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ABSTRACT: Equivalent circulating density (ECD) is considered a critical parameter
during the drilling operation, as it could lead to severe problems related to the well
control such as fracturing the drilled formation and circulation loss. The conventional
way to determine the ECD is either by carrying out the downhole tool measurements or
by using mathematical models. The downhole measurement is costly and has some
limitations with the practical operations, while the mathematical models do not provide a
high level of accuracy. Determination of the ECD should have a high level of accuracy,
and therefore, the objective of this study is to employ machine learning techniques such
as artificial neural networks (ANNs) and adaptive network-based fuzzy inference systems
(ANFISs) to predict the ECD from only the drilling data with a high accuracy level. The
study utilized drilling data from a horizontal drilling section that includes drilling
parameters (penetration rate, rotating speed, torque, weight on bit, pumping rate, and
pressure of standpipe). The models were built and tested from a data set that has 3570
data points, and another data set of 1130 measurements was employed for validating the
models. The accuracy of the models was determined by key performance indices, which are the coefficient of correlation (R) and the
average absolute percentage error (AAPE). The results showed the strong prediction capability for ECD from the two models
through training, testing, and validation processes with R greater than 0.98 and a very low error of 0.3% for the ANN model, while
ANFIS recorded R of 0.96 and AAPE of 0.7, and hence, the two models showed great performance for ECD estimation application.
Also, the study introduces a newly developed equation for ECD determination from drilling data in real time.

■ INTRODUCTION

Equivalent circulating density (ECD) is an important
parameter for monitoring the drilling operations, especially
for the narrow window between the formation and the fracture
pressure. ECD is the total pressure of the mud hydrostatic
column and the annular losses, and hence, it shows the mud
pressure against the formation in the case of mud circulation.1

Therefore, it is critical to estimate the ECD with a high degree
of precision to avoid any well control problems such as
fracturing the drilled formation and circulation loss.
During the drilling operations, several factors were found to

have an impact on the ECD, and among them were the annular
pressure losses, wellbore geometry, mud properties (density
and viscosity), mud pumping rate, downhole pressure and
temperature, and concentration of cuttings.2−5

ECD can be acquired by means of downhole measurements,
estimation using mathematical models, and/or predicting with
the help of artificial intelligence (AI) techniques. A new
technology in drilling tools helps implement a continuous
circulating tool to monitor the ECD and provide good control
for the formation pressure.6 Downhole measurements of the
ECD are carried out using downhole sensors and pressure
while drilling.7,8 The downhole measurement is considered
accurate and robust for ECD values; however, the

implementation of these downhole tools is not common due
to the expensive daily charge and operational limitations such
as downhole pressure and temperature that cause the tool
failures.
Several mathematical correlations exist in the literature for

estimating the ECD that are different in the fluid type and the
parameters utilized as inputs. ECD estimation by implement-
ing the material balance calculation for the mud compositional
analysis was studied.9 However, the models had many
assumptions and limitations regarding the downhole pressure,
temperature, and mud types. Bybee10 introduced a mathemat-
ical equation to calculate the ECD. The model considers the
effect of concentration of solids on the annular losses, in
addition to the mud static density and other mud-related
parameters.
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The developed mathematical correlations are limited to
some applications, and they ignore a lot of other input
parameters that have an impact on the ECD values. Such
ignored parameters are well geometry, fluid rheological
properties, rotation of the drill string, and downhole pressure
and temperature conditions, which affect the mud density,
cuttings dispersion, hole cleaning, and swab and surge of drill
pipe movements in the hole.11,12 Ignoring these parameters
will affect the ECD prediction, lead to inaccurate evaluation of
ECD, and cause well control problems during the drilling
operations.13,14

■ PREDICTING ECD BY EMPLOYING ML
TECHNIQUES

ECD prediction from the drilling data is considered a novel
approach in the petroleum industry due to the limitations of
the ECD downhole measurements. AI is a technique that
utilizes high computing capabilities for processing advanced
algorithms to solve technical/problematic issues by simulating
the human brain’s thinking manner.15 ML has many tools like
artificial neural networks (ANNs), adaptive neuro-fuzzy
inference systems (ANFISs), support vector machine (SVM),
and functional networks (FNs) that show high performance
and accuracy level for prediction and classification problems.16

