Skip to main content
. 2021 Sep 28;7:e715. doi: 10.7717/peerj-cs.715

Table 2. The model's architecture.

C = Convolutional layer, B = Batch normalization layer, R = Rectified linear unit layer, CN = Concatenation layer, G = Global average pooling layer, D = Dropoutlayer, and F = Fully connected layer.

Layer Number Filter Size (FS) and Stride (S) Activations
Input layer 224 × 224 × 3
C1, B1, R1 FS = 3 × 3, S = 1 224 × 224 × 32
C2, B2, R2 FS = 5 × 5, S = 2 112 × 112 × 32
C3, B3, R3 FS = 1 × 1, S = 1 112 × 112 × 32
C4, B4, R4 FS = 3 × 3, S = 1 112 × 112 × 32
C5, B5, R5 FS = 5 × 5, S = 1 112 × 112 × 32
C6, B6, R6 FS = 7 × 7, S = 1 112 × 112 × 32
CN1 Five inputs 112 × 112 × 160
B1x Batch Normalization Layer 112 × 112 × 160
C7, B7, R7 FS = 1 × 1, S = 2 56 × 56 × 64
C8, B8, R8 FS = 3 × 3, S = 2 56 × 56 × 64
C9, B9, R9 FS = 5 × 5, S = 2 56 × 56 × 64
C10, B10, R10 FS = 7 × 7, S = 2 56 × 56 × 64
C11, B11, R11 FS = 3 × 3, S = 2 56 × 56 × 32
CN2 Five inputs 56 × 56 × 228
B2x Batch Normalization Layer 56 × 56 × 228
G1 1 × 1 × 228
F1 200 FC 1 × 1 × 200
D1 Dropout layer with learning rate:0.5 1 × 1 × 200
F2 2 FC 1 × 1 × 2
O (Softmax function) Normal, Abnormal 1 × 1 × 2