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Since the bipolar disorder (BD) signals identified by 
genome-wide association study (GWAS) often reside in 
the non-coding regions, understanding the biological rele-
vance of these genetic loci has proven to be complicated. 
Transcriptome-wide association studies (TWAS) providing 
a powerful approach to identify novel disease risk genes and 
uncover possible causal genes at loci identified previously by 
GWAS. However, these methods did not consider the impor-
tance of epigenetic regulation in gene expression. Here, we 
developed a novel epigenetic element-based transcriptome-
wide association study (ETWAS) that tested the effects of 
genetic variants on gene expression levels with the epige-
netic features as prior and further mediated the associa-
tion between predicted expression and BD. We conducted 
an ETWAS consisting of 20 352 cases and 31 358 controls 
and identified 44 transcriptome-wide significant hits. We 
found 14 conditionally independent genes, and 10 genes 
that did not previously implicate with BD were regarded 
as novel candidate genes, such as ASB16 in the cerebellar 
hemisphere (P = 9.29 × 10–8). We demonstrated that sev-
eral genome-wide significant signals from the BD GWAS 
driven by genetically regulated expression, and NEK4 ex-
plained 90.1% of the GWAS signal. Additionally, ETWAS 
identified genes could explain heritability beyond that ex-
plained by GWAS-associated SNPs (P = 5.60 × 10–66). By 
querying the SNPs in the final models of identified genes 
in phenome databases, we identified several phenotypes 
previously associated with BD, such as schizophrenia and 
depression. In conclusion, ETWAS is a powerful method, 
and we identified several novel candidate genes associated 
with BD.
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Introduction

Bipolar disorder (BD) is a severe neuropsychiatric dis-
order characterized by recurrent episodes of depression 
and mania that affect thought, perception, emotion, 
and social behavior. Based on twin studies, the narrow-
sense heritability of BD was estimated to be over 70%.1,2 
Genome-wide association study (GWAS) has seen great 
strides and invaluable utilities in revealing initial insights 
into BD’s genetic architecture. Despite the significant 
success of GWAS in delineating elements that contribute 
to the genetic architecture of psychiatric disorders, only 
a small fraction of this heritability is explained by associ-
ated loci,3 leaving a substantial proportion of genetic risk 
factors uncharacterized.

Most of the identified variants mapped through GWAS 
reside in non-coding regions of the genome,4 which may 
be involved in modulating gene regulatory programs.4–8 
Recent mechanistic studies have demonstrated that 
GWAS-identified variants located in the active chromatin 
regions more frequently and highly enriched with expres-
sion quantitative trait loci (eQTL).9,10 Moreover, most 
common risk variants identified to date are only asso-
ciated with diseases with modest effect sizes, and many 
risk variants have not been identified via a typical GWAS, 
even with a large sample size.11 Transcriptome-wide as-
sociation study (TWAS) that systematically investigates 
the association of genetically predicted gene expression 
with disease risk, providing a powerful approach to iden-
tify novel disease risk genes and uncover possible causal 
genes at loci identified previously by GWAS.12–16

Nevertheless, gene expression is highly regulated 
in many steps, including transcriptional regulation, 
splicing, end modification, export, and degradation. 
Transcriptional regulation of  DNA into mRNA can 
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occur on both genetic and epigenetic levels. The epi-
genetic regulation alters the accessibility of  DNA to 
transcription factors by chemical modification of 
chromatin. For example, several post-translational 
modifications that occur on the histones can change 
chromatin structure and function,17 make it accessible 
or vice versa to transcription factors. Functional class 
quantification in 11 diseases from the Wellcome Trust 
Case Control Consortium, including BD, have shown 
that 80% of  the common variants that contribute to 
phenotype variability attribute to DNase I  hypersen-
sitivity sites.18 They are likely to regulate chromatin 
accessibility and transcription, further highlighting 
the importance of  transcript regulation at the epige-
netic level. Histone modifications are involved in both 
activation and repression of  transcription19 and fur-
ther linked to diseases.20 Researchers have developed 
a growing body of  computational methods to predict 
gene expression from histone modification signals of 
chromatin structure.21–24 Thus, integrating epigenetic 
features is essential for the prediction of  gene expres-
sion besides genetic variants.