The implementation of ML has wide applications in many
disciplines of engineering, economics, medicine, military,
marine sectors, and so forth.17,18 ANNs mimic the way the
brain works; they forecast without knowing statistics and are
computer programs that learn patterns. An ANFIS is a type of

ANN that uses the Takagi−Sugeno FIS as its base and a set of
fuzzy if-then rules. The ANFIS offers the ability to capture the
benefits of both neural networks and fuzzy logic principles in a
single framework because it integrates both. The FNs
technique is a unique generalization of neural networks that
combines domain knowledge, which is used to design the
network’s topology, with data, which are used to estimate
unknown neuron functions. It is worth mentioning that neural
networks are special cases of FNs. SVM is a supervised learning
approach for solving high-complexity regression and classi-
fication problems. SVM moves data from a lower-dimensional
to a higher-dimensional space, known as kernel space, allowing
for more training instances.
In the oil and gas industry, many studies utilized ML

techniques for finding solutions for practical challenges.19−22

Intelligent models were accomplished by AI tools for many
purposes such as identifying the formation lithology,23

predicting the formation and fracture pressures,24 estimating
the properties of reservoir fluids,25 estimating the oil recovery
factor,26,27 predicting the tops of the drilled formation,28 rate
of penetration (ROP) prediction and optimization for different
drilled formations and well profiles,29−31 determining the
content of total organic carbon,32−34 and estimating the rock
static Young’s modulus,35−38 predicting the compressional and
shear sonic times,39 determining the rock failure parameters,40

detecting the downhole abnormalities during horizontal
drilling,41 determining the wear of a drill bit from the drilling
parameters,42 and predicting the rheological properties of
drilling fluids in real time.31,43−46

Table 1. ECD Prediction Models Using AI in the Literature

ref. model model inputs data R2 AAPE

Ahmadi47 LLSVM pressure not available 0.9999 0.000145
ANFIS temperature 0.8502 35.002
PSO-ANFIS initial density 0.869

Ahmadi et al.48 PSO-ANN pressure 664 points from the
literature

0.9964 0.0001374
FIS temperature 0.7273 67.0907
GA-FIS initial density 0.9397 0.091

Alkinani et al.49 ANN flow rate 2000 wells 0.982 not available
mud weight
plastic viscosity
yield point
TFA
RPM
WOB

Abdelgawad et al.5 ANFIS mud weight 2376 data points 0.98 0.22
ANN drill pipe

pressure
8.5″ vertical hole section

rate of
penetration

Rahmati and
Tatar50

radial basis function pressure 884 points from the
literature

0.99 MSE 0.00000166
temperature
type of mud
initial density

Alsaihati et al.51 support vector machine, random forests, and functional
network

flow rate 3567 data points 0.95−
0.99

RMSE From 0.23 to
0.42standpipe

pressure
hook load
weight on bit
torque
rate of
penetration

drill string speed
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For ECD prediction, Table 1 represents recent works that
were performed for ECD prediction from the drilling and mud
parameters. Ahmadi47 utilized the least square SVM (LLSVM),
ANFIS, and enhanced particle swarm optimization PSO-
ANFIS tools to estimate the ECD from only mud initial
density, pressure, and temperature. The results showed the
outperformance of ANN compared to the other tools. Ahmadi
et al.48 predicted ECD by employing PSO-ANN, FIS, and a
hybrid of genetic algorithm (GA) and FIS (GA-FIS) from the
initial mud density, pressure, and temperature data. The PSO-
ANN model presented a high degree of prediction perform-
ance in terms of coefficient of determination (R2) and average
absolute percentage error between the actual and predicted
values of ECD.
Alkinani et al.49 predicted the ECD using the ANN model

