
Accounting of Receptor Flexibility in Ultra-Large Virtual Screens 
with VirtualFlow Using a Grey Wolf Optimization Method

Christoph Gorgulla1,2,5, Konstantin Fackeldey3,4, Gerhard Wagner2, Haribabu Arthanari2,5

1Department of Physics, Harvard University, Cambridge, USA

2Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 
Boston, USA

3Institute of Mathematics, Technical University Berlin, Berlin, Germany

4Zuse Institute Berlin, Berlin, Germany

5Department of Cancer Biology, Dana Farber Cancer Institute, Boston, USA

Abstract

Structure-based virtual screening approaches have the ability to dramatically reduce the time and 

costs associated to the discovery of new drug candidates. Studies have shown that the true hit 

rate of virtual screenings improves with the scale of the screened ligand libraries. Therefore, we 

have recently developed an open source drug discovery platform (VirtualFlow), which is able 

to routinely carry out ultra-large virtual screenings. One of the primary challenges of molecular 

docking is the circumstance when the protein is highly dynamic or when the structure of the 

protein cannot be captured by a static pose. To accommodate protein dynamics, we report the 

extension of VirtualFlow to allow the docking of ligands using a grey wolf optimization algorithm 

using the docking program GWOVina, which substantially improves the quality and efficiency of 

flexible receptor docking compared to AutoDock Vina. We demonstrate the linear scaling behavior 

of VirtualFlow utilizing GWOVina up to 128 000 CPUs. The newly supported docking method 

will be valuable for drug discovery projects in which protein dynamics and flexibility play a 

significant role.
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Introduction

In structure based drug design one common goal is to design and optimize a small molecule 

(compound), such that it fits optimally, with favorable energetics into the binding pocket 
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of a target protein. The conventional approach is to test the compounds individually in 

an experimental wet lab setting via high throughput screens. Besides these experiments, 

computer-aided drug design (CADD) has been established, which allows to compute the 

binding affinity between the small molecule and the target protein. In the realm of structure­

based virtual screenings, for a given binding pocket on the surface of the protein, ligands 

from a large databases of prospective candidate molecules are screened, i.e. the binding 

strength of individual ligands from the large database to a given target are computationally 

predicted by molecular docking. Docking programs such as AutoDock Vina [22] fit these 

candidate molecules into the binding pocket and score the resulting binding geometry 

with regard to the binding affinity. The scoring function associated with the docking 

program assigns a docking score, that is a marker of the calculated binding affinity, to 

each tested interaction geometry (Fig. 1a). The docking score is a measure of the predicted 

binding affinity of the small molecule to the protein (Fig. 1b). The interaction geometry 

(conformation) with the best docking score is the final score for the compound. Docking 

methods should estimate the binding affinity as precisely as possible on the one hand, and as 

quickly as possible on the other hand. Even with fast docking programs, ultra-large virtual 

screenings involving hundreds of millions or billions of molecules require a massive amount 

of computation time with millions of CPU hours. Thus resources such as supercomputer 

or cloud-based computational platforms are required. With increased scale of the ligand 

library screened, the true hit rate (the fraction of hits which bind to the target protein 

in experimental binding assays) of the screening improves, as was shown by theoretical 

and experimental studies [8, 9, 13]. Since the chemical space of small molecules suitable 

for drug discovery is estimated to contain more than 1060 molecules [1], even billion 

of compounds represent only a minuscule fraction of the possible chemical space to be 

explored.

We describe here an extension of a platform allowing to screen billions of compounds 

(VirtualFlow), focusing on the new GWOVina docking program which is based on the novel 

global optimization algorithm.

1. Materials and Methods

VirtualFlow is an open source parallel workflow platform that we recently developed for 

executing virtual screenings [9, 23], which for the first time allowed to routinely screen 

billions of compounds. VirtualFlow can be employed on any type of Linux-based computer 

clusters managed by a batchsystem, as well as on cloud computing platforms such as 

the Google Cloud. VirtualFlow consists of two different modules, one for the ligand 

preparation (VirtualFlow for Ligand Preparation – VFLP) and one for the virtual screenings 

(VirtualFlow for Virtual Screening – VFVS). Although both methods are used for different 

tasks, they share the same core technology.