In this study, we set out to develop a 4-step quantitative 
pipeline named epigenetic element-based transcriptome-
wide association studies (ETWAS), based on the interpre-
tation of epigenetic element, genotype, gene expression, 
and phenotype. We used ETWAS to investigate the as-
sociation between gene expression and BD risk using the 
largest BD cohort currently available (as of 2020); the co-
hort consisted of 20 352 BD cases and 31 358 controls 
from Europe. We found that ETWAS outperformed orig-
inal methods, and we identified 14 conditionally inde-
pendent genes associated with BD risk in 13 brain tissues. 
We additionally identified 10 genes that were not previ-
ously implicated with BD.

Methods

Data Resources

RNA Sequencing Data Sets. We used transcriptome and 
high-density genotyping data of European decedent 
from the Genotype-Tissue Expression (GTEx) study 
Pilot Project V8 (dbGap accession: phs000424.v8.p2)10 
to establish gene expression prediction models (supple-
mentary methods). We also obtained freely available 
RNA-seq data from 358 European lymphoblastoid cell 
lines produced by the Genetic European Variation in 
Health and Disease25 (Geuvadis) as the validation data 
set to test the prediction models generated in the GTEx 
whole blood. The tissue abbreviations, sample sizes are 
listed in supplementary table 1.
Epigenetic Elements. The chromatin states and the 
DNase I  hypersensitive sites (DHS) of relevant tis-
sues were downloaded from the Roadmap Epigenome 
Project.26 Freely available transcription factor binding 
sites (TFBS) were obtained from the Encyclopedia of 

DNA Elements (ENCODE).27 The URLs of all epige-
netic data are listed in supplementary table 2.
GWAS Summary Statistics. We used the most recent sum-
mary statistics of the Psychiatric Genomics Consortium 
(PGC) Bipolar Disorder Working Group, comprising 
20,352 BD cases and 31,358 controls of European de-
scent (supplementary table 3). Details on participant as-
certainment and quality control were previously reported 
by Eli et al3 (supplementary methods).

ETWAS Framework

Our current study is based on the premise that gene ex-
pression is heritable.28 Considering the heritability genes 
typically enriched for trait associations,14 we estimated 
gene expression heritability (supplementary methods) 
and only focused on the significantly heritable genes in 
further analyses.

Our prediction framework included 4 main sections 
that acted sequentially (figure 1). First, for each gene, we 
divided the SNPs within 1 Mb of the transcription start/
end site of the gene into multiple SNP sets according to 
the eQTL P-value and epigenetic annotations. We con-
structed multiple elastic net and lasso models with the 
SNPs in each SNP set using the initial reference data. 
Second, we evaluated the prediction performance of 
each SNP set using 10-fold cross-validation R2 between 
the predicted and observed expression, and the SNP set 
with the highest mean R2 was selected as the best model. 
Third, we constructed the final prediction model with the 
parameters of the best SNP set using all the samples in 
the reference data. We estimated the associations between 
predicted expressions and traits with the combination of 
SNP-trait effect sizes while accounting for linkage dise-
quilibrium among SNPs. The process to evaluate and 
select the best model is described in greater detail in sup-
plementary methods.