that had only 1 hidden layer and 12 neurons, and the study
utilized drilling parameters in addition to the hydraulics and
mud properties such as mud pumping rate, properties of the
mud (density, plastic viscosity, and yield point), total flow area
(TFA) for the bite nozzles, revolutions per minute (RPM) for
the drill pipe, and the weight on bit (WOB). Abdelgawad et
al.5 provided a model for ECD prediction using two AI
techniques, ANN and ANFIS. The study provided an ECD-
ANN model of 1 hidden layer with 20 neurons, while the
ANFIS model was developed by utilizing 5 membership
functions, with the Gaussian membership function (gaussmf)
as the input membership function and the output membership
function being a linear type. Rahmati and Tatar50 employed
radial basis function to build an ECD prediction model that
showed good prediction capability with R2 of 0.98 and AAPE
of 0.22. Recent work predicted the ECD while drilling
horizontal sections using the surface drilling data by employing
three different machine learning techniques.51 The study
utilized SVM, random forests (RF), and FN to build the
models using seven drilling parameters as inputs for the study,
and the accuracy of the developed models ranged from R2 of
0.95−0.99 and root mean squared error (RMSE) ranged from
0.23 to 0.42. In this study, the author did not develop any ECD
equation that can be used without the need for the machine
learning code.
It is clear from the literature that the AI models enhanced

the ECD prediction; however, the models are different in
terms of the input parameters, the data used to feed the
models, and the methodology followed for the ECD
prediction. One of the shortcomings found from many studies
in the literature is that the downhole pressure and temperature
are required as inputs in the prediction models, and from an
operational view, downhole sensors are required to obtain
these parameters with high accuracy for better ECD prediction,
and this will add operational cost and time for the data

collecting. Consequently, the new contribution of this study is
to employ available real-time drilling parameters from surface
rig sensors to build ECD prediction models using ANN and
ANFIS techniques.
The novel approach in this study is that the AI models are

mainly dependent only on the mechanical drilling parameters
such as mud pumping rate (GPM), ROP, drillstring speed in
RPM, stand-pipe pressure (SPP), WOB, and drilling torque
(T). Besides, the study presented an empirical correlation that
can be easily utilized for ECD estimation from only the drilling
parameters. The AI models that were presented in this study
were validated from another data set to ensure high and robust
performance for ECD prediction.

■ MATERIALS AND METHODS

The study utilized real drilling data that were collected from
the drilling operations from real-time sensors. Figure 1
presents, in brief, the processing flow to provide robust ECD
models starting from data gathering, data cleaning, and
filtering; to provide the model input parameters with good
quality, the training process for the AI model, optimization of
the model parameters with the trained algorithm, and accuracy
testing for the model results are carried out, and if the accuracy
is low, then re-training process is performed in order to get the
optimum model parameters for high accuracy performance for
the ECD prediction.

Data Description. The data obtained for the current study
were collected during a drilling phase in the Middle East. The
data covered the horizontal section for drilling a 5−7/8-inch
hole. A total of 3570 points was obtained after data
preprocessing. The drilling parameters that were utilized as
inputs for the model were collected from the surface rig
sensors that represent GPM, ROP, RPM, SPP, WOB, and T.
ECD data were collected from the downhole pressure tool and
were used for the model output estimation. Also, another
cleaned data set (1130 measurements) was employed for
further model validation as an unseen data set to ensure the
model prediction performance.

Data Cleaning and Statistical Analysis. The obtained
data are preprocessed by using technical analysis for data
cleaning. The collected data from the drilling sensors need
special preprocessing in order to enhance the data quality. The
data cleaning was performed by removing the missing and
illogic values such as zero and negative values. In addition, the
outliers have to be removed from the data, and this step was
performed by using the box and whisker plot technique, in
which the top whisker represents the upper limit of the data
and the bottom whisker represents the lower limit of the data.

Figure 1. Processing flow chart for ECD AI models.
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The data quality has a great impact on the developed model
performance.
Statistics, as an interdisciplinary field, plays a substantial role