1.1. VirtualFlow for Ligand Preparation

Before the ligands can be docked to the target protein, they must be prepared into a 

ready-to-dock format. VFLP is dedicated for this task, and is able to prepare ultra-large 

ligand libraries which can be readily used by VFVS. In addition to the correct file format 
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and the three dimensional spatial structure of the ligand, it can compute the tautomerization 

and protonation states of the molecules via tools like ChemAxon’s JChem package [2] and 

Open Babel [17]. Once a library is prepared, it can be used again and again with VFVS. 

However, since VFLP can prepare the molecules in almost any output format, the prepared 

ligand libraries can also be used for any other purpose and other docking platforms. We have 

previously used VFLP to prepare the REAL library from Enamine (2018 version) containing 

1.4 billion compounds, as well as the ZINC15 library (2018 version) containing 1.2 billion 

compounds into a ready-to-dock format (VirtualFlow versions of these libraries) [9, 21]. The 

VirtualFlow versions of these libraries are freely available on our website [23].

1.2. VirtualFlow for Virtual Screening

A primary goal of virtual screenings is to create a hit list which contains the top scoring 

compounds ranked by their docking score, essentially sorting the molecules in the library 

based on their propensity to bind to the target site on the protein. The docking score 

correlates with the predicted binding affinity to the target protein. The scoring (and thus 

the ranking) is based on the calculation of the free energy of the small molecules to 

the receptor. While for a single compound the docking can be done relatively quickly, 

for a large ligand library containing millions or billions of compounds, this requires a 

substantial amount of computing capacity and time. The computational costs associated 

with the docking routines dramatically increase further if docking procedures with high 

accuracy (e.g. including receptor flexibility, exhaustive search of the docking space) are 

used. To solve the first challenge caused by the large number of ligands, VirtualFlow uses 

a massive parallelization approach to speed up the virtual screening (vide infra). To deal 

with the second challenge involving the increased computational costs in the high accuracy 

implementation, VirtualFlow can be deployed in a multi-staged manner. In a multi-staged 

virtual screen, the entire collection of ligands that are planned to be screened is at first 

docked with a fast method at reduced accuracy. In the next stage, the top X% of compounds 

of the first stage are transferred to the next stage, and screened with higher accuracy. In 

principle, any number of stages with subsequent increase in computational time, which in 

turn increases accuracy, can be employed.

One of the key characteristics of VirtualFlow is that it is able to scale very efficiently 

up to hundreds of thousands of CPUs, which it achieves by employing an embarrassingly/

perfectly parallelization strategy. In this context, VirtualFlow uses an advanced task list 

approach, which completely eliminates the need for any communication between individual 

workers. The tasks are distributed at the beginning in advance to the individual workers by 

a workload balancer, which removes the need to access the task list during the runtime of a 

job. To reduce the number of tasks, the ligands which need to be processed are grouped into 

collections (of e.g. 1000 ligands), and each collection represents a task in the central task 

list. The input and output databases of the workflow consist of a multi-level file structure, 

which involves folders, and (compressed and uncompressed) tar archives.

VFVS supports different docking programs such as AutoDock Vina [22], Smina [11], 

Vina-Carb [16], and VinaXB [10]. All of them are based on AutoDock Vina and improve 

different aspects. Vina-Carb for instance improves the accuracy of carbohydrate docking. 
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Here, we have added support for GWOVina [24], which is able to handle protein side chain 

flexibility more efficiently than AutoDock Vina. It is able to efficiently handle (in terms 

of computational speed) considerably more number of flexible side chains compared to 

AutoDock Vina. In addition, in terms of the quality of the results, GWOVina samples the 

conformational space of the side chains much more effectively due to the utilization of 

a new swarm-optimization-based optimization algorithm, the grey wolf optimizer (GWO) 

[24].