Model Evaluation

We displayed the analyses for evaluating the ETWAS 
and the reasons for including them (supplementary 
figure  1, supplementary methods). After got the gene 
expression prediction models by ETWAS, we first 
evaluated the important role of  epigenetic annotation 
in improving the performance of  gene expression via 
10-fold cross-validation by (1) testing whether the per-
formance of  models significantly increases with the 
number of  active annotations increases, (2) calculating 
the correlation between model performance and SNP 
number, and (3) comparing the epigenetic annotation 
distribution of  genes’ best models and SNPs. Then, we 
compared the cross-validation performance between 
ETWAS and recent work in parallel to ours, which im-
puted expression used only genetic variants with dif-
ferent models, such as lasso, and elastic net. Finally, 
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Fig. 1. Schematic of ETWAS approach. The prediction framework includes 4 sections. First, for each gene, we divide the SNPs within 
1 Mb of the transcription start/end site of the gene into multiple SNP sets according to the eQTL P-value and epigenetic annotations. 
We construct multiple elastic net and lasso models with the SNPs in each SNP set using 10-fold cross-validation R2 in the initial reference 
data. Second, we evaluate the prediction performance of each SNP set by cross-validation R2 between the predicted and observed 
expression, and the SNP set with the highest mean R2 is selected as the best model. Third, we construct the final prediction model with 
the parameters of the best SNP set using all the samples in the reference data. We then estimate the associations between predicted 
expressions and traits with the combination of SNP-trait effect sizes while accounting for linkage disequilibrium among SNPs.
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we evaluated the prediction models on an independent 
cohort. Cross-study prediction accuracy was measured 
by weights derived from the best models with all whole 
blood samples from GTEx to predict gene expression 
levels in the Geuvadis dataset.

Model Application

We applied ETWAS to identify genes associated with 
BD using summary data comprising 20 352 BD cases 
and 31  358 controls of  European descent. Since sev-
eral of  the ETWAS hits overlapped with significant BD 
loci, we first performed conditional and joint analyses 
to establish whether these signals were due to multiple-
associated features or conditionally independent. We 
validated the ETWAS identified conditionally inde-
pendent genes by (1) differential gene expression ana-
lyses, (2) calculating partitioned heritability, and (3) 
phenome-wide association study. We then performed 
the GWAS catalog enrichment analyses and drug target 
enrichment analyses to demonstrate ETWAS’s ability 
to identify BD-related genes. To test for the biological 
functions of  ETWAS identified genes, the FUMA29 
prioritized genes with and without ETWAS identi-
fied genes were tested against gene sets obtained from 
MsigDB (GO gene sets and curated gene sets) using 
hypergeometric tests. At last, we employed ETWAS 
to identify new expression-trait associations using an 
early released summary association data for BD in 
2012, comprising 7481 BD cases and 9250 controls of 
European descent, and then looked for genome-wide 
significant SNPs at these loci in the larger BD GWAS 
(expanded to 20 352 BD cases and 31 358 controls).

Results

Model Generation and Evaluation

Heritability of Gene Expression. The mean heritability 
of gene expression was 0.016 for all protein-coding genes 
in whole blood, and 0.04 in brain tissues ranging from 
0.031 to 0.049 in different tissues (supplementary table 1). 
The low heritability indicated the genotype alone played 
a less important role in the expression of all genes, which 
highlights the importance of integrating epigenetic fea-
tures for the prediction of gene expression besides ge-
netic variants. We identified 2239 significantly heritable 
genes in whole blood and 19 632 gene-tissue pairs of 9492 
genes in 13 brain tissues. Among the significantly herit-
able genes in the brain, we found that almost half  of them 
(5155/9492) were significant only in one brain tissue (sup-
plementary figure 2). We observed a high correlation of 
gene expression heritability in different brain tissues, with 
a correlation coefficient ranging from 0.35 to 0.69 (sup-
plementary figure 3).
Epigenetic Annotation Improved the Performance of 
Gene Expression Prediction. The performance of gene 