in both the theoretical and practical understanding of ML and
for its future development. Statistical methods can be used in
problem framing, data understanding, data cleaning, data
selection, data preparation, model evaluation, model config-
uration, model selection, model presentation, and model
predictions. The process of identifying and repairing issues
with the data such as data loss, data corruption, and data errors
is called data cleaning. Statistical methods are used to clean
data using outlier detection and imputation. Not all
observations or all variables may be relevant for modeling.
The process of reducing the scope of data to those elements
that are most important for prediction is called data selection.
Two types of statistical methods that can be used for data
selection: data sample and feature selection. Data may not be
directly used for modeling; as a result, some transformations
are required to change the shape or structure of the data to
make them suitable for the selected problem frame or learning
algorithm. Data preparation is conducted using some statistical
methods including scaling such as standardization and
normalization, encoding such as integer encoding, and
transforms such as power transforms like the Box−Cox
method. Model evaluation is a crucial part of predictive
modeling and can be done by experimental design, which is a
whole subfield of statistical methods. The interpretation and
comparison of the results among various hyperparameter
configurations are performed by one of two subfields of
statistics, which are statistical hypothesis tests and estimation
statistics. Finally, the model is used to predict new input data.
At this stage, quantification of the prediction confidence via the
field of estimation statistics is needed to quantify this
uncertainty.
Figure 2 shows the correlation coefficients (R) between the

output (ECD) and drilling parameters after preprocessing the

data. The relative importance of the data showed that SPP and
T have the highest R of 0.87 and 0.85, respectively, with the
ECD, while the WOB showed the least R (−0.01) with the
ECD, which indicates that the relationship might be a
nonlinear type between ECD and WOB. It is noticed that T,
SPP, and RPM showed a direct relationship with ECD, while
GPM, ROP, and WOB presented an indirect relationship with
ECD. Table 2 shows the statistical analysis for all parameters.
The data showed the wide range of the parameters, as GPM
ranged from 249.4 to 296.6 with 47.2 gallons per minute
(gpm), ROP from 3.5 to 59.6 ft/h, SPP from 2379.7 to 3632.1
psi, RPM from 59 to 141.3, T from 3.7 to 10 kft Ib, and WOB
from 5.5 to 20 kIb, and the ECD parameter has a range of 12.1
pounds per cubic feet (pcf) from a minimum value of 83.4 to a
maximum value of 95.5 pcf. The maximum and minimum
ranges show the data limits and whether the data cover a broad
range or not. The standard deviation is the measure of
dispersion, or how the data spread out around the mean in a
data set. Using this metric to estimate the variability of a
population or sample is an important test of a machine learning
model’s accuracy against real-world data. Moreover, the
standard deviation can be used to measure confidence in a
model statistical conclusion. Skewness is a measure of how
distorted the data are from the normal distribution. In most
models, any form of skewness is undesirable, as it leads to an
excessively large variance in estimations. Other models require
unbiased estimators or Gaussian models to function accurately.
In either case, the goal is to decrease skewness to reach as close
as possible to a normal distribution by using transformations
such as taking the inverse, logarithm, or square roots of all the
datapoints. Kurtosis is a statistical measure used to describe the
degree to which values cluster in the tail or the peak of a
frequency distribution, often visually described by the
sharpness of the peak values. Often, kurtosis values are
compared with that of the normal distribution, as values less
than 3 are said to be platykurtic or “flat-topped.” Alternatively,
kurtosis values higher than 3 are said to be leptokurtic, usually
appearing sharp at their peak values. The developed models are
expected to have the same performance if the data set used falls
in the same ranges of the data used for training the models. It
is recommended to update the parameters of the models for
other fields with different data ranges and geologic features to
ensure a viable prediction with reasonable accuracy.

Building AI Models. This study employed two techniques
from the AI tools to develop ECD prediction models using
only the drilling parameters. ANN and ANFIS techniques are
trained using the input data using the training and testing ratio
of 77:23. The training and testing data sets were randomly
selected. The sensitivity analysis for each model parameter was
carried out to determine the best model architecture. The

Figure 2. Correlation coefficients between the inputs and ECD after
data preprocessing.

Table 2. Statistical Analysis for the Models Data

statistical parameter GPM ROP (ft/h) RPM SPP, psi WOB (klb) T (kft Ib) ECD, pcf

minimum 249.4 3.5 59.0 2379.7 5.5 3.7 83.4
maximum 296.6 59.6 141.3 3632.1 20.0 10.0 95.5
range 47.2 56.1 82.3 1252.4 14.6 6.3 12.1
mean 276.7 23.0 119.8 3035.3 15.2 6.9 90.4
median 281.0 23.7 120.0 3032.7 16.1 6.9 90.4
standard deviation 10.3 6.2 16.9 258.0 3.0 1.2 3.2
Kurtosis 1.11 1.88 1.28 −0.14 0.08 −0.87 −0.89
skewness −1.67 0.22 −0.93 −0.15 −0.96 −0.05 −0.39
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model prediction was evaluated with two statistical parameters
in addition to the ECD profiles for the actual and the predicted
data. The correlation coefficient (R) and the average absolute
percentage error (AAPE) were calculated by eqs 1 and 2.
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where N is the number of samples in the data set, Yi is the
actual output, and Ŷi is the predicted output.
ANN Model. An ANN tool was utilized for solving

