary of the test performance. For reference, we also
include the fine-tuning performance reported previously32 and
the best performance achieved by GNNs reported in the
MoleculeNet paper.21 For Tox21, ToxCast, and SIDER, the
MoleculeNet paper reported performance numbers for a
random dataset split and the dataset split cannot be
reproduced.
For all datasets, the best ROC-AUC achieved by DGL-

LifeSci models is higher than the ROC-AUC numbers
achieved by the two baseline models. The best fine-tuned
pretrained model either outperforms the best model trained
from scratch or achieves a comparable performance, which
suggests the effectiveness of pretraining on a large amount of

unlabeled molecules. The performance of the fine-tuned
models is comparable with the previously reported results.
On BBBP, HIV, and BACE, the best ROC-AUC achieved by
DGL-LifeSci models is consistently higher than the best ROC-
AUC achieved by GNNs in the MoleculeNet paper.

Table 3. Descriptors Considered in DeepChem
Featurization

descriptors possible values

atom type (one-hot encoding) C, N, O, S, F, Si, P, Cl, Br,
Mg, Na, Ca,

Fe, As, Al, I, B, V K, Tl, Yb,
Sb, Sn,

Ag, Pd, Co, Se, Ti, Zn, H, Li,
Ge, Cu,

Au, Ni, Cd, In, Mn, Zr, Cr, Pt,
Hg, Pb

atom degree excluding hydrogen atoms (one-
hot encoding)

0−10

atom implicit valence (one-hot encoding) 0−6
atom formal charge integers
number of radical electrons of an atom non-negative integers
whether an atom is aromatic 1 (true), 0 (false)
atom hybridization (one-hot encoding) SP, SP2, SP3, SP3D, SP3D2
total number of hydrogen atoms attached
(one-hot encoding)

0 - 4

bond type (one-hot encoding) single, double, triple, aromatic
whether a bond is conjugated 1 (true), 0 (false)
whether a bond is in a ring 1 (true), 0 (false)
stereo configuration of a bond (one-hot
encoding)

none, any, OZ, OE, CIS,
TRANS

Table 4. Test ROC-AUC on Six Datasets from
MoleculeNeta

model BBBP Tox21 ToxCast SIDER HIV BACE

Models trained from scratch

GCN 0.63 0.77 0.62 0.58 0.76 0.84
GAT 0.68 0.71 0.64 0.52 0.76 0.84
NF 0.66 0.75 0.60 0.53 0.74 0.80
Weave 0.67 0.56 0.62 0.58 0.73 0.79
MPNN 0.65 0.70 0.59 0.54 0.74 0.85
AttentiveFP 0.71 0.70 0.57 0.53 0.75 0.73

Non-GNN baseline

MLP + ECFP 0.67 0.70 0.58 0.63 0.76 0.80
KNN + ECFP 0.57 0.58 0.52 0.56 0.57 0.66

Pretrained models fine-tuned

GIN + context
prediction

0.63 0.75 0.64 0.61 0.77 0.86

GIN + deep graph
infomax

0.72 0.78 0.59 0.63 0.76 0.71

GIN + edge prediction 0.70 0.80 0.59 0.66 0.72 0.86
GIN + attribute
masking

0.72 0.75 0.58 0.58 0.75 0.74

Previously reported results

GIN + context
prediction32

0.69 0.78 0.66 0.63 0.80 0.85

GIN + deep graph
infomax32

0.68 0.78 0.65 0.61 0.78 0.80

GIN + edge prediction32 0.67 0.78 0.67 0.63 0.78 0.79
GIN + attribute
masking32

0.67 0.78 0.65 0.64 0.77 0.80

Best GNN in
MoleculeNet paper21

0.69 0.76 0.81

aThe best numbers are in bold.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04017
ACS Omega 2021, 6, 27233−27238

27236

http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


5.2. Reaction Prediction.We test WLN against USPTO33

dataset following the setting in the original work.3 WLN is a
two-stage model for reaction prediction. The first stage
identifies candidate reaction centers, i.e., pairs of atoms that
lose or form a bond in the reaction. The second stage
enumerates candidate products from the candidate reaction
centers and ranks them. We achieve comparable performance
for both stages as in Table 5.
5.3. Molecule Generation. We test JTVAE against a