1.3. Grey Wolf Optimization-Based Docking Algorithm

We have added support of GWOVina [24] to VFVS. GWOVina uses the recently developed 

grey wolf optimization algorithm, which has turned out to be highly efficient for flexible 

ligand docking and other types of tasks [12, 14, 24]. Finding the optimal or best orientation 

of the ligand in the target site of the protein is equivalent to finding the absolute minimum 

of an energy landscape in the high-dimensional conformational space, similar to the protein 

folding problem [18]. The conformational space is defined by the degrees of freedom of 

both the ligand and the flexible side chains of the individual amino acid that constitute 

the docking site on the receptor, and all the degrees of freedom are treated equally by the 

algorithm. The degrees of freedom of the receptor side chains which are selected to be 

flexible consists of the torsion angles around the rotatable bonds. The degrees of freedom of 

the ligands includes the translation and rotation in three dimensions in addition to the torsion 

angles around the rotatable bonds.

Inspired by the hunting behavior of the grey wolf pack, the grey wolf algorithm is 

an optimization algorithm using swarm intelligence, i.e. it takes advantage of collective 

behavior of a self-organized system (wolf pack). Members of a grey wolf pack are either 

α, β, δ, or ω wolves, and each of them has a different function during the hunting of a 

prey. Within the hierarchy, the α wolf is the dominant wolf, making the decisions when 

hunting. The β wolf supports the α wolf in its decisions and also in the enforcement of the 

orders of the α wolf. The δ wolves can be considered as a collection of specialist such as 

scouts (monitoring the territory), hunters (helping α/β wolves in hunting) and elders (former 

experienced α and β wolves) are among with them. The δ wolves are subordinates of the α 
and β wolves. The ω wolves are the lowest wolves which have to submit to the α, β and δ 
wolves. In the GWO algorithm [14], which models the hunting strategy of m grey wolves, 

each wolf represents a search agent, and the prey is the optimum (in our case the energy 

minimum, i.e. the “best” orientation of the ligand and the flexible site chains in the target 

site). More precisely the α, β and δ wolves guide the hunting and the ω wolves follow. We 

outline the core algorithm below.

Let x(t) ∈ ℝn be the position of a wolf and xp(t) ∈ ℝn the position of the prey at time step t. 

The distance vector of the wolf from the prey p is then set by

d = ∣ c ⊙ xp(t) − x(t) ∣ . (1)

Here, the product c ☉ xp as well as the absolute value is understood element-wise 

(component-by-component), implying the former is the Hadamard product. The vector c 
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= 2(rand[0, 1])n, where (rand[0, 1])n is a vector with n random numbers between 0 and 1 as 

its entries. Thus d is a vector with positive entries. With this, the position x(t + 1) of the wolf 

in the next time step is given by

x(t + 1) = xp(t) − a ⊙ d, (2)

where a = 2b ☉ (rand[0, 1])n − b and b is a vector with entries decreasing linearly from 2 to 

0 in each iteration step. Note, that the absolute value of a determines the moving direction of 

the wolf with respect to the prey. In case of ∣a∣ > 1 the wolf veers away from the prey and in 

case ∣a∣ < 1 it moves towards the prey. However in our context, the position of the optimum 

(prey) is not known. In the first step the energy (fitness) for each wolf position is evaluated 

and arranged in increasing order of fitness. The algorithm then assigns the first three α, β 
and δ to the positions with the lowest energy since it is supposed that they are the closest to 

the prey (optimum). In a next step the three best updates are computed via

dα = ∣ c1 ⊙ xα − x ∣ , dβ = ∣ c2 ⊙ xβ − x ∣ , dδ = ∣ c3 ⊙ xδ − x ∣ , (3)

where c1, c2, and c3 are defined analogue to c. With this the estimated prey positions are 

obtained by

x1 = xα − a1 ⊙ dα, x2 = xβ − a2 ⊙ dβ, x3 = xδ − a3 ⊙ dδ, (4)

where a1, a2, a3 are defined analogue to a. The next position of the wolf is then given as

x(t + 1) = x1 + x2 + x3
3 . (5)

The original GWO algorithm was extended in GWOVina by an additional random walk 

mechanism which is sometimes employed for the movement of a wolf to improve the 

docking program.