engineering problems by its processing algorithms based on
interconnected artificial neurons that mimic the biological
neural networks.52,53 Three layers represented the common
architecture for ANN, which are the input, hidden, and output
layers.54 Weights and biases are utilized in the ANN structure
to link the layers and affect the network performance.55

Different algorithms are used for the model training and
controlling the neuron processing.56 Many parameters were
tested to check its impact on the ANN model accuracy such as
the hidden layer/s number, the neurons’ number, network,
training, and transfer functions. The training/testing ratio was
checked from a range of 70/30 up to 90/10. The hidden layers
were from one to three layers. The number of neurons in the
hidden layer was tested from 5 to 40. Several network
functions such as fitnet, newfit, newcf, newelm, newlrn, newpr,
newdtdnn, newff, newfftd, and newfit were tested, while
training functions such as trainbr, trainoss, trainlm, trainbfg,
and traingdx were checked for the best results. Sensitivity
analysis was performed for the transfer functions such as tansig,
satlin, purelin, softmax, and logsig, which were tried for the
ANN structure. Figure 3 shows the design of the developed
ANN model used in this study.
ANFIS Model. ANFIS was established in the early 1990s as

a type of ANN that depends on the Takagi−Sugeno FIS.57 The
interface of the ANFIS utilized a set of fuzzy “if-then rules” that
can learn and optimize the nonlinear functions.58 ANFIS
architecture consists of four layers. The first layer, called the
fuzzification layer, collects the inputs and determines the
membership functions (e.g., sigmoid, gaussian, trapezoidal, or
straight line). The second layer, denoted as “rule layer,” applies
many fuzzy “if-then” rules. In the third layer, databases are
employed for membership function rules, and the decision-
making unit is developed for the inference operations, while in
the last layer, the defuzzification interface is used.58

The ANFIS model was developed using the subtractive
clustering method. The cluster radius and number of iterations
are ANFIS parameters that were checked for the optimization
process. The sensitivity analysis for the model parameter is a
key step in the model development and especially the cluster
radius for the ANFIS tool.

■ RESULTS AND DISCUSSION
This section discusses the results obtained from the two AI-
developed models for predicting the ECD from the real-time
drilling parameters.
ANN Results. The cleaned data that were used to feed the

model algorithms for training purposes is plotted in terms of all

the inputs/drilling parameters and the model output/ECD
value to illustrate the data profiles along with the depth of
interest for the study (Figure 4). The depth is presented in the
form of depth index, which refers to the bit depth. The data
profiles reveal the complexity of the relationship among the
drilling parameters and between them and the ECD. The
applications of AI helped more to reveal the complex
relationship such as for the current scope of work.
The designed ANN code was optimized by testing many

scenarios to achieve the best model parameters, which are
listed in Table 3. For each code run, only one parameter
option was tested, and the results were recorded. After running
the specially designed MATLAB program, the authors
compared the different kinds of errors and the correlation
coefficient between the actual and predicted values, and the
optimum combination of the hyperparameters was selected to
qualify to the validation stage. Table 4 shows an example of the
best results obtained out of several trial runs during the
training and testing stages. The error decreased with the
neurons increasing from 5 to 15, and then, the error increased
again with the neurons increasing from 15 to 35. As a result, 15
neurons were selected to be fixed in the upcoming runs while
changing the other hyperparameters. The authors found that
using a few neurons may lead to bad results due to underfitting
and using too many neurons may lead to overfitting issues.
Network type was the second hyperparameter to be changed,
and newfit was chosen, as it gave better results compared to the
others. Training function was the third parameter to be
changed, while keeping the other constant, and trainlm gave
the optimum performance in terms of errors and R for training
and testing. The transfer function was the fourth variable;