ZINC34 subset for reconstructing input molecules.2 We
achieve an accuracy of 76.4% while the authors’ released
code achieved an accuracy of 74.4%.
5.4. Training Speed. We compare the modeling efficiency

of DGL-LifeSci against previous implementations, including
original implementations and DeepChem. All experiments
record the averaged training time of one epoch. The testbed is
one AWS EC2 p3.2 × large instance (one NVidia V100 GPU
with 16GB GPU RAM and 8 VCPUs). Due to the differences
in the combinations of models and datasets across
implementations, we only evaluate on a subset of the
experiments. The preliminary results in Table 6 show that
DGL-LifeSci achieves a comparable or superior training speed,
up to 6×.

6. CONCLUSIONS

Here, we present DGL-LifeSci, an open-source Python toolkit
for deep learning on graphs in life science. In the current
version of DGL-LifeSci, we support GNN-based modeling for
molecular property prediction, reaction prediction, and
molecule generation.
With command-line interfaces, users can perform efficient

modeling on custom datasets without programming a single
line of code. Advanced users can also adapt highly modularized
building blocks for their own development.
In the current implementations of DGL-LifeSci, the primary

focus is on small molecules. In the future, we aim to extend the
support to other graphs in life science like proteins and
biological networks. This will open up a much richer set of
tasks in life science.

7. DATA AND SOFTWARE AVAILABILITY
The datasets and models are publicly available at https://
github.com/awslabs/dgl-lifesci. The scripts for reproducing the
experiments are available in the following examples.

• Molecular property prediction: examples/property_pre-
diction/moleculenet.

• Reaction prediction: examples/reaction_prediction/re-
xgen_direct.

• Molecule generation: examples/generative_models/
jtvae.

RDKit, PyTorch, and DGL are all open-source software.

■ AUTHOR INFORMATION
Corresponding Author

Mufei Li − AWS Shanghai AI Lab, 5F-102, Shanghai
200030, P. R. China; orcid.org/0000-0001-6123-2188;
Email: limufe@amazon.com

Authors
Jinjing Zhou − AWS Shanghai AI Lab, 5F-102, Shanghai
200030, P. R. China

Jiajing Hu − Maurice Wohl Clinical Neuroscience Institute,
King’s College London, London SE5 9RT, U.K.

Wenxuan Fan − School of Pharmacy, East China University of
Science and Technology, Shanghai 200237, P. R. China;
orcid.org/0000-0003-3932-1808

Yangkang Zhang − College of Computer Science and
Technology, Zhejiang University, Hangzhou 310058, P. R.
China

Yaxin Gu − School of Pharmacy, East China University of
Science and Technology, Shanghai 200237, P. R. China

George Karypis − AWS AI, East Palo Alto, California 94303,
United States; Department of Computer Science and
Engineering, University of Minnesota, Minnesota,
Minneapolis 55455, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c04017

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Since its release, DGL-LifeSci has received many valuable
suggestions and contributions from the community. The
authors are grateful to the support of our users and
contributors. For details on the community contributions not
covered in this manuscript and in the future, one may refer to
https://github.com/awslabs/dgl-lifesci/blob/master/
CONTRIBUTORS.md.

■ REFERENCES
(1) Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.;
Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on
Graphs for Learning Molecular Fingerprints, Advances in Neural
Information Processing Systems: Proceedings of the 28th Interna-

Table 5. Test Top-k Accuracy (%) of WLN on USPTO

reaction center prediction candidate ranking

implementations top 6 top 8 top 10 top 1 top 2 top 3 top 5

original 89.8 92.0 93.3 85.6 90.5 92.8 93.4
DGL-LifeSci 91.2 93.8 95.0 85.6 90.0 91.7 92.9

Table 6. Epoch Training Time in Seconds

experiment dataset
previous

implementation
DGL-
LifeSci

speed
up

Molecular property prediction

NF HIV 5.8 (DeepChem
2.3.0)