expression prediction was better in higher heritable genes 
(supplementary figure 4), which could be supplementary 
to prove the appropriateness of focusing on high herit-
ability genes. We evaluated whether the expression of 
heritable genes could be accurately imputed in 13 brain 
tissues from genotype with the epigenetic elements as 
prior. We noted that the cross-validation performance 
significantly increased with the number of active annota-
tions increasing in 11 tissues, and the genes with at least 
2 active annotations 1.01× to 1.19× outperformed the 
genes with 0 active annotations (figure 2A, supplemen-
tary figure 5). We identified a negative correlation between 
cross-validation R2 and SNP number in the best models 
(figure 2B, supplementary table 4), which consistent with 
the sparsity of the local architecture of gene expression 
and a handful of genetic variants that contribute to the 
variability in gene expression.30 The negative correla-
tion between model performance and SNP number in-
dicated that the model performance was not better with 
the increased SNPs. Thus, the key to improving the per-
formance is to choose the effective SNPs. We think ep-
igenetic annotation plays an important role in selecting 
effect SNPs. We demonstrated that the best SNP sets for 
predicting gene expression significantly enriched in active 
epigenetic elements by comparing the epigenetic annota-
tion frequency between the best SNP sets and all variants 
used (Pearson’s chi-squared test, P  <  0.01) (figure  2C, 
supplementary figure  6). Specifically, the best SNP sets 
distributed in the active HMM annotation at a frequency 
of 1.32–1.45 times that of all variants, while distributed 
in the TFBS region and DHS region at a frequency of 
2.12–2.43 and 1.70–2.40 times that of all variants. We 
further evaluated ETWAS’s performance and compared 
them with recent work in parallel to ours. On average, our 
pipeline attained slightly better performance than using 
lasso, elastic net, and top SNP (figure 2D, supplementary 
figure 7). For ETWAS, the average 10-fold cross-validated 
prediction R2 value ranging from 0.11 to 0.16 in different 
brain tissues (supplementary table 4).
ETWAS Performance in a Separate Cohort. We also 
tested the prediction models on separate cohorts. The av-
erage prediction R2 was 0.034. The top 3 genes with the 
highest performance are illustrated in supplementary 
figure 8, proving a comparison of the predicted and ob-
served expression. Among these genes, the LDHC trained 
in GTEx performed best, and the R2 between predicted 
and observed expression levels in Geuvadis was 0.82. 
We found the diversity of predicted gene expression de-
pended on the number of SNPs in the final model, and the 
dispersion of predicted gene expression depended on the 
SNP weights. A quantile-quantile plot showed expected 
and observed R2 from ETWAS is given (supplementary 
figure  9). We identified a substantial departure from 
the null distribution, indicated that the ETWAS model 
trained in GTEx whole blood captured a substantial pro-
portion of the transcriptome variability in Geuvadis.
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ETWAS Significant Hits. We applied ETWAS to iden-
tify genes associated with BD using summary data 
comprising 20  352 BD cases and 31  358 controls of 
European descent. A total of  9492 unique genes across 
13 brain tissues (resulting in 19 632 distinct tests, sup-
plementary figure 2) were used in this study. We set the 
significance threshold at P < 2.55 × 10–6 (0.05/19 632) 
after adjustment for multiple testing corrections by 
Bonferroni correction. ETWAS identified 34 suscep-
tibility genes associated with BD, comprising 44 total 
associations (figure  3A, supplementary table  5). For 
example, the most significant gene, NEK4, associated 
with BD in 3 tissues (PCBG = 1.66 × 10–9, PACC = 7.38 × 
10–9, PNAB = 1.88 × 10–6).
Expression Signals Explained Several BD Loci. We iden-
tified 14 conditionally independent genes through con-
ditional analyses (table  1). We observed that NEK4 

explained most of the signals at its loci, a region that 
contained 27 significant ETWAS hits (rs2071044 lead 
SNPGWAS P  =  9.10  × 10–9, conditioned on NEK4 lead 
SNPGWAS P  =  0.57, explained 0.901 of the variances) 
(figure  3B). We detailed NEK4’s ETWAS expression 
models (supplementary figure  10A) as well as genes at 
the same locus and shared the same variants in the final 
prediction models.
Expression Signals Drove BD ETWAS Loci. Among 
the conditionally independent genes, we identified 
10 genes that were not implicated in the original BD 
GWAS, which were regarded as novel candidate genes 
for BD (table 1). BRF2 explained 0.352 of  the variances 
(rs12677998 lead SNPGWAS P = 1.10 × 10–6, conditioned 
on BRF2 lead SNPGWAS P = 1.60 × 10–3) (figure 3C). We 
detailed BRF2’s ETWAS expression models (supplemen-
tary figure 10B) as well as genes at the same locus and 
shared the same variants in the final prediction models.

