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Abstract
Gastric cancer (GC) is the fifth most diagnosed cancer and the third leading cause 
of cancer-related death worldwide. Although progress has been made in diag-
nosis, surgical resection, systemic chemotherapy, and immunotherapy, patients 
with GC still have a poor prognosis. The overall 5-year survival rate in patients 
with advanced GC is less than 5%. The FOXO subfamily, of the forkhead box 
family of transcription factors, consists of four members, FOXO1, FOXO3, FOXO4, 
and FOXO6. This subfamily plays an important role in many cellular processes, 
such as cell cycle, cell growth, apoptosis, autophagy, stress resistance, protection 
from aggregate toxicity, DNA repair, tumor suppression, and metabolism, in both 
normal tissue and malignant tumors. Various studies support a role for FOXOs as 
tumor suppressors based on their ability to inhibit angiogenesis and metastasis, 
and promote apoptosis, yet several other studies have shown that FOXOs might 
also promote tumor progression in certain circumstances. To elucidate the diverse 
roles of FOXOs in GC, this article systematically reviews the cellular functions of 
FOXOs in GC to determine potential therapeutic targets and treatment strategies 
for patients with GC.
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Core Tip: FOXOs perform diverse roles in the occurrence and development of gastric 
cancer, the fifth most diagnosed type of cancer and third leading cause of cancer-
related death worldwide. This article reviews the cellular functions of FOXOs in 
gastric cancer and provides potential therapeutic targets for patients with gastric 
cancer.
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INTRODUCTION
Gastric cancer (GC) is the fifth most diagnosed cancer and the third leading cause of 
cancer-related death worldwide[1]. Upper gastrointestinal series and endoscopy, 
which have been demonstrated to be effective for screening, have not been widely 
adopted worldwide because of their invasive nature and high cost. Moreover, the lack 
of universal guidelines for screening has increased the difficulty of early diagnosis of 
GC[2-4]. It is estimated that more than 700000 cancer-related deaths are caused by GC, 
which is primarily because the cancer is already at an advanced stage at initial 
diagnosis[5,6]. Unsurprisingly, although great progress has been made in diagnosis, 
surgical resection, systemic chemotherapy, and immunotherapy in recent decades, 
patients with advanced GC still exhibit a very poor prognosis, with a median overall 
survival (OS) of 10-12 mo and an overall 5-year survival rate of less than 5%[7-9]. To 
improve the availability of accurate diagnostic tests for the early detection of GC and 
to identify more specific therapeutic targets for GC patients, it is important to explore 
the molecular mechanism of GC. This will help overcome the critical limitations in 
diagnostics and therapeutics in patients with GC.

FOXOs, the O subfamily of the forkhead box (FOX) family of transcription factors, 
comprise four members, FOXO1, FOXO3, FOXO4, and FOXO6. This subfamily has 
been reported to be involved in the cell cycle, cell growth, apoptosis, autophagy, stress 
resistance, protection from aggregate toxicity, DNA repair, tumor suppression, and 
metabolism[10,11]. Importantly, FOXOs are involved in the pathological processes of 
malignant tumors, as well as in the physiological processes of development[12]. 
However, the functions of FOXOs in malignant tumors vary under different con-
ditions. FOXOs function as tumor suppressors based on their ability to inhibit 
angiogenesis[13] and metastasis[14], and their ability to promote apoptosis[15]. 
However, other studies have indicated that FOXOs can also promote tumor pro-
gression under certain circumstances[10]. As transcription factors, FOXOs may affect 
different aspects of the occurrence and development of GC by regulating the ex-
pression of downstream target genes. This article focuses on the diverse cellular 
functions of FOXOs, in GCs, to identify potential early diagnostic biomarkers and 
therapeutic targets for patients with GC.

CHARACTERISTICS OF FOXO FAMILY MEMBERS
It is well known that transcription factors regulate the expression of target genes by 
identifying and binding to specific DNA sequences, after which they participate in the 
formation of a complex signaling network to maintain cell homeostasis[16]. Dysregu-
lation of transcription factors leads to a variety of pathological changes in cells, results 
in the occurrence of various diseases, and determines the various behaviors of 
malignant tumors[17,18]. Among various transcription factors, FOX transcription 
factors are widely distributed in organisms from yeasts to humans. They are charac-
terized by a forkhead domain (FHD) and a highly conserved DNA binding domain 
(DBD) that is composed of 100 amino acid residues folded into a helix-turn-helix motif 
with two characteristic large loops and three α helices[19].

Among the different types of FOX transcription factors, the four FOXO isoforms, 
FOXO1, FOXO3, FOXO4, and FOXO6, in mammals belong to the O subfamily of the 
FOX family of transcription factors[20]. FOXOs have four common domains, including 
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a FHD, a nuclear export sequence (NES) domain, a nuclear localization signal (NLS), 
and a C-terminal transactivation domain (TAD), although FOXO6 lacks the NES 
domain (Figure 1). All FOXOs can recognize and bind to two sequences: the Daf-16 
family member-binding element (DEB), 5′-GTAAA(T/C)AA-3′, and the insulin-
responsive sequence (IRE), 5′-(C/A)(A/C)AAA(C/T)AA-3′[21,22].