For running the algorithm, the number m of search agents (wolves), the objective function 

(energy function), the dimension n as well as the search space (conformational space) has 

to be provided. The GWO algorithm replaces the global Monte Carlo-based optimizer used 

by the original AutoDock Vina, while the original scoring function of AutoDock Vina is 

used as the objective function. The computation time needed by GWOVina is proportional 

to the number of wolves used according to the authors, and the quality of the docking 

results increases with the number of wolves due to the more elaborate exploration of the 

conformation space [24]. To fully harness the capabilities of GWO, at least four wolves need 

to be employed when using this docking algorithm, as the grey wolf algorithm is based on a 

four level hierarchy of wolves (α, β, δ, and ω wolves). GWOVina was previously compared 

with AutoDock Vina via several benchmarks [24], and GWOVina has shown a substantial 

advantage over AutoDock Vina in terms of finding better docking poses in less time.
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2. Results

Due to the large surface area that constitutes the RNA binding interface of nsp12 (Fig. 

2a), there are a large number of protein side chains to account for at the interaction 

surface that are critical in engaging the RNA. Most docking programs cannot handle the 

flexibility of such large numbers of side chains efficiently, but for GWOVina this does not 

pose a challenge. We have allowed a total of 12 residue side chains at the RNA binding 

interface to be flexible during the benchmarks (Lys593, Phe594, Tyr595, Leu854, Glu857, 

Arg858, Val860, Ser861, Leu862, Ile864, Asp865, Tyr915), though GWOVina could handle 

significantly more [24]. An example compound docked to the target site can be seen in 

Fig. 2b). The computations were run on a Slurm cluster in the Google Cloud [7], and the 

compute nodes which were used employed second generation AMD EPYC Rome CPUs. 

The cluster file system which was used is an Elastifile Cloud File System [3], which is a 

Network File System (NFS) server. For this benchmark we have created a test library, which 

consists of compounds from the REAL library from Enamine which we had previously 

prepared (see above). The entire test library had a size of 1 billion compounds, which 

is large enough for not being depleted during the benchmarks. The test library consists 

of 10 metatranches, each containing 1000 tranches, of which each tranche contains 10 

000 collections, and each collection contains 10 different compounds. The 10 compounds 

are the same in each collection, meaning each collection in the test library is identical 

but nonetheless treated independently by VirtualFlow, which makes the benchmark more 

reproducible. The 10 distinct test molecules are relatively flexible, each containing between 

9 and 10 rotatable bonds, and have a molecular weight between 400 and 425 daltons.

We have tested the scaling behavior and virtual screening speed of VirtualFlow using 

GWOVina with up to 128 000 CPUs, and the speedup was roughly linear up to the 

maximum number of CPUs tested (Fig. 3a). The test system which was used is the 

RNA-dependent RNA polymerase (RdRP) of the SARS-CoV-2 virus, and the targeted 

site on this protein is the RNA binding interface (Fig. 2). RdRPs have been effectively 

targeted to develop antiviral therapeutics in several viral infections in the past such as 

HCV, Zika virus (ZIKV), and HCoVs this an attractive target for therapeutic intervention 

of COVID-19 [4-6]. The receptor structure which was used is the cryo-EM structure with 

PDB code 7BV1 [25]. The RNA was removed, and the structure prepared with Maestro 

from Schrödinger by adding hydrogen atoms at physiological pH value [19]. The command 

line tool prepare_flexreceptor4.py of AutoDockTools