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ABSTRACT
Epilepsy is a common neurological disease that affects a wide range of the world
population and is not limited by age. Moreover, seizures can occur anytime and
anywhere because of the sudden abnormal discharge of brain neurons, leading to
malfunction. The seizures of approximately 30% of epilepsy patients cannot be
treated with medicines or surgery; hence these patients would benefit from a seizure
prediction system to live normal lives. Thus, a system that can predict a seizure before
its onset could improve not only these patients’ social lives but also their safety.
Numerous seizure prediction methods have already been proposed, but the
performance measures of these methods are still inadequate for a complete
prediction system. Here, a seizure prediction system is proposed by exploring the
advantages of multivariate entropy, which can reflect the complexity of multivariate
time series over multiple scales (frequencies), called multivariate multiscale
modified-distribution entropy (MM-mDistEn), with an artificial neural network
(ANN). The phase-space reconstruction and estimation of the probability density
between vectors provide hidden complex information. The multivariate time series
property of MM-mDistEn provides more understandable information within the
multichannel data and makes it possible to predict of epilepsy. Moreover, the
proposed method was tested with two different analyses: simulation data analysis
proves that the proposed method has strong consistency over the different parameter
selections, and the results from experimental data analysis showed that the proposed
entropy combined with an ANN obtains performance measures of 98.66%
accuracy, 91.82% sensitivity, 99.11% specificity, and 0.84 area under the curve (AUC)
value. In addition, the seizure alarm system was applied as a postprocessing step for
prediction purposes, and a false alarm rate of 0.014 per hour and an average
prediction time of 26.73 min before seizure onset were achieved by the proposed
method. Thus, the proposed entropy as a feature extraction method combined with
an ANN can predict the ictal state of epilepsy, and the results show great potential for
all epilepsy patients.

Subjects Bioinformatics, Computational Biology,Algorithms andAnalysis ofAlgorithms, Artificial
Intelligence, Brain-Computer Interface
Keywords Distribution entropy, ANN, EEG, Entropy, Epilepsy

INTRODUCTION
Epilepsy is one of the most common neurological disorders of the nervous system,
affecting approximately 50 million people worldwide, and approximately five million
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people are diagnosed with epilepsy each year (World Health Organization (WHO), 2019).
Therefore, the social and economic impacts on patients with epilepsy are becoming
increasingly concerning. Although the seizures of 70% of epileptic patients can be
controlled by antiseizure medicines, the seizures of 30% of patients with epilepsy cannot be
treated by either medicines or surgery; therefore, these patients must live their whole
lives with epilepsy, and their seizures can occur anytime and anywhere (Fujiwara et al.,
2015). Electroencephalogram (EEG) can record the patients’ brain activities and be used
as a tool for diagnosing and analyzing epilepsy (Wang et al., 2010). Thirty percent of
epileptic patients whose seizures cannot be controlled urgently need a system that can
improve their lives, by successfully predicting a seizure before it begins. However, epilepsy
prediction remains one of the competitive challenges for researchers, and numerous
methods have already been proposed to address this problem. Scholars approach this issue
in various ways, e.g., linear methods (Salant, Gath & Henriksen, 1998) and nonlinear
dynamics (Iasemidis et al., 1990). For linear measurement, statistical measures,
including the calculation of variance, skewness, and kurtosis, are used for several seizure
prediction tools, and researchers have described that kurtosis increase but variance
decrease during the state of preictal activity (Aarabi, Fazel-Rezai & Aghakhani, 2009).
The mean phase coherence (MPC) (Mormann et al., 2003), Shannon entropy index
(Rosenblum et al., 2000), and conditional probability index are the best nonlinear measures
compared to other nonlinear features (Mormann et al., 2005). Moreover, the differential
entropy with the cumulative sum (CUSUM) procedure has been applied to predict
seizures and shows 87.5% sensitivity, a 0.28 per hour false prediction rate and a 25 min
average prediction time (Zandi et al., 2009). In other studies, the permutation entropy (PE)
method has been used to extract features, and combined with a support vector
machine (SVM) classification method, 94% sensitivity, a 0.111 per hour false prediction
rate, and 63.93 min of the average prediction time were shown (Yang et al., 2018).