Expression pattern of FOXOs
FOXO1, FOXO3, and FOXO4 are widely expressed in almost all tissues, and their 
transcriptional activity changes as they shuttle between different subcellular localiz-
ations[22,23]. FOXO6, a novel member of the FOXO class reported by Jacobs et al[24], 
was originally only observed in the central nervous system, but subsequent investig-
ations have confirmed that FOXO6 is also expressed in peripheral tissues, including 
the lungs, liver, kidneys, intestine, muscle, and adipose tissue[25]. Interestingly, the 
expression pattern of FOXO6 is different from that of other FOXO isoforms in its 
evolution, and it is the least characterized member of the FOXO family. Due to the lack 
of an NES sequence, FOXO6 does not shuttle between the nucleus and cytoplasm and 
is located only in the nucleus[26].

Regulatory mechanism of FOXOs
FOXOs function as central transcription factors that regulate many cellular processes 
through transcriptional activity. Unsurprisingly, FOXOs are also regulated by multiple 
signaling pathways involving synthesis, phosphorylation, acetylation, and ubiquit-
ination, which mainly determine subcellular localization, transcriptional activity, and 
protein stability[11,22,27]. As transcription factors, FOXOs usually exist in the nuclei of 
quiescent or growth factor (GF)-deficient cells. When GFs are absent, FOXOs shuttle 
into and accumulate in the nucleus to promote cell cycle arrest, stress resistance, and 
apoptosis, by upregulating the transcription of a series of target genes. However, in 
the presence of cell GFs, FOXOs relocate to the cytoplasm for degradation by the 
ubiquitin-proteasome pathway[23].

Phosphorylation via the classical PI3K-AKT pathway: Except for FOXO6, the 
regulation of FOXO-dependent transcription primarily depends on shuttling between 
the nucleus and cytoplasm. More specifically, negative regulation by the PI3K-AKT 
pathway is dependent on activation by GF receptor tyrosine kinases (RTKs)[28]. Under 
normal physiological conditions, RTKs are activated by autophosphorylation after 
binding GFs or insulin, which is followed by recruitment and activation of PI3K. Then, 
activated PI3K catalyzes phosphatidylinositol-4,5-bisphosphate (PIP2) to phospha-
tidylinositol-3,4,5-trisphosphate (PIP3), which serves as the docking site for AKT and 
PDK1. PIP3 facilitates the translocation of PDK1 and AKT to the cell membrane, where 
AKT is activated by phosphorylation on threonine 308 by PDK1. Activated AKT 
phosphorylates FOXOs at three sites to promote the binding of nuclear 14-3-3 protein 
to FOXO, which results in masking of the FOXO NLS; this causes the export of FOXO 
from the nucleus and prevents nuclear entry, thus preventing FOXO from binding to 
corresponding sites on DNA and inhibiting its transcriptional activity[11]. When the 
GF-PI3K-AKT pathway is constitutively activated, such as in cancer cells, the nuclear 
localization of FOXOs is negatively regulated, which results in the transfer of FOXOs 
to the cytoplasm and loss of their activity[22]. However, in the absence of GF signals, 
PIP3 will be dephosphorylated by PTEN (phosphatase and tensin homolog), thereby 
reducing PKB/AKT activity and concomitantly resulting in the loss of FOXO 
phosphorylation and nuclear accumulation.

According to a previously defined mechanism, FOXOs enter the nucleus, bind to a 
variety of transcription cofactors, and regulate the transcription of target genes related 
to the cell cycle, apoptosis, the antioxidant state, metabolism, and angiogenesis[28]. 
For FOXO6, phosphorylation of two residues (threonine 26 and serine 184) by AKT 
results in inactivation. Unlike other FOXOs, the PI3K-AKT pathway cannot affect the 
subcellular localization of FOXO6 due to the lack of carboxy-terminal AKT-dependent 
phosphorylation sites in FOXO6[11,25,29].

AKT-independent phosphorylation: Inhibition of FOXOs by the PI3K-AKT pathway 
is believed to enhance tumor development, while stress-activated kinases, such as c-
Jun N-terminal kinase (JNK), mammalian sterile 20like kinase 1 (MST1), and protein 
kinase RNA-like endoplasmic reticulum kinase (PERK), play a tumor inhibitory role 
by promoting FOXO function in an AKT-independent manner[11].

Essers et al[30] illustrated that in contrast to insulin-mediated regulation, under 
oxidative stress, FOXO4 is phosphorylated by JNK on threonine 447 and threonine 451 
in a GTPase-dependent manner, which leads to the nuclear translocation of p-FOXO4. 
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Figure 1 Domains and AKT phosphorylation sites in FOXOs. FHD: Forkhead domain; NES: Nuclear export sequence; NLS: Nuclear localization signal.