Fig. 2. Epigenetic data improves the performance of gene expression prediction in brain tissues. (A) The cross-validation R2 of  the best 
prediction models are sorted according to the active annotation number and group into 3 categories: 0, 1, ≥2. One asterisk (*) indicates 
P-value smaller than 0.05 (P < 0.05), 2 asterisks (**) indicates P-value smaller than 0.01 (P < 0.01). (B) The correlation between the 
prediction performance and the SNP number in the best model. The x-axis represents cross-validation R2 and the y-axis represents the 
SNP number of the best model. (C) The epigenetic annotation distributions of the SNPs used for all genes and the best ETWAS models 
in 2 brain tissues. (D) Accuracy of individual-level expression imputation models. Accuracy is estimated using cross-validation R2 
between predicted and true expression. Box plots indicate the accuracy distribution for 2 brain tissues in 5 methods: top, lasso, elastic net 
(Enet), ETWAS-lasso, and ETWAS-enet.
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Fig. 3. ETWAS identifies new BD associations. (A) Manhattan plot of the ETWAS (upper) and GWAS (lower) results for BD 
(n = 20 352 cases and n = 31 358 controls). The line represents the Bonferroni-corrected significant thresholds, P = 2.55 × 10–6 for 
ETWAS, and P = 5 × 10–8 for GWAS. (B–C) Regional association of ETWAS hits. Chromosome 3 (B) and chromosome 8 (C) regional 
association plot. The conditionally significant genes are NEK4 (B) and BRF2 (C). The bottom panel shows a regional Manhattan plot 
of the GWAS data before (light gray) and after conditioning on the predicted expression of the conditionally significant genes. For color, 
please see the figure online.
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Functional Relevance of Identified Genes. Among the 
9492 significantly heritable genes, 7730 genes were 
tested in the PsychENCODE, and 24/34 genes identi-
fied by ETWAS after multiple testing adjustments were 
associated with BD at the expression level or the tran-
script level. We found 10 of  the 14 conditionally in-
dependent genes were proved, including 7 novel genes 
(supplementary table  6). Five of  the novel genes can 
be found annotated phenotypes in the knock-out mice 
model. Since the phenotypes MGI arranged did not in-
clude BD, we listed all the phenotypes of  conditionally 
independent novel genes reported in MGI (supplemen-
tary table 7). We found 3 genes (HDAC5, ASB16, and 
CDAN1) associated with cardiovascular disease (CVD) 
relevant phenotypes, such as cardiac hypertrophy, ab-
normal heart morphology, abnormal heart shape, and 
an enlarged heart. There is an integration of  the var-
ious factors that putatively underlie the association of 
BD with CVD,31 which indirectly suggested that the 
genes we found may be related to BD.
Partitioned Heritability of ETWAS Identified BD 
Genes. Conditionally independent genes explained 
2.17% (SE = 0.52%) of the estimated heritability, a 26.8× 
enrichment (P = 5.91 × 10–5) compared to the percentage 
of SNPs. Combined the SNPs from ETWAS and GWAS 
explained a much larger percentage of heritability (5.64%, 
SE = 0.76%). We performed a t-test to compare the par-
titioned heritability of GWAS loci with that of GWAS 

loci and the ETWAS identified conditionally independent 
genes. As shown in figure  4A, ETWAS identified genes 
significantly increased the proportion of explained her-
itability (P = 5.60 × 10–66). We further identified similar 
results when compared with the sub-GWAS signals with 
P-value < 1 × 10–7 and 1 × 10–6 (supplementary figure 11), 
but not for signals with P-value < 1 × 10–5. These results 
indicated that most of the genes identified by ETWAS 
could be covered by signals with P-value less than 1 × 10–5.
Phenome-Wide Association Study. A total of 158 pheno-
types, such as cognitive, immunological, metabolic, neu-
rological, psychiatric, were significantly associated with 
the SNPs in the final model of the BD genes (supplemen-
tary figure  12A). We found 38 phenotypes, including 9 
psychiatric phenotypes, genetically correlated with BD 
(P < 0.05) (supplementary figure 12B). After Bonferroni 
corrections, there were 9 phenotypes such as schizo-
phrenia and depression positive correlated with BD. We 
also found evidence for the causal effects of 6 phenotypes 
on BD (supplementary figure 13). For example, schizo-
phrenia significantly increased the prospective risk of BD 
(OR = 1.55, 95% CI: 1.50–1.61).
GWAS Catalog and Drug Target Enrichment Analyses. We 
found that BD had a significant enrichment (P  <  10–4) 
of GWAS catalog reported genes (figure 4C) and Open 
Targets Platform reported drug targets (figure 4D) in the 
ETWAS results, which suggested that they were likely to 
be true disease associations even for those failed to meet 
strict genome-wide significance.