Figure 3. Architecture of the developed ANN model.
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hyperparameter and softmax transfer function provided the
best performance compared to the others. After selecting the
optimum hyperparameters within a single layer, the effect of
the layer number in the neural network was tested. As the
layers increased, the errors started to increase, and the R
decreased. Therefore, it was decided to proceed with a single
layer, as it will enhance the performance, and the model will be
simpler regarding application and equations extraction as well.
The increasing layer number may result in an overfitting issue,
which leads to high accuracy for training data and low accuracy
for testing data. By the end of the optimization process, the
optimum combination of the model parameters was recog-
nized. The training to testing ratio for the data sets was found
to be 77:232743 data points for training and 827 points of
data for the testing process. Only one hidden layer with 15
neurons was enough to achieve a better prediction accuracy.
The best network, training, and transfer functions were fitting
network (newfit), Levenberg−Marquardt backpropagation
(trainlm), and softmax, respectively, and 0.12 is the optimum
learning rate.
Figure 5 represents the cross-plots for the ANN results for

the model training and testing processes for estimating ECD

values. The results showed a strong accuracy for the model in
terms of R and AAPE for both training and testing, as R was
0.99 between the real and predicted values for the ECD for
training and testing, while the AAPE was 0.33 and 0.32 for
training and testing, respectively. The plots reveal that there is
no unaccepted over- or underestimation for the predicted
value, which shows the high accuracy for the models’
prediction performance.

ANFIS Results. The same procedures were followed for
optimizing the model parameters; however, cluster radius and
iterations number are the target parameters for the ANFIS
model. After several runs for the ANFIS code, the optimum
parameters were found as 0.8 for the cluster radius and 300 for
the number of iterations. Figure 6 displays the ANFIS results
for the model training and testing processes. In addition, there
were similar accepted model predictions for ECD values from
the plots without unaccepted overestimation or under-
estimation.

ECD Empirical Correlation from the ANN Model. An
empirical correlation was developed for ECD estimation from
the ANN model. The empirical correlation can be employed to
estimate the ECD using the input/drilling parameters and the
weights and biases of the optimized ANN model. The
developed empirical correlation can be used after normalizing
the inputs to be in the range between −1 and 1 (eq 3)

= ×
−

−
−X

X X
X X

2 1i
i i

i i

min

max min
nor

i
k
jjjjj

y
{
zzzzz (3)

where Xinor is the normalized value for variable X, Xi is the value
of variable X at point i, Xi min is the minimum value of variable
X, and Xi max is the maximum value of variable X.
The minimum and maximum values for each parameter that

used for data normalization are presented in Table 5.
The proposed empirical correlation that can be used for

ECD estimation in the normalized form is presented in eq 4.
The correlation uses the weights and biases that are shown in
Table 6.

Figure 4. Data profiles for the inputs and output parameters.

Table 3. Tested Options for ANN Parameters

model parameter options

training/testing ratio )70/30(−(90/10)
hidden layers 1−4
number of neurons 5−40
network function fitnet newfit newcf

newelm newlrn newpr
newdtdnn newff
newfftd newfit

training function trainbr trainoss trainlm
trainbfg traingdx

transfer function tansig satlin purelin
logsig netinv softmax
hardlims radbas tribas

learning rate 0.01−0.9
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Table 4. Best Results for Training and Testing the ANN Model
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Figure 5. Cross-plots between the predicted and actual ECD results from the developed ANN model. (a) Training process and (b) testing process.

Figure 6. Cross-plots between the predicted and actual ECD results from the developed ANFIS model. (a) Training process and (b) testing
process.