There are different types of methods for measuring time series complexity, e.g.,
entropies (Coifman & Wickerhauser, 1992), fractal dimensions (Mashiah et al., 2008),
and Lyapunov exponents (Rosenstein, Collins & De Luca, 1993). However, entropy
calculation becomes more interesting in the neuroscience field because of the
nonstationary features of the EEG signals. Entropy is a method that can be used to
distinguish the regular, chaotic, and random behavior of a time series by measuring
complexity (Paluš, 1998). Moreover, the use of entropy combined with a Monte Carlo tree
search (MCTS) process is the most effective method to addredd the container loading
problem (Cant et al., 2018); therefore, entropy is a method that can be used to measure
disorder or irregularities in a wide range of applications (Howedi, Lotfi & Pourabdollah,
2020). Additionally, EEG signals from epileptic patients can be classified into three
different states: interictal state, preictal state, and ictal state (see Fig. 1). The first state refers
to the time between seizures, the second state is the time period just before the seizure
arrives, and the last state is the seizure period (Chiang et al., 2011). In previous work, a new
entropy method called modified-distribution entropy (mDistEn) was proposed, and
this method successfully detects the different states of epileptic EEG signals by calculating
the complexity of the signals (Aung & Wongsawat, 2020). Moreover, an effective
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coarse-grained calculation was added to the entropy method, which becomes multiscale
modified-distribution entropy (M-mDistEn) (Aung & Wongsawat, 2021). The purpose of
this multiscale method is to detect the various scales (frequencies) of the EEG signals;
therefore, this method is usable for detecting motion artifacts. The main difference
between the common entropy and the multiscale entropy is the evaluation of time series
coarse-grained entropy to quantify the interdependency between entropy and scales
(Costa, Goldberger & Peng, 2002). However, there are some limitations to multiscale
entropy because it is designed for scalar time series analysis, and it is not suitable for
accurately reflecting the complexity of multivariate time series in complex systems
(Zhang & Shang, 2019).

The advantages of multivariate entropy can overcome the shortcomings of multiscale
entropy, including evaluating within-and cross-channel dependencies in multiple data
channels, assessing of the underlying dynamical richness of multichannel observations,
and more degrees of freedom in the analysis than those of standard multiscale entropy
(Ahmed & Mandic, 2011). For the reasons outlined above, entropy can distinguish the
different states of epileptic EEG signals, and therefore, the prediction of epilepsy is possible
according to numerous experiments (Yang et al., 2018). By exploring the advantages of
multivariate methods and the previous entropy methods (mDistEn and M-mDistEn), a
new method called MM-mDistEn is proposed, and this new method provides the
crucial features extracted from epileptic EEG signals and applies these features to
ANNs (Siddique & Adeli, 2013) in seizure prediction systems. The proposed system also
reveals improved results in all performance measures; thus, it may be another alternative
method for helping epileptic patients predict seizures before they start.

MATERIALS & METHODS
A detailed explanation of the calculation of the proposed entropy method, MM-mDistEn,
is mentioned in this section. The classification of epilepsy is also performed by using
an ANN, and the step-by-step procedure is described after the explanation of the

Figure 1 Epileptic EEG signals from subject no.1 (A) frontal area, (B) occipital area, and (C) different area including central, temporal, and
parietal brain areas. Full-size DOI: 10.7717/peerj-cs.744/fig-1
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parameter selection. In this paper, the public dataset is used for experimental data analysis
and introduced in the next subsection.

Dataset description
The signals used for analysis in this paper are from the public PhysioNet Database
(Goldberger et al., 2000; Shoeb, 2009b), where the CHB-MIT dataset of EEG signals with
seizure events is used for data analysis. The dataset is freely downloadable via the link that
is provided in the reference section (Shoeb, 2009a). Data were collected as previously
described in (Daoud & Bayoumi, 2019) and which include long-term scalp EEG data form
pediatric subjects with intractable seizures. Recordings, grouped into 23 cases, were
collected from 22 subjects (five males, ages 3–22; and 17 females, ages 1.5–19), and these
subjects were monitored for up to several days following withdrawal of antiseizure
medication to characterize their seizures and evaluate their candidacy for surgical
intervention (Shoeb, 2009b). Most files contain 23 EEG signals (24 or 26 in a few cases).
The international 10–20 system of EEG electrode positions and the sampling rate is 256
per second with 16-bit resolution (Goldberger et al., 2000). Fig. 1 shows a 1-h recording of
epileptic EEG signals from subject no.1. The different states of interictal, preictal, and ictal
of EEG signals from the frontal area, occipital area, and different area of the brain are
clearly shown in Fig. 1.