Table 1. Conditionally Independent ETWAS Genes for BD

Gene Tissue Best eQTL aCross-validationR2 TWAS Z-score bTWAS P-value cImplicated in 2019 BD GWAS

NEK4 CBG rs2019065 0.108 6.03 1.66 × 10–9 Yes
NEK4 ACC rs2255107 0.073 5.78 7.38 × 10–9 Yes
NEK4 NAB rs731831 0.131 4.77 1.88 × 10–6 Yes
LMAN2L SUB rs11891926 0.146 −5.48 4.36 × 10–8 Yes
PBX4 CER rs2288865 0.072 5.60 2.13 × 10–8 Yes
ADD3 CER rs4918489 0.155 5.09 3.68 × 10–7 Yes
RP11-382A20.3 CEH rs8034801 0.094 5.59 2.32 × 10–8 No
HDAC5 CEH rs7207464 0.093 5.58 2.41 × 10–8 No*
PACS1 FRO rs7114014 0.107 5.55 2.84 × 10–8 No*
FTCD NAB rs2839258 0.195 −5.39 7.08 ×10–8 No
ASB16 CEH rs9910055 0.185 5.34 9.29 × 10–8 No
BRF2 HYP rs12549353 0.141 5.33 1.01 × 10–7 No
FADS1 CEH rs174568 0.197 −5.07 3.90 × 10–7 No
FADS1 CER rs174535 0.174 −4.82 1.43 × 10–6 No
HIST2H2AA3 COR rs2039800 0.034 −4.83 1.39 × 10–6 No
ZNF584 SCC rs1550813 0.168 4.82 1.45 × 10–6 No
CDAN1 CER rs1359003 0.073 4.78 1.73 × 10–6 No

Note: CBG, Brain Caudate basal ganglia; ACC, Brain Anterior cingulate cortex BA24; NAB, Brain Nucleus accumbens basal ganglia; 
CER, Brain Cerebellum; CEH, Brain Cerebellar Hemisphere; FRO, Brain Frontal Cortex BA9; SUB, Brain Substantia nigra; HYP, 
Brain Hypothalamus; SCC, Brain Spinal cord cervical c-1; COR, Brain Cortex.
aThe cross-validation R2 between predicted and observed gene expression is based on 10-fold cross-validation within training data.
bTo account for multiple testing, we used a significance threshold of 2.55 × 10–6 for the ETWAS analyses.
cWhether there are any genome-wide significant SNPs within 500 kb away from the gene in the discovery dataset. The asterisk (*) indi-
cates the genes implicated in a more massive combined data.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data


1649

ETWAS for Bipolar Disorder

Gene-Set Enrichment Analyses. We prioritized 156 
unique genes for BD by FUMA SNP2GENE process 
(supplementary methods). We noticed that ETWAS 
identified genes shared biological functions with 
the GWAS prioritized genes in 18 gene sets, such 
as “Alzheimer’s disease incipient up” (supplemen-
tary table 8). Besides, we identified additional 12 gene 
sets after adding ETWAS results, such as cardiovas-
cular disease-relevant phenotypes, “cardiac muscle 

contraction,” “hypertrophic cardiomyopathy (HCM)” 
and “dilated cardiomyopathy.”
Validation of Novel Loci in Subsequent BD Study. We fur-
ther employed ETWAS to identify new expression-trait 
associations using an early released summary associa-
tion data for BD in 2012, comprising 7481 BD cases and 
9250 controls of European descent.32 We identified 4 con-
ditionally independent novel genes (more than 500  kb 
away from any genome-wide significant SNPs) using the 