Specifically, the regulatory effect of JNK on FOXO activity involves phosphorylation of 
14-3-3 on serine 184 to block 14-3-3 proteins from binding to FOXOs[11,31].

Lehtinen et al[32] extended the molecular mechanism by which oxidative stress 
influences cell survival and homeostasis, by demonstrating the role of the protein 
kinase MST1 in oxidative stress-induced cell death. In the case of increased cellular 
oxidative stress, MST1 phosphorylates FOXO proteins at a conserved site to disrupt 
their interaction with 14-3-3 proteins, which results in FOXO nuclear translocation, 
and induces neuronal cell death[32]. Soon after, Yuan et al[33] also found that MST1-
induced phosphorylation of FOXO1 at serine 212, which corresponds to serine 207 in 
FOXO3, disrupts the association between FOXO1 and 14-3-3 proteins. The above 
findings indicate that MST1-FOXO1 signaling is an important link to serum-
deprivation-induced neuronal cell death.

Recently, PERK was found to be involved in endoplasmic reticulum (ER) stress 
related to the onset of type 2 diabetes[34]. Imbalances between protein synthesis and 
folding lead to ER stress, which partially enhances FOXO activity through the PERK 
pathway. Interestingly, although three target sites serine 298, serine 301, and serine 303 
on FOXO1 can be phosphorylated by PERK, PERK-mediated phosphorylation prefer-
entially occurs on serine 298, which is not a target site for AKT[34]. Phosphorylation 
by PERK enhances the transcriptional activity of FOXOs and counteracts the effect of 
Akt phosphorylation[34,35].

In addition, extracellular signalregulated kinase (ERK), p38, cyclin-dependent 
kinases (CDKs), adenosine monophosphate-activated protein kinase (AMPK), and IκB 
kinase (IκK) regulate FOXOs in an AKT-independent manner. For example, mitogen-
activated protein kinases (MAPKs), ERK, and p38 jointly phosphorylate FOXO1, 
which results in p-FOXO1 serving as a coactivator for Ets-1[36]. Additionally, ERK 
mediates the phosphorylation of FOXO3 at serine 294, serine 344, and serine 425, 
which permits the association of p-FOXO3 with the E3 ubiquitin ligase MDM2 (murine 
double minute 2). This in turn results in the ubiquitination and degradation of p-
FOXO3 to promote cell proliferation and tumorigenesis[37]. CDK2 binds to and 
phosphorylates FOXO1 at serine 249 in a glucose-dependent manner, and loss of 
CDK2 may mediate persistent insulin secretion defects through this pathway[38,39]. 
Lu et al[40] proposed FO1–6nls, a FOXO1-derived peptide inhibitor of CDK1/2-
mediated phosphorylation of FOXO1 at serine 249, as a potential therapeutic for the 
treatment of prostate cancers. AMPK phosphorylates FOXO1 and forms the AMPK/ 
FOXO1 axis, which is involved in multiple pathological processes, such as liver 
fibrosis[41], cardiac hypertrophy[42], and epithelial-mesenchymal transition (EMT)
[43]. The phosphorylation of FOXO3 at serine 644 by IκK normally leads to ubiquitin-
dependent proteasomal degradation[44], but causes cytoplasmic retention in acute 
myeloid leukemia[45].

Acetylation: Histone acetylation is an epigenetic modification that regulates numerous 
genes essential for various biological processes, including development and stress 
responses[46]. It has been reported that calcium response element-binding protein 
(CBP)/p300 acetylates FOXOs to promote their phosphorylation by AKT and allows 
FOXOs to be retained in the cytoplasm[47]. However, stress-induced FOXO1 acety-
lation also arrests FOXO1 ubiquitination and prevents FOXO1 degradation through 
the ubiquitin-proteasome pathway[48]. Importantly, acetylation of FOXOs is a re-
versible process and can be eliminated by histone acetyltransferases and histone 
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deacetylases (HDACs)[49,50]. For example, Sirt1, a class III HDAC, can deacetylate 
FOXOs and increase their transcription[47]. However, this increased effect is eli-
minated quickly because of the facilitated degradation of deacetylated FOXOs through 
the ubiquitin-proteasome pathway[51].

Other posttranslational modifications: In addition to phosphorylation, acetylation, 
and polyubiquitination, the activity of FOXOs is regulated by other posttranslational 
modifications, including mono-ubiquitination, methylation, and glycosylation.