Multivariate multiscale modified-distribution entropy
A new method, MM-mDistEn, was used to calculate the data multidimensionally. Three
steps are required to calculate the entropy values, as shown in Fig. 2.

The algorithm is calculated as follows:
Step 1. Multivariate time series
First, the multivariate time series from the given time series data is constructed. The new

input multichannel EEG can be set and notated as xc; i where c is the number of channels
(1, 2, …, C), and i is the number of samples in each channel (1, 2, …, N).

Step 2. Coarse-graining process
The coarse-grained time series can be calculated using the multivariate time series data

according to the scale factor, and the equation can be expressed as

gsc; j ¼
1
s

Xj�s
i ¼ j �1ð Þsþ1

xc; i; 1 � j � Nsð Þ; (1)

Figure 2 Block diagram for calculating multivariate multiscale modified-distribution entropy.
Full-size DOI: 10.7717/peerj-cs.744/fig-2
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where gsc; j is the multivariate coarse-grained time series, s is a scale factor and Ns¼ N
s
.

Step 3. Calculate MM-mDistEn
Phase-space reconstruction is performed before the calculation of the entropy values,

and the reconstruction is as follows:

Ms jð Þ ¼

gs1; j gs1; jþs
. . . gs1; jþ m�1ð Þs

gs2; j gs2; jþs
. . . gs2; jþ m�1ð Þs

..

.

gsc; j

..

.

gsc; jþs

..

.

. . .

..

.

gsc; jþ m�1ð Þs

2
66664

3
77775; 1 � j � Nsð Þ; (2)

where m is the embedding dimension and τ is the time delay. For the current study, m = 3
and τ = 1 are used (more information available in the parameter selection subsection
below).

The proposed method, MM-mDistEn, which is implemented based on distribution
entropy, adds two more threshold parameters, ‘r’ and ‘n’, to existing parameters. r is set by
multiplying the standard deviation of all data values by 0.2, and n is set to 2 (Aung &
Wongsawat, 2020). For a given multivariate coarse-grained time series,

i) Create matrix Xs(j) in term of Ms jð Þ by
Xsj ¼ ½Ms jð Þ;Ms jþ 1ð Þ; . . . ; Ms j þ ðm� 1Þ sð Þ�; ð1 � j � Ns � ðm� 1ÞÞ (3)

ii) The distance matrix Ds
ij is computed as D̂s

ij divided by r and then squared (n = 2):

Ds
ij ¼

D̂s
ij

r

 !n

: (4)

A matrix D̂s
ij between Xs(i) and Xs(j) (1 ≤ i, j ≤ Ns – (m� 1), i ≠ j) is computed using

the Euclidean method.
iii) After obtaining Ds

ij, the empirical probability density function (ePDF) is calculated
using the histogram approach from Ds

ij of the previous steps with the bin number,
B. The probability for that number can be given as Pt , where t = 1, 2, 3, …, B.

iv) MM-mDistEn can be calculated by the following equation with the distance matrixDs
ij

as follows:

MM‐mDistEn m; s; r; n; B; sð Þ ¼ � 1
log2 Bð Þ

XB
t¼1

Pt Ds
ij

� �
log2 Pt Ds

ij

� �h i
;

ð1 � i; j � Ns � ðm� 1Þ; i 6¼ jÞ:
(5)

Parameter selection
MM-mDistEn uses predefined values for selecting parameters. There are six parameters
that are required to compute the entropy values. First, the time delay, τ and dimension,
m are used for the reconstructing of phase-space, with values of 1 and 3, respectively
(Li et al., 2015b). Next, the distance matrix, Ds

ij is calculated using the parameters r and n,
where r is the tolerance number and n is the order of the function, and both parameters are
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applied in calculating the proposed entropy. A large r and n can lead to noise influence,
whereas a small r and n can cause information lose; and therefore, the parameter r is equal
to the standard deviation of the series multiplied by 0.2, and n is set to 2 (Aung &
Wongsawat, 2020; Chen et al., 2007). When the ePDF is calculated, another parameter
value called the bin number, B, is needed, and B is set to 64 for this estimation (Li et al.,
2016). The scale factor, s, is also needed for calculating of the multivariate multiscale
entropy values, and the scale values used in data analysis range from 1 to 15 (Acharya et al.,
2015). Additionally, the different values are selected for these parameters and shown in the
figures in results section.