2.5 2.3×

attentiveFP aromaticity26 6.0 1.0 6.0×
Reaction prediction

WLN for reaction center prediction USPTO 11 657 2315 5.0×
Molecule generation

JTVAE ZINC subset 44666 44 843 1.0×

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04017
ACS Omega 2021, 6, 27233−27238

27237

https://github.com/awslabs/dgl-lifesci
https://github.com/awslabs/dgl-lifesci
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mufei+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6123-2188
mailto:limufe@amazon.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinjing+Zhou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiajing+Hu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenxuan+Fan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-3932-1808
https://orcid.org/0000-0003-3932-1808
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yangkang+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaxin+Gu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="George+Karypis"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04017?ref=pdf
https://github.com/awslabs/dgl-lifesci/blob/master/CONTRIBUTORS.md
https://github.com/awslabs/dgl-lifesci/blob/master/CONTRIBUTORS.md
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


tional Conference on Neural Information Processing Systems, ACM,
2015; pp 2224−2232.
(2) Jin, W.; Barzilay, R.; Jaakkola, T. Junction Tree Variational
Autoencoder for Molecular Graph Generation, Proceedings of the 35th
International Conference on Machine Learning, PMLR, Stock-
holmsmas̈san, Stockholm, 2018; pp 2323−2332.
(3) Coley, C.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.;
Green, W. H.; Barzilay, R.; Jensen, K. F. A graph-convolutional neural
network model for the prediction of chemical reactivity. Chem. Sci.
2019, 10, 370−377.
(4) Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P. S. A
comprehensive survey on graph neural networks. IEEE Trans. Neural
Networks Learn. Syst. 2021, 32, 4−24.
(5) Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.;
Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57−81.
(6) Sun, M.; Zhao, S.; Gilvary, C.; Elemento, O.; Zhou, J.; Wang, F.
Graph convolutional networks for computational drug development
and discovery. Briefings Bioinf. 2019, 21, 919−935.
(7) Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics 2018,
34, i457−i466.
(8) Stokes, J. M.; et al. A Deep Learning Approach to Antibiotic
Discovery. Cell 2020, 180, 688−702.
(9) Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E.
Neural Message Passing for Quantum Chemistry, Proceedings of the
34th International Conference on Machine Learning, PMLR, 2017;
pp 1263−1272.
(10) Shui, Z.; Karypis, G. Heterogeneous Molecular Graph Neural
Networks for Predicting Molecule Properties, 2020 IEEE International
Conference on Data Mining (ICDM), IEEE, Los Alamitos, CA, 2020;
pp 492−500.
(11) Feinberg, E. N.; Sur, D.; Wu, Z.; Husic, B. E.; Mai, H.; Li, Y.;
Sun, S.; Yang, J.; Ramsundar, B.; Pande, V. S. PotentialNet for
Molecular Property Prediction. ACS Cent. Sci. 2018, 4, 1520−1530.
(12) Ingraham, J.; Garg, V.; Barzilay, R.; Jaakkola, T. Generative
Models for Graph-Based Protein Design, Advances in Neural
Information Processing Systems 32, PMLR, 2019; pp15820−15831.
(13) Ramsundar, B.; Eastman, P.; Walters, P.; Pande, V. Deep
Learning for the Life Sciences, O’Reilly Media, Inc., 2019.
(14) Chainer Chemistry: A Library for Deep Learning in Biology
and Chemistry. https://github.com/chainer/chainer-chemistry, [On-
line; accessed 29-October-2020].
(15) Tokui, S.; Oono, K.; Hido, S.; Clayton, J. Chainer: a Next-
Generation Open Source Framework for Deep Learning. Workshop
on Systems for ML at NeurIPS. 2015.
(16) Shao, Y.; Hellström, M.; Mitev, P. D.; Knijff, L.; Zhang, C.
PiNN: A Python Library for Building Atomic Neural Networks of
Molecules and Materials. J. Chem. Inf. Model. 2020, 60, 1184−1193.
(17) Bergstra, J.; Yamins, D.; Cox, D. D. Making a Science of Model
Search: Hyperparameter Optimization in Hundreds of Dimensions for
Vision Architectures, Proceedings of the 30th International Conference
on Machine Learning, PMLR, 2012; pp 115−123.
(18) Paszke, A. et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library, Advances in Neural Information Processing
Systems 32, 2019; pp 8026−8037.
(19) Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou,
J.; Ma, C.; Yu, L.; Gai, Y.; Xiao, T.; He, T.; Karypis, G.; Li, J.; Zhang,
Z. Deep Graph Library: A Graph-Centric, Highly-Performant Package
for Graph Neural Networks, arXiv.1909.01315, arXiv.org e-Print
archive, https://arxiv.org/abs/1909.01315.2020.
(20) RDKit: Open-source cheminformatics. http://www.rdkit.org,
[Online; accessed 30-October-2020].
(21) Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse,
C.; Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: a benchmark
for molecular machine learning. Chem. Sci. 2018, 9, 513−530.
(22) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs.
1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887−2893.