Table 5. Minimum and Maximum Values for Data Normalization

statistical parameter GPM ROP (ft/h) RPM SPP, psi WOB (klb) T (kft Ib) ECD, pcf

minimum 249.4 3.5 59.0 2379.7 5.5 3.7 83.4
maximum 296.6 59.6 141.3 3632.1 20.0 10.0 95.5

Table 6. Weights and Biases of the Developed Correlation (eq 4)

w1

neuron index (i) w1i,1 w1i,2 w1i,3 w1i,4 w1i,5 w1i,6 w2 b1 b2

1 −1.559 −0.878 −2.469 3.728 0.660 −2.934 3.901 1.884 −0.026
2 3.088 0.828 1.482 3.334 −0.876 −1.382 −1.166 1.305
3 −0.577 −1.107 −0.642 2.227 0.848 −2.301 3.085 0.829
4 −0.076 −0.686 2.224 2.787 0.975 −1.588 0.801 1.060
5 0.181 −0.235 −1.104 1.483 −0.730 0.405 −1.537 0.537
6 −1.279 −0.522 1.184 0.989 0.620 −1.746 1.699 −5.514
7 −0.981 −3.708 1.505 −8.456 2.125 10.371 −4.956 0.692
8 −0.268 1.731 −0.115 2.784 −1.303 1.669 −2.400 0.955
9 −2.256 −0.347 0.825 2.623 0.254 0.474 2.534 1.094
10 −1.321 −3.258 −0.466 0.450 −2.555 1.615 0.123 0.894
11 2.167 2.173 0.892 −3.128 −3.853 3.017 −0.267 −0.529
12 −0.547 −1.064 −2.841 1.685 0.678 −3.148 3.996 −1.138
13 −3.168 −0.030 5.446 −0.513 0.475 −2.106 −1.710 1.673
14 −3.154 −0.168 −0.546 −1.528 0.964 1.559 −1.091 −1.259
15 8.828 0.759 −1.846 −1.541 −0.845 −0.325 −1.753 −0.952
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where ECDni is the normalized ECD, N is the number of
neurons in the hidden layer, that is, 15, w1i is the weight
associated with each feature between the input and the hidden
layers, w2i is the weight associated with each feature between

the hidden and the output layers, b1i is the bias associated with
each neuron in the hidden layer, and b2 is bias of the output
layer.
The obtained ECDni has to be an actual ECD value, which

can be obtained using eq 5

=
+

+ECD
ECD 1
0.165289

83.4n

(5)

where ECDn is the normalized ECD obtained from the
developed correlation, and ECD is the actual value (pcf).
Model Validation. The validation process for the

developed models is essential, especially for the practical
operations in the oil and gas industry. The developed ANN
and ANFIS models were validated to ensure the models’
performance for predicting the ECD for unseen data. An
unseen data of 1150 measurements were collected and cleaned
to be fed to the models as inputs to estimate the ECD and
compare the actual versus the predicted ECD from the models.
Figure 7 represents the ECD prediction performance from the

two developed models. The models’ prediction showed a good
degree of match between the actual and predicted ECD
profiles. The ANN model provided a higher accuracy level
than ANFIS; however, the two models showed a high ECD
prediction that shows a correlation coefficient of 0.98 for ANN
and 0.96 for the ANFIS model, while the errors were 0.3%
AAPE for ANN and 0.69% for ANFIS.

Model Performance. The two developed machine
learning techniques showed a strong performance for the
ECD prediction. However, ANN outperformed the ANFIS
model, especially for the validation process, as there was slight
underestimating for the ECD prediction from the ANFIS
model. Figure 8 shows the error histogram for the two models
for the three stages (training, testing, and validation). Both
models have a slight normal distribution for the errors for
training and testing that ranged between −0.4 and 0.6 (pcf).
The validation process showed different distributions for the
histogram of the errors, as the ANN had a normal distribution
with a range of −0.4 to 0.8 (pcf), while the ANFIS showed an
error range of 0 to 1 (pcf), which is attributed to the
underestimation of the ECD.
In addition, Figure 9 summarizes the performance of the two

developed models in terms of the correlation coefficients and
average absolute percentage error between the actual and

Figure 7. ECD Profile for the validation data set. (a) ANN model and (b) ANFIS model.
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predicted ECD values for training, testing, and validation data
sets. It is clear that the ANN model shows a better
performance than the ANFIS for estimating ECD for the
validation process, as the correlation coefficient of the ANN is

0.98, while that of ANFIS is 0.96, and the AAPE of the ANN is
0.3%, while that of the ANFIS model is 0.69%.
The results obtained for the validation data set were

compared with a recent study41 for predicting the ECD from
the drilling data and found that the current models’
performance provides high accuracy, similar to that reported
in a published work; the developed models in this research
have an accuracy (R) range of 0.96−0.99 during the model
training, testing, and validation phases, while those reported in
the published work41 had a range of 0.97−0.99 using the
different algorithms mentioned in the introduction part (SVM,
FN, and RF). The current work presents novel contributions
regarding employing different applications of AI techniques
(ANN and ANFIS); besides, the current study presents a new
approach toward reducing the number of the drilling
parameters/inputs for the developed models by removing the
hook load data from the inputs that will help to eliminate
drilling issues related to the stability of the sensor measure-
ments and uncertainty. One important finding from the current
work is to provide ANN-based correlation for ECD estimation
without the need for the algorithm code, which will help more
the field used on the rig site for real time estimation.

■ CONCLUSIONS

The ECD was predicted from the real-time recordings of the
surface drilling sensors by employing two different machine
learning techniques (ANN and ANFIS). The input drilling
data are GPM, ROP, RPM, SPP, WOB, and T. The ANN and
ANFIS model parameters were optimized through different
sensitivity analyses. The following conclusions represent the
outputs from the work:

The study presented a new approach for predicting the
ECD from the drilling data during drilling that did not
require adding many models’ inputs, which will add cost,
time, and uncertainty issues to the operation.

The optimization approach of each model parameters
succeeded in providing a high accuracy level, as R was
higher than 0.99 and AAPE was less than 0.24 for ANN
and ANFIS models.

The study proved the high prediction performance
through the validation process for the models that
recorded R of 0.98 for ANN with 0.3% AAPE, while R
was 0.96 for ANFIS with an AAPE of 0.69%.

The study developed an ANN-based equation for ECD
prediction that showed high accuracy for predicting the
ECD in real time without the need for the code.

The new contributions from this study will save time and
cost for estimating ECD in real drilling operations, as the
machine learning models were built based on the drilling data
collected by the drilling sensors.
This study is limited to the data ranges for the drilling

parameters and ECD, horizontal well profile, 5−7/8-inch hole
section, and normal drilling operations without any downhole
issues like drilling abnormal zone, cutting accumulation, and
hole cleaning problems. Therefore, this study recommends
further applications for different well profiles and hole sections,
in addition to encountering drilled zones with abnormal
pressures and other downhole drilling problems, as this will
enhance the generalization of developed models for field
applications.

Figure 8. Error Histogram. (a) ANN model and (b) ANFIS model.

Figure 9. Model comparison. (a) Correlation coefficient (R) and (b)
average absolute percentage error (AAPE).
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■ ABBREVIATIONS
ECD Equivalent circulating density
ANN Artificial neural network
ANFIS Adaptive network-based fuzzy interference system
R Correlation coefficient
AAPE Average absolute percentage error
AI Artificial intelligence
ML Machine learning
SVM Support vector machine
FN Functional networks
RF Random forest
LLSVM Least square support vector machine
Gaussmf Gaussian membership function
PSO Particle swarm optimization
FIS Fuzzy Inference System
GA Genetic algorithm
RBF Radial basis function
R2 Coefficient of determination
MSE Mean squared error
RMSE Root mean squared error
WOB Weight on bit
RPM Rotating speed in revolutions per minute
ROP Rate of penetration
GPM Gallon per minute
SPP Standpipe pressure
T Torque
Fitnet Function fitting neural network
newfit Create fitting network

newcf Create cascade-forward backpropagation network
newelm Create Elman backpropagation network
newlrn Layer-Recurrent Network
Newdtdnn Create distributed time delay neural network
newff Create feedforward backpropagation network
newpr Create pattern recognition network
newfftd Create feedforward input-delay backpropagation

network
trainbr Bayesian regularization
trainoss One step secant backpropagation
trainlm Levenberg−Marquardt backpropagation
trainbfg BFGS quasi-Newton backpropagation
traingdx Gradient descent with momentum and adaptive

learning rule backpropagation
tansig Hyperbolic tangent sigmoid transfer function
logsig Log-sigmoid transfer function
hardlims Hard-limit transfer function
purelin Linear transfer function
softmax Softmax transfer function
tribas Triangular basis transfer function
satlin Saturating linear transfer function
netinv Inverse transfer function
radbas Radial basis transfer function
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