In contrast to degradation induced by polyubiquitination, mono-ubiquitination 
enhances FOXO activity. Interestingly, under oxidative stress, MDM2, which promotes 
the degradation of p-FOXO3, can induce mono-ubiquitination of FOXO4 to increase 
FOXO4 nuclear entry and transcriptional activity[52]. Methylation of FOXO1 by 
protein arginine methyltransferase 1 (PRMT1) inhibits AKT-induced phosphorylation, 
and thus, promotes FOXO1 retention in the nucleus and increases the expression of 
downstream target genes[53]. However, methylation of FOXO3 by the Set9 methyl-
transferase reduces the DNA-binding and transcriptional activities of FOXO3[54]. O-
glycosylation improves the transcriptional activity of FOXO1 without influencing its 
subcellular localization[55]. Recently, N6-methyladenosine modifications of FOXO1 
mRNA, reported by Jian et al[56], were demonstrated to mediate METTL14-induced 
endothelial inflammation and atherosclerosis. Shin et al[57] identified a novel post-
translational modification of the FOXO family, O-GlcNAcylation of FOXO3 at serine 
284, that impairs the ability of FOXO3 to induce subsequent cancer cell growth via 
abrogation of the p53 regulatory circuit.

Of course, other posttranslational modifications may exist and remain to be 
discovered. The transcriptional activities of FOXOs are involved in regulating the cell 
cycle, oxidative stress, apoptosis, and autophagy, as well as metabolic and immunore-
gulatory factors. Moreover, FOXO3 is closely related to longevity in humans[58-60]. 
The biological function of FOXO6 has not been well studied, and most research has 
indicated its participation in glucose and lipid metabolism[26]. Unsurprisingly, FOXOs 
are involved in many aspects of malignant tumors.

ROLES OF FOXOS IN CANCERS
It is well known that FOXOs are tumor suppressors in many types of malignant 
tumors[29]. Usually, in cancers, the PI3K-PKB/AKT signaling pathway is enhanced, 
and FOXOs are negatively regulated downstream molecules in the pathway. Spe-
cifically, activation of FOXOs leads to cell cycle arrest and apoptosis[28]. Therefore, 
reduction of PI3K/AKT phosphorylation via knockdown techniques or suppression 
with specific inhibitors enhances the transcriptional activity of FOXOs and induces cell 
cycle arrest and cell apoptosis in colorectal cancer (CRC) and pancreatic cancer cells
[61,62].

In terms of cell cycle control, Baugh and Sternberg[63] found that the induced 
expression of cell cycle kinase inhibitors (CKIs) by FOXOs leads to the inhibition of 
cyclin/CDK complexes, which are responsible for cell cycle progression at different 
phases. This causes cell cycle arrest in G0/G1 and G2 phases and even senescence and 
promotes developmental arrest via transcriptional regulation of numerous target genes 
that control various aspects of development[63].

Moreover, in both normal and cancer cells, FOXOs are reported to induce the 
expression of proapoptotic genes, resulting in apoptosis. Wang et al[64] showed that 
activation of AMPK-FOXO is upstream of the KLF2 pathway and contributes to the 
induction of apoptosis and differentiation by DT-13 (Liriope muscari baily saponins C) 
in acute myelocytic leukemia. Laporte et al[65] revealed that HDAC inhibition-induced 
apoptosis and decreased tumor burden in synovial sarcoma are related to reactive 
oxygen species (ROS)-mediated FOXO activation and the subsequent increase in the 
expression of the proapoptotic factors BIK, BIM, and BMF. Interestingly, in the case of 
detachment from the extracellular matrix, FOXOs induce anoikis and prevent 
metastasis by promoting BMF expression, whereas under anchorage-independent 
conditions, cyclin D1 induces an antagonistic effect on FOXO-regulated anoikis[66].

It is widely accepted that ROS abnormally accumulate in cancer cells due to the 
reprogramming of redox metabolism, which plays opposite roles in various aspects of 
occurrence and development of malignant tumors[67]. Upon AKT activation, FOXOs 
become phosphorylated and translocate from the nucleus, which results in reduced 
expression of superoxide dismutase 2 (SOD2) and an increase in ROS and mito-
chondrial dysfunction[68]. Therefore, FOXOs promote detoxification of cells by 
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inducing SOD2 and catalase expression, thus protecting cells from damage due to 
excessive accumulation of ROS and preventing cancer development.

Based on a previous mechanism, a series of investigations reported a significant 
relationship between FOXO expression and the clinical parameters of malignant 
tumors. Xu et al[69] found that a low level of FOXO4 expression in non-small cell lung 
cancer patients is significantly correlated with TNM stage and lymph node metastasis, 
which suggests an inhibition of FOXO4 function during the process of EMT. In CRC 
tissues, the expression of FOXO3 is also significantly lower than that in normal tissues, 
and interestingly, the progressive downregulation of FOXO3 is correlated with the 
progression of pathological stage in patients with CRC. Moreover, the mean disease-
free survival (DFS) of CRC patients with low FOXO3 expression is significantly shorter 
compared with that of CRC patients with high FOXO3 expression[70]. Wu et al[71] 
conducted multivariate analyses and revealed that FOXO1 expression is an in-
dependent biomarker for predicting DFS in patients with breast cancer, with lower 
levels of FOXO2 predicting poorer OS. Not surprisingly, reduced FOXO1 levels were 
observed in prostate cancer and are responsible for promoting the migration and 
invasiveness of prostate cancer cells via Runx2 regulation[72]. Therefore, it is known 
that reduced FOXO levels play an important role in tumor metastasis.

For further study, knockout techniques have provided additional methods by which 
the function and molecular mechanism of FOXO in tumors can be investigated. 
Renault et al[73] revealed that FOXO3 is a direct target of the p53 tumor suppressor 
gene. However, no association was observed between FOXO3 loss and p53 loss in 
tumor development. Paik et al[74] established a FOXO1/FOXO3/FOXO4 triple knock-
out mouse model and observed common and severe vascular lesions and premature 
death, while the tumor spectrum following triple FOXO deletion was much more 
limited than that after PTEN/AKT misregulation.

However, every coin has two sides. The expression of FOXO3 has been found to be 
increased in glioblastoma (GBM), and a high level of FOXO3 is associated with a poor 
prognosis in GBM patients. In addition, FOXO3 knockout significantly reduces, 
whereas FOXO3 overexpression enhances, the proliferation and invasiveness of GBM 
cells[75]. Yu et al[76] demonstrated that the expression of FOXO3 can be upregulated 
by SP1, which promotes CRC cell progression in vitro and in vivo. FOXO3 was found to 
promote tumor growth, under hypoxic conditions, and angiogenesis in aggressive 
neuroblastoma, which predicts adverse clinical outcomes[77]. In addition, FOXO3 acts 
as a conditional chemoprotection factor in late-stage neuroblastoma, enhancing tumor 
cell survival under chemotherapy[78]. The above reports reveal the complicated roles 
of FOXOs in cancer. As Hornsveld et al[28] suggested, FOXOs may function to support 
resilience in both healthy and cancer cells, rather than as typical tumor suppressors.

EXPRESSION PATTERNS OF FOXOS IN GCS
Unsurprisingly, the expression level of FOXOs is often altered in GC. Decreased levels 
of FOXO1/FOXO3/FOXO4 and increased expression of FOXO6 in GC have been 
reported. By examining 50 pairs of samples, Zang et al[79] found that the mRNA level 
of FOXO1 is downregulated in GC tissues compared with corresponding noncan-
cerous tissues. Lower levels of FOXO3 mRNA and protein have also been found in GC 
tissues compared with peritumoral tissues[80]. Similarly, FOXO4 expression is 
consistently lower in GC tissues than in adjacent normal tissues[81]. However, FOXO6 
has been reported to be overexpressed in GC. Elevated FOXO6 expression was 
demonstrated to promote the proliferation, invasiveness, and migration of GC cells, 
and is associated with a poor prognosis in GC patients[82,83]. Although FOXO1/ 
FOXO3/FOXO4 are often downregulated in GC, and mainly play a tumor inhibitory 
role, FOXOs possess tumor-promoting functions in certain conditions, and these 
functions are associated with different underlying molecular mechanisms.

MOLECULAR MECHANISMS OF FOXOS IN GC
Tumor-suppressive roles of FOXOs
Tumorigenesis and proliferation: Tumorigenesis begins with one or more genetic or 
epigenetic changes in a single cell, followed by subsequent changes that promote 
tumor development and progression of the tumor to a more aggressive phenotype. 
Following the accumulation of multiple genetic and epigenetic changes, when a cell 
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has adapted enough to escape cellular homeostasis, cancer processes are initiated[84]. 
The expression level of FOXO4 is controlled by methylation of its promoter, and Zhou 
et al[85] showed that hypermethylation of FOXO4, which is induced by ubiquitin-like 
containing PHD ring finger 1, is involved in GC carcinogenesis.

Regulating the tumorigenic ability of GC cells by FOXOs involves their ability to 
inhibit GC cell self-renewal. Negative crosstalk between FOXO1 and leucine-rich 
repeat-containing G-protein-coupled receptor 5 (LGR5) was found in GC, and down-
regulation of FOXO1 increases the self-renewal capacity of GC cells by increasing 
LGR5 levels[86]. The newly discovered oncogene lncRNA AK023391 was reported to 
promote the occurrence and progression of GC through activation of the PI3K/Akt 
pathway, which further regulates downstream signaling, including inactivation of 
FOXO3[87]. An in vitro analysis showed that the JNK inhibitor SP600125 decreases the 
expression of cyclin D1, enhances FOXO1 activity, and inhibits colony formation in GC
[88]. As expected, silencing FOXO1 expression leads to the partial recovery of the 
colony forming ability of GC cells, which indicates that JNK activation is involved in 
GC initiation partly through FOXO1 inhibition[88].

After tumor formation, cancer cell proliferation controlled by FOXOs is related to 
cell cycle arrest and induction of autophagy. FOXO1 inhibition by activation of the 
upstream c-Myc/NAMPT/SIRT1 signaling pathway or upregulation of downstream 
HER2, which results from FOXO1 Loss, promotes GC cell growth[89,90]. Su et al[81] 
found that FOXO4 induces cell cycle arrest in G1 phase and also reported a shortened 
S phase in GC cells. Activation of FOXO1 induces the expression of CDKI, p21Cip1, and 
p27Kip1, which can suppress GC cell proliferation by triggering cell cycle arrest[91,92]. 
MiR-96–5p and miR-1274a directly target the 3’-untranslated regions of FOXO3 and 
FOXO4 mRNA, respectively, and promote GC cell proliferation[93,94]. Moreover, in 
an acidic microenvironment, FOXO3 enhances autophagy by increasing the expression 
of autophagy proteins, such as LC3I, LC3II, and Beclin-1, to inhibit GC cell growth[95].

Apoptosis: The ability to escape apoptosis is a hallmark of cancer cells[96]. Identi-
fication of the mechanism of apoptosis induction provides potential therapeutic 
strategies for malignant tumors. In an α-fetoprotein (AFP)-producing GC (AFPGC) 
model, miR-122-5p inhibited apoptosis and promoted tumor progression by directly 
targeting FOXO3[97]. The transcription factor RUNX3 binds to two RUNX binding 
elements (RBE1 and RBE2) in the promoter region of the Bim gene, which encodes a 
pro-apoptotic protein. FOXO3 binds upstream of RBE1, which triggers apoptosis by 
activating Bim transcription through a physical interaction with RUNX3[98,99]. The 
induced Bim protein promotes the release of cytochrome c into the cytoplasm to 
initiate the formation of the apoptosome, which activates caspase-3 and leads to the 
execution phase of apoptosis[100]. Shahbazi et al[101] revealed the molecular me-
chanism of apoptosis induction by the nitric oxide synthase inhibitor L-NMMA and 
showed that L-NMMA promotes the phosphorylation of FOXO3 at threonine 32 and 
activates signaling by the Rho-associated coiled-coil kinase (ROCK). ROCK has been 
widely shown to regulate apoptosis[101], and is expressed in GC cells independently 
of PI3K/AKT and caspase-3[102]. Fas-associated death domain (FADD) protein can be 
recruited by the intracellular death domain of death receptors. FADD participates in 
apoptosis induced by the extrinsic death receptor pathway[100], which can be 
promoted by FOXO3 by suppressing the expression of the FADD inhibitor miR-633 in 
GC cells[103]. These findings expand on previous reports of the underlying molecular 
mechanism of FOXOs in promoting apoptosis of GC cells.

Angiogenesis: Angiogenesis-dependent tumor growth is an important characteristic 
of cancers[96]. Vascular endothelial GF (VEGF) and hypoxia-inducible factor-1α (HIF-1
α) are critical in promoting tumor angiogenesis[104]. Under hypoxic conditions, HIF-1
α and HIF-1β subunits form heterodimers that activate the transcription of many target 
genes to adapt to the hypoxic environment of human cancer cells[105]. However, 
under anoxic conditions, inhibition of FOXO1 causes upregulated expression of HIF-1α 
and VEGF in GC cells and increases microvessel areas in GC tissue, thus promoting 
angiogenesis[106,107]. In GC cells, miR-135b can be delivered via exosomes to human 
umbilical vein endothelial cells (HUVECs) and can then directly bind to and down-
regulate FOXO1 mRNA in HUVECs, which promotes ring formation of HUVECs and 
angiogenesis[108].

Drugs can also affect angiogenesis in GC through FOXO-related signaling path-
ways. Zhang et al[109] showed that arsenic trioxide reduces FOXO3 phosphorylation 
by inhibiting p-AKT, which results in the increased localization of FOXO3 in the 
nucleus where it suppresses GC migration and angiogenesis.
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Metastasis: Metastasis is the leading cause of cancer-related death[96], and is related 
to EMT, which is characterized by loss of polarity of epithelial cells, decreased 
expression of epithelial markers, such as E-cadherin and β-catenin, and increased 
expression of mesenchymal markers, such as N-cadherin and vimentin. These charac-
teristics endow tumor cells with metastatic properties by enhancing cell motility, 
invasiveness, and resistance to apoptosis. In addition, EMT-associated transcription 
factors, including Snail and Zeb, are involved in core EMT programs[110,111].

FOXO1 silencing results in upregulation of HER2 expression, which induces a 
mesenchymal cell phenotype, including decreased E-cadherin levels, increased Snail 
levels, and the presence of many filamentous processes with abundant actin bundles in 
GC cells, thus promoting the migration and invasiveness of GC cells[89]. Human 
telomerase reverse transcriptase cooperates with MDM2 to enhance FOXO3 degra-
dation through ubiquitination, thus attenuating the inhibition of integrin β1 (ITGB1) 
expression induced by FOXO3. Subsequent increased ITGB1 expression promotes 
degradation of the extracellular matrix and enhances invasiveness of GC cells[112]. In 
addition to cell cycle arrest, Su et al[81] also found that upregulation of FOXO4 reduces 
the metastatic ability of GCs by decreasing vimentin expression, which inhibits EMT.

Chemoresistance: Studies that have focused on the role of FOXOs in GC chemores-
istance are limited. Park et al[113] investigated resistance of GC cells to lapatinib in GC 
cells and showed that FOXO1 serves as an important link between the HER2 and MET 
signaling pathways by negatively regulating HER2 and MET expression at the 
transcriptional level, which could reverse resistance to lapatinib. Moreover, rosmarinic 
acid (RA) was found to increase FOXO4 expression by downregulating miR-6785–5p 
and miR-642a–3p levels and enhancing the sensitivity of drug-resistant GC cells to 5-
fluorouracil[114].

Tumor-promoting roles of FOXOs
Although many studies support the inhibitory effect of FOXOs in cancers, several 
recent studies have provided solid evidence of the opposite effect, whereby FOXOs 
can promote GC progression, including proliferation, invasion, migration, and chemo-
resistance.

Park et al[115] reported that treatment with cisplatin increases the mRNA level of 
FOXO1 and promotes the accumulation and activation of the FOXO1 protein to confer 
protection against cisplatin-induced cytotoxicity in GC cells. Interestingly, in addition 
to their findings of the suppressive role of FOXO1 in acquired lapatinib-resistance in 
HER2-positive GC cells, Park et al[115] also investigated the role of FOXO1 in cisplatin-
resistant GC cells. They showed that constitutive activation of FOXO1 increases 
resistance to cisplatin, whereas FOXO1 silencing enhances cisplatin-induced cy-
totoxicity along with apoptotic features in GC cells. Yu et al[116] artificially overex-
pressed FOXO3, and found that increased FOXO3 levels enhance the migratory and 
invasive abilities of GC cells by directly activating the transcription of cathepsin L, 
which targets and cleaves E-cadherin, leading to EMT. In contrast, FOXO3 knockdown 
experiments produced different results in vitro and in vivo. Li et al[117] reported that 
FOXO3 promotes cell survival in colon cancer under serum-free conditions, which 
suggests that the role of FOXO3 in tumorigenesis might depend on the environment. 
In the initial stage of GC, the AKT pathway becomes constitutively activated, resulting 
in phosphorylation and inactivation of FOXO3, which is beneficial to tumor prolif-
eration. However, in advanced stages of GC, hypoxia, oxidative stress, and restricted 
serum access promote activation of FOXO3 to help cell adapt to a stressed state and 
enhance cell survival[116,117].

High FOXO6 expression promotes the proliferation of GC cells by binding to the 
transcription factor hepatic nuclear factor 4, which mediates histone acetylation and 
leads to subsequent induction of c-Myc expression after removal of HDAC3 from the 
c-Myc gene promoter[82]. Noncoding RNA activated by DNA damage, an lncRNA 
with potential carcinogenic effects in bladder and colon cancers, was found to be 
downregulated in GC cells, which could reduce the targeted inhibition of FOXO6 by 
miR-608 through competitive inhibition[118].

Therefore, it can be inferred that the changing microenvironment of GC at different 
stages of development may be one of the reasons why studies on the role of FOXOs in 
GC have reached opposite conclusions as to whether FOXOs participate in tumor 
progression.
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POTENTIAL CLINICAL SIGNIFICANCE OF FOXOS IN GCS
Prognostic value of FOXOs
As mentioned above, phosphorylation results in the translocation of FOXO1 to the 
cytoplasm, which prevents FOXO-dependent transcription and loss of FOXO-
dependent regulation of downstream target genes. High levels of phosphorylated 
FOXO1 are associated with vascular invasion, lymph node metastasis, distant 
metastasis, and higher pTNM stage in colon cancer and are indicative of a poor 
prognosis in astrocytomas[119,120]. In prostate cancer, the traditional Chinese 
medicines CFF-1 (alcohol extract from an anticancer compound Chinese medicine) and 
ISO (isorhapontigenin) inhibit cell growth and induce cell apoptosis by decreasing p-
FOXO1 and regulating the expression of apoptosis-related and cycle-related genes[121,
122]. These findings are consistent with the antitumor effect of FOXO1 in GC. 
However, Kim et al[123] reported that p-FOXO1 is expressed in 84.6% of GC tissues 
and that its expression is higher in early stage GC and is correlated with better 
outcomes. These findings further confirm that the role of FOXO1 is dependent on 
cancer stage.

Yang et al[80] reported a significant correlation between low FOXO3 levels and large 
tumor size, poor histopathological classification, greater depth of invasion, local 
lymph node metastasis, distant metastasis, and high AJCC stage. Upregulation and 
activation of FOXO3 in GC are closely associated with a good outcome in GC patients
[124], which suggests that FOXO3 is a potential prognostic marker as well as a 
therapeutic target in GC patients. Li et al[125] demonstrated that a low FOXO4 level is 
an independent prognostic factor for poor OS and DFS in GC patients, while a high 
FOXO6 level promotes tumor invasiveness and predicts a poor prognosis in GC 
patients[83].

Targeting FOXOs for GC therapeutics
Some potential GC chemotherapeutic agents antagonize tumors by targeting FOXOs 
and related proteins to inhibit cell growth and proliferation, and induce cell differen-
tiation and apoptosis. Endogenous proteins, such as sphingosine kinase 1 (SPHK1) and 
PRMT1, microRNAs, and circular RNAs also affect FOXOs and their related signaling 
pathways, and change the biological characteristics of GC cells. All of these molecules 
are potential therapeutic targets for the treatment of GC (Table 1).

It is worth noting that the effect of some drugs is influenced by oncogene ex-
pression. Inhibition of PARP1 by olaparib can induce G2/M cell cycle arrest by 
activating FOXO3 in GC cells. Moreover, knockout of BRCA1 or BRCA2 increases the 
sensitivity of MKN28 GC cells to olaparib, which suggests that olaparib therapy may 
be particularly beneficial for patients with BRCA-deficient GC[126]. HER2 expression 
in GC tissues is reported to be higher than that in adjacent normal tissues. Luteolin, a 
natural flavonoid compound, can repress the growth of GC cells by increasing FOXO1 
expression. Luteolin encapsulation by poly(lactic-co-glycolic acid) nanoparticles (NPs) 
with HER-2 antibody conjugation increases recognition and endocytosis of NPs by GC 
cells and significantly enhances the inhibitory effect of luteolin on GC cells[127].

Additionally, miR-633 enhances the chemoresistance of GC cells by downregulating 
FADD expression. Doxorubicin-induced nuclear accumulation of FOXO3 inhibits miR-
633 transcription. Inhibition of miR-633 by an antagomir increases the FADD level and 
enhances doxorubicin/cisplatin-induced apoptosis. A miR-633 antagomir combined 
with doxorubicin significantly reduces GC cell growth[103].

Overall, FOXOs are promising prognostic markers and therapeutic targets in GC. 
However, recent studies have primarily focused on the molecular mechanism and are 
limited to the cell level, which indicates a huge gap between recent research findings 
and clinical applications. Therefore, the clinical implications of FOXOs still require 
clarification by additional studies.

CONCLUSION
FOXOs have historically been regarded as tumor suppressors, but recent studies have 
suggested that FOXOs support resiliency in healthy and cancer cells. In GC, the 
antitumor effect of FOXO4 and the tumor-promoting effect of FOXO6 are relatively 
clear. FOXO1 and FOXO3 play dual roles in many types of cancers, including GC. 
Whether they promote or inhibit GC may be related to changes in the tumor microen-
vironment caused by tumor progression and drug treatment. In advanced GC, the 
effect of changes in the expression level or activity of FOXOs on GC treatment has not 
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Table 1 Molecules targeting FOXOs and related proteins for potential gastric cancer therapy

Molecule Targets Mechanism Effects Ref.

Luteolin FOXO1 Increases FOXO1 expression Represses GC cell growth Ding et al
[127]

Celecoxib Akt, GSK3b, 
FOXO1, and 
caspase-9

Downregulates Akt, GSK3b, and FOXO1 and upregulates 
caspase-9 in the mitochondrial apoptotic pathway

Represses GC cell growth Kim et al
[128]

4-Amino-2-
trifluoromethyl-phenyl 
retinate

14-3-3ε Downregulates expression of 14-3-3ε, resulting in increased 
expression of FOXO1 and P27kip1, decreased expression of 
CDK2 and cyclin E, and decreased activity of AKP and LDH. 
Blocks the cell cycle at G0/G1 phase

Inhibits cell proliferation and 
induces cell differentiation

Xia et al
[129]

Gramicidin FOXO1 Decreases phosphorylation of FOXO1 and down-regulates the 
expression of cyclinD1 and Bcl-2, leading to G2/M cell cycle 
arrest

Inhibits cell proliferation Chen et al
[130]

Olaparib PARP1 Inhibits PARP1 and thus induces G2/M cell cycle arrest by 
activating FOXO3

Inhibits cell proliferation Park et al
[126]

Bacillomycind-C16 Akt and 
FOXO3

Inhibits phosphorylation of Akt and increases the level of 
FOXO3 protein

Induces apoptosis Lin et al
[131]

Protein arginine 
methyltransferase 1

FOXO1 and 
BAD

Activates FOXO1 and BAD Induces chemosensitivity Altan et al
[132]

Sphingosine kinase 1 FOXO1 and 
FOXO3

Attenuates the transcriptional activity of FOXO1 and FOXO3 
via promoting PI3K/Akt-mediated phosphorylation

Enhances proliferation (targeting 
FOXO1) and resistance to 
apoptosis (targeting FOXO3)

Xia et al[91] 
and Xiong 
et al[133]

Hsa_circ_0001368 miR-6506-5p Acts as a competing endogenous RNA for miR-6506-5p and 
inhibits the downregulation by miR-6506-5p on FOXO3

Inhibits tumor growth Lu et al
[134]

miR-1274a FOXO4 Inhibits FOXO4 expression Promotes tumor growth and 
migration

Wang et al
[94]

been investigated. Therefore, caution should be exercised when FOXO1 and FOXO3 
are used as targets for cancer treatment.
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