Fig. 4. (A) Partitioned heritability of conditionally independent genes and GWAS loci. The null expectation, equal to the percentage 
of SNPs in each category (light gray), and P-values report the difference from this expectation. Fold enrichment relative to the null 
expectation is shown in parentheses below each category. Error bars show standard errors. (B) GWAS catalog enrichment analyses of 
ETWAS genes. (C) Drug targets enrichment analyses of ETWAS genes. The 2 histograms show the expected number of genes with 
P < 0.01 based on 10 000 random permutations. The large points show the observed number of previously known BD genes/targets that 
fall below this threshold. For color, please see the figure online.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
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2012 BD GWAS summary. We then looked for genome-
wide significant SNPs at these loci in the larger 2019 BD 
GWAS3 (expanded to 20,352 BD cases and 31,358 con-
trols). We identified all the 4 novel BD-associated genes 
contained genome-wide significant SNPs in the 2019 
GWAS summary data (P  <  5  × 10–8, supplementary 
table 9). Thus, ETWAS is highly predictive of robust phe-
notypic associations.

Application of ETWAS to Height

We applied our method in height (~700 000 samples) to 
confirm the reliability of ETWAS (supplementary re-
sults). We identified 700 genes associated with height 
after Bonferroni correction (supplementary figure  14). 
Of the 700 identified genes, 9 genes were not proximal to 
any genome-wide-significant SNP for height, implicated 
novel genes (supplementary table 10). Information from 
the MGI and the validation of novel loci in subsequent 
height study also supported the reliability of ETWAS 
(supplementary results, supplementary tables 11 and 12).

Discussion

In this study, we developed a pipeline named epige-
netic element-based transcriptome-wide association 
studies (ETWAS). We identified 44 genes with geneti-
cally predicted expression levels associated with BD risk. 
Additionally, through conditional and joint analyses, we 
identified 14 independent genes associated with BD risk 
in 13 brain tissues. Ten of these genes were not previ-
ously implicated with BD, which were regarded as novel 
candidate genes.

We applied conditional and joint association methods 
to identify independent genes. Importantly, the ETWAS 
expression signals drove the significance for several pre-
viously implicated BD loci when conditioned on the 
ETWAS genes. For example, NEK4 explained 90.1% of 
the GWAS signal, which suggested that after considering 
the predicted expression signal of NEK4, there was little 
residual association signal from the genetic variant in the 
GWAS locus. We identified 14 conditionally independent 
genes, 4 (NEK4, LMAN2L, PBX4, and ADD3) impli-
cated in the original BD GWAS, and the rest 10 genes 
were regarded as novel candidate genes for BD. Zhihui 
et  al33 have reported the associations between psychi-
atric risk alleles and mRNA expression of NEK4, and the 
overexpression of NEK4 could reduce mushroom density 
spines in rat primary cortical neurons, the most mature 
form of all spines that responsible for long-term memory. 
For the novel candidate genes, M Ikeda and colleagues 
performed a GWAS of BD in the Japanese population 
and highlighted a locus at 11q12.2, a region known to 
contain regulatory genes for plasma lipid levels, including 
FADS1.34 Moreover, variations in FADS1 have been re-
lated to polyunsaturated fatty acids (PUFA) blood 

concentrations by candidate gene approaches35 and 
several pieces of evidence suggested that the omega-3 
PUFA was associated with reduced risk for developing 
BD,36 which indirectly suggested the association between 
FADS1 and BD. Future studies could interrogate whether 
expression differences of other candidate genes are con-
sistent with our findings.