(23) Kipf, T. N.; Welling, M. Semi-Supervised Classification with
Graph Convolutional Networks, International Conference on Learning
Representations, OpenReview.net, 2017.
(24) Velicǩovic,́ P.; Cucurull, G.; Casanova, A.; Romero, A.; Lió, P.;
Bengio, Y. Graph Attention Networks, International Conference on
Learning Representations, Apollo, 2018.
(25) Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P.
Molecular graph convolutions: moving beyond fingerprints. J.
Comput.-Aided Mol. Des. 2016, 30, 595−608.
(26) Xiong, Z.; Wang, D.; Liu, X.; Zhong, F.; Wan, X.; Li, X.; Li, Z.;
Luo, X.; Chen, K.; Jiang, H.; Zheng, M. J. Med. Chem. 2020, 63,
8749−8760.
(27) Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder−Decoder for Statistical Machine Translation,
Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Association for Computa-
tional Linguistics, 2014; pp 1724−1734.
(28) Polishchuk, P. G.; Madzhidov, T. I.; Varnek, A. Estimation of
the size of drug-like chemical space based on GDB-17 data. J.
Comput.-Aided Mol. Des. 2013, 27, 675−679.
(29) Steve O’Hagan, D. B. K. Analysing and Navigating Natural
Products Space for Generating Small, Diverse, But Representative
Chemical Libraries. Biotechnol. J. 2018, 13, No. 1700503.
(30) Reymond, J.-L. The Chemical Space Project. Acc. Chem. Res.
2015, 48, 722−730.
(31) Dobson, C. M. Chemical space and biology. Nature 2004, 432,
824−828.
(32) Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.;
Leskovec, J. Strategies for Pre-training Graph Neural Networks,
International Conference on Learning Representations, Open-
Review.net, 2020.
(33) Patent reaction extraction: downloads. https://bitbucket.org/
dan2097/patent-reaction-extraction/downloads, 2014.
(34) Sterling, T.; Irwin, J. J. ZINC 15 − Ligand Discovery for
Everyone. J. Chem. Inf. Model. 2015, 55, 2324−2337.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04017
ACS Omega 2021, 6, 27233−27238

27238

https://doi.org/10.1039/C8SC04228D
https://doi.org/10.1039/C8SC04228D
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1093/bib/bbz042
https://doi.org/10.1093/bib/bbz042
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1093/bioinformatics/bty294
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1021/acscentsci.8b00507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscentsci.8b00507?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/chainer/chainer-chemistry
https://doi.org/10.1021/acs.jcim.9b00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/1909.01315.
http://www.rdkit.org
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1021/jm9602928?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jm9602928?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1007/s10822-013-9672-4
https://doi.org/10.1002/biot.201700503
https://doi.org/10.1002/biot.201700503
https://doi.org/10.1002/biot.201700503
https://doi.org/10.1021/ar500432k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature03192
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://bitbucket.org/dan2097/patent-reaction-extraction/downloads
https://doi.org/10.1021/acs.jcim.5b00559?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.5b00559?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04017?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