Classification of epileptic seizures from the extracted features
In this paper, a multilayer perceptron (MLP), which is an ANN, is used for training
and testing the data. First, feature calculation is performed by using the MM-mDistEn
method before these features are input to the ANN. After that, the neural networks
are implemented by using the library support from TensorFlow. These features are
imported into the environment for calculation and separated into input data and target
data, and then these data are split into two sets: preictal period for the test set and interictal
period for training. The 12 units for the first hidden layer and second hidden layer are
used in the neural networks. The model was trained with backpropagation and optimized
with the RMSprop algorithm (Daoud & Bayoumi, 2019). The loss function used in this
model is the binary cross entropy (Daoud & Bayoumi, 2019). The rectified linear unit
(ReLU) activation function (Hahnloser et al., 2000) is used for the hidden layers to
add nonlinearity and make strong robustness to clear the noise from the input data.
The softmax activation function is selected for the output layer to classify the multiclass
outputs, and interictal, preictal, and ictal states of the epileptic EEG signals (Usman,
Khalid & Aslam, 2020). The networks for each patient are trained individually for all 24
subjects. Finally, the results are shown in the results section.

Seizure alarm system
The calculation of mean values is performed when the predicted features (PF) are
generated from the ANN, and those values are used as the decision-making process of the
seizure alarm system. The seizure features (SF) are selected from the duration of the
ictal period of the EEG signals, and the mean values of those periods are calculated.
Then, the mean values of SF and PF are used for comparison, i.e., if the former values are
greater than or equal to the latter values, the alarm signal is triggered for upcoming seizure
events. The flow chart for the seizure alarm system is shown in Fig. 3.

RESULTS
In this section, two different analyses are conducted with two different datasets. The
simulation data are used to test the consistency of the proposed entropy by changing the
different parameters values. The experimental dataset is required for the next process
of classification and epilepsy prediction. A detailed explanation of the results from these
two analyses is described in the following subsections.
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Analysis of simulation signals
The proposed entropy method is analyzed with two different datasets: simulation data and
experimental data. For the first dataset, three different signal types; sine wave (50 Hz
frequency), chaotic series, and Gaussian series are used (Li et al., 2015a), and the length of
each signal is 400 samples. After that, these three series are simulated as a function of the
scale factor with embedding dimensions and shown in Fig. 4. In Figs. 4A and 4C, these
three series are plotted according to their entropy values, but the chaotic series and
Gaussian series overlap with each other in embedding parameters of values 2 and 4.
However, the entropy values of three different series plot well-defined over all scale factors
(1 to 15) with an embedding parameter value of m = 3 and are visualized in Fig. 4B.
Therefore, the value of 3 for the embedding parameter is chosen, and the detailed
explanation of the parameters used in the calculation of MM-mDistEn is described in the
parameter selection section. Although the dependence of MM-mDistEn is on the bin
number, all three different series have upward trends regarding the bin values, B (20 to 29),
and distinguish these three series, as shown in Fig. 5A. The time delay, τ values range from
1 to 10, and the MM-mDistEn values decrease with increasing parameter values (see
Fig. 5B). In Fig. 5C, the tolerance numbers, r used in the entropy method are multiplied by
the standard deviation of the series, and these values range from 0.05 to 0.9 with an

Figure 3 Flow chart algorithm for the seizure alarm system.
Full-size DOI: 10.7717/peerj-cs.744/fig-3

Figure 4 The values of entropies (unitless) on simulation data as a function of the scale factor with different embedding dimensions (A)m = 2,
(B) m = 3, and (C) m = 4. Full-size DOI: 10.7717/peerj-cs.744/fig-4
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increase of 0.05. The plotted MM-mDistEn values are chaotic, Gaussian and sine waves on
the order of higher to lower values.

Analysis of the experimental data
The values of MM-mDistEn are plotted with the scale factors (1 to 15) and are shown in
Fig. 6. Instead of plotting all datasets, the entropy values of epileptic EEG signals from
four subjects are plotted, and the entropy values are different in order of the highest values
for the ictal state and the lowest values for the preictal state (see Figs. 6A, 6C, and 6D).
The highest complexity is for ictal EEG signals, which are deterministic chaotic dynamics,
compared with normal EEG signals, which are stochastic dynamics (Li et al., 2015b).
Although a different order is seen in Fig. 6B, MM-mDistEn can still distinguish the three
states of the epileptic EEG signals.

The performance measure is performed by calculating the accuracy, sensitivity,
specificity, and AUC (Li et al., 2018) for all the subjects from the CHB-MIT dataset.

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

; (6)

Sensitivity ¼ TP
TPþ FN

; (7)

Specificity ¼ TN
TNþ FP

; (8)

where TP and TN are the number of true positives and the number of true negatives,
i.e., the classifier correctly labels the actual number of ictal and normal EEG signals
and FP and FN are the number of false positive and false negatives, these two values
indicate the number of ictal and normal signals that are incorrectly categorized by the
classifier (Li et al., 2018). It is clearly shown that the proposed extraction method combined
with an ANN achieves an average performance measure of 98.66% accuracy, 91.82%
sensitivity, 99.11% specificity, and an AUC value of 0.84 (see Table 1). Moreover, the
minimum scores of the performance measure are still effective with an accuracy of 95.2%, a

Figure 5 The entropy values (unitless) on simulation data with respect to the: (A) number of bins (20 to 29), (B) time delay (1 to 10), and (C)
tolerance (0.05 to 0.9 multiplied by the standard deviation of the simulation data). Full-size DOI: 10.7717/peerj-cs.744/fig-5
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sensitivity of 83%, a specificity of 93.67%, and an AUC value of 0.75 (among all 24 subjects,
in Fig. 7).

Performance measures for predicting epileptic EEG signals
The performance of the proposed prediction algorithm is calculated based on three factors:
the false alarm rate (Rfa), the prediction time, and the prediction rate (Rp) (Aarabi & He,
2014):

Rfa¼Nfa

Ht
; (9)

Figure 6 The values of MM-mDistEn (unitless) in the experimental dataset with different subjects (A) subject no.1, (B) subject no. 4, (C)
subject no. 7, and (D) subject no. 8. Full-size DOI: 10.7717/peerj-cs.744/fig-6
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Rp¼Np

Nt
; (10)

Tavg¼ Tp

Np
; (11)

where Nfa is the number of false alarms, Ht is the total number of hours, Np is the number
of predicted seizures, Nt is the total number of seizures, Tavg is the average prediction
time and Tp is the prediction time. The performance values of all cases of the 24 subjects
are shown in Fig. 8. The prediction time is defined as the time between the instant at which
a seizure can be predicted, and the actual beginning of the seizure and 1-h (3,600 s)

Figure 7 Performance measures for the analysis of EEG signals with an ANN.
Full-size DOI: 10.7717/peerj-cs.744/fig-7

Table 1 Performance comparison between different prediction methods and our proposed method.

Feature
extraction
method

Feature
classification
method

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC False alarm
rate (h−1)

Prediction rate
(%) and time
(min)

Training
time
(min)

References

MM-mDistEn ANN 98.66 91.82 99.11 0.84 0.014 99/26.73 3.5 –

M-mDistEn ANN 88 85 90 0.8 0.081 90/23 3.7 –

PE ANN 90 83 93 0.76 0.262 70/22 3.5 –

N/A MLP 83.63 84.67 82.60 N/A 0.174 N/A 7.3 (Daoud & Bayoumi,
2019)

DCNN MLP 95.41 92.8 94.1 N/A 0.072 N/A 12.5 (Daoud & Bayoumi,
2019)

CNN SVM N/A 92.7 90.8 N/A N/A -/21 N/A (Usman, Khalid & Aslam,
2020)

N/A CNN 99.3 N/A 99.6 N/A 0.5 N/A N/A (Gómez et al., 2020)

Aung and Wongsawat (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.744 10/15

http://dx.doi.org/10.7717/peerj-cs.744/fig-7
http://dx.doi.org/10.7717/peerj-cs.744
https://peerj.com/computer-science/


long epileptic EEG signals are used for the prediction system (see Fig. 9). A Tavg of 26.73
min is achieved among all cases from the 24 subjects. The proposed method with an
ANN achieves an average false alarm rate of under 0.25 per hour, an average prediction
rate of over 70%, and an average training time of fewer than 3.5 min (see Fig. 8).