Since gene’s heritability provided an upper bound of 
the predictive accuracy, genes that did not significantly 
heritable at current sample sizes were not included in this 
project. Some of the strongly implicated genes in BD risk 
were not assayed, such as ITIH1, FADS2, and NCAN,3 
due to non-significant heritability estimates in any of 
the brain tissue. We think this could be partly due to the 
quality of available eQTL data. Although gene expression 
is amenable to genetic prediction with relatively modest 
sample sizes because of the sparse genetic architecture 
of gene expression,30 recent evidence suggested that 
larger expression reference panels would help increase 
the total number of significant cis-heritable genes avail-
able for prediction.14 We detected the overlap between 
the ETWAS genes and GWAS reported genes. Among 
the 19 loci, 9 genes were significantly heritable in at least 
one brain tissue and qualified for ETWAS analyses. Two 
genes were identified by ETWAS after multiple testing 
adjustments, which were LMAN2L (PSUB = 4.36 × 10–8) 
and ADD3 (PCER = 3.68 × 10–7) (supplementary table 13). 
Another 2 genes were identified at a nominal significance 
level, which were RPS6KA2 (PCEH = 0.029) and ZNF592 
(PCER = 0.030). For the rest 5 genes, we displayed the final 
prediction models and found that the identified SNPs 
did not play a role in the gene expression model. For ex-
ample, TRANK1 significantly heritable in the cerebellum 
and hypothalamus, and the GWAS-identified lead SNP, 
rs9834970, did not contribute to the gene expression 
prediction model in the cerebellum (PeQTL = 0.61) or the 
hypothalamus (PeQTL = 0.91) (supplementary figure 15). 
Since rs9834970 is in the intergenic region and closest to 
TRANK1, the original GWAS paper assigned the locus 
to TRANK1. Additionally, our method aims to iden-
tify genes associated with the disease. However, GWAS-
identified loci are not always associated with diseases by 
regulating gene expression.37,38 Thus, it is reasonable that 
some of the GWAS assigned genes were not identified by 
ETWAS. Therefore, we suggest ETWAS as a complemen-
tary method to identify new phenotype-associated genes 
as well as prioritize candidate genes.

Furthermore, 2 genes (NEK4 and FADS1) were 
Bonferroni-corrected significant in several brain tissues, 
while others only significant in the specific tissue. Since 
expression regulation may be common across tissue types, 
it was refreshing not to see consistency across panels. For 
instance, PBX4 had a P-value of 2.13 × 10–8 in the cer-
ebellum but a P-value of 0.069 in the cortex. Similarly, 
HDAC5 had a P-value of 2.41  × 10–8 in the cerebellar 
hemisphere but a P-value of 4.90 × 10–3 in the substantia 

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab023#supplementary-data
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nigra. Although it may be due to tissue-specificity, it is 
essential to note that it may also be due to specific effects 
and the quality of the RNA data and panel size of dif-
ferent tissue types from GTEx.

Although we are convinced ETWAS has significant 
potential to delineate further the biological mechanisms 
for human complex diseases, our current study’s limita-
tions also need to be addressed. In part due to the his-
torical paucity of eQTL in populations of non-European 
ancestry, all subjects from the 2 reference panels were 
limited to be European ancestry, and the results may 
not apply to other populations. Since the genetic pre-
dictors of gene expression are more accurate in popu-
lations of similar ancestry,39 further study with a larger 
sample size of different races with both genotype and 
gene expression levels is needed. Next, although ultrarare 
variants have been reported to drive substantial cis her-
itability of human gene expression,40 it is unrealistic to 
include singletons in expression prediction models at 
present. Additionally, BD-associated genes identified by 
ETWAS does not imply causality, and functional studies 
are needed to determine underlying mechanisms of risk 
comprehensively. Larger transcriptome and GWAS 
datasets for BD are likely to improve statistical power for 
gene identification in the future. Likewise, transcriptome 
datasets from specific ancestry could also improve future 
BD ETWAS approaches.

In conclusion, ETWAS is a powerful method that in-
creases statistical power to identify genes associated with 
BD. We hope ETWAS could provide novel insights into 
the identification of additional susceptibility genes and 
further delineate the biological mechanisms for other 
human complex diseases.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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