DISCUSSION
According to previous works (Aung & Wongsawat, 2020), there are some limitations on
multivariate time series analysis, and therefore, MM-mDistEn is proposed to overcome
these limitations. First, the phase-space reconstruction and estimation of the probability
density between vectors provide hidden complex information. The multivariate time series
property of MM-mDistEn gives us more understandable information within the
multichannel data. Moreover, the data are also analyzed at different scales (frequencies) so
that insight information can be seen in different scales ranges. According to the above
results section, the proposed method was tested with two different analyses: simulation
data and experimental data. Testing with the simulation data is used if the information of

Figure 9 Prediction time and false alarm based on the different states of epileptic EEG signals.
Full-size DOI: 10.7717/peerj-cs.744/fig-9

Figure 8 Performance evaluation for the prediction of EEG signals with MM-mDistEn and an ANN.
Full-size DOI: 10.7717/peerj-cs.744/fig-8
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the proposed entropy has strong consistency and less dependency on preset parameters.
Regarding the experimental data, the different performance measures are also provided on
the proposed entropy combined with an ANN to classify the three states of the seizure
from epileptic EEG signals. Additionally, postprocessing of the seizure alarm system
helps patients predict upcoming seizures before they occur. The different performance
measures on the proposed MM-mDistEn are illustrated in Fig. 7, and the performance
evaluation for the prediction of epileptic EEG signals is described in Fig. 8.

A summary of the performance comparison between the existing prediction methods
that have used the same dataset and the proposed method is shown in Table 1. The
proposed method obtains a higher accuracy score among these methods, excluding the
method using a convolutional neural network (CNN) (Gómez et al., 2020), while the
training time is shorter than that of the other methods such as M-mDistEn with an ANN,
PE with an ANN, a deep convolutional neural network (DCNN) with MLP and MLP
(Daoud & Bayoumi, 2019). The sensitivity of the proposed method obtains a better score
than other methods, but it is slightly lower than DCNN with MLP and CNN with SVM.
Although the specificity of the proposed entropy is marginally lower than that of the
method using CNN, the best rate for false alarms is obtained by the proposed method.
The false alarm rate is also crucial for the prediction of epilepsy, and it is the smallest
rate among these methods. An important factor in the prediction of epilepsy is the
prediction time because it enables the delivery of warning signals to patients in a timely
manner. The proposed combined system of MM-mDistEn and an ANN can send an alarm
on average 26.73 min before the actual seizure starts according to the results from the
experiments in all 24 subjects; therefore, the prediction time of the proposed method is
earlier than that with the method using a CNN with SVM (Usman, Khalid & Aslam, 2020).

CONCLUSIONS
In this paper, a new feature extraction method, called MM-mDistEn, was proposed for
predicting of seizures through combination with an ANN. The proposed method
efficiently explores the information from multiple variables with multiple time scales and
analyzes the complexity of that time series. Two different analyses were performed: a
simulation dataset is used to prove the existence of consistency, and an experimental
dataset is applied to distinguish of the different states of epileptic EEG signals. The
performance measures of the proposed method were provided for the classification of
the interictal, preictal, and ictal states. The advantages of multivariate robust entropy
provide an efficient method for extracting features from multichannel EEG recordings.
Moreover, the seizure alarm system was added as postprocessing step, which can warn
patients about an oncoming seizure before its onset by providing an adequate prediction of
the time between the preictal and ictal states. The proposed combination method will
only require an EEG acquisition system for real-time usage, and it can become useful not
only for clinical applications but also for usage outside of the hospital for epilepsy patients.
Therefore, a portable version for seizure prediction can become a reality by using the
proposed method. Future studies are needed for real-time applications to detect more
complex behaviors from the different EEG datasets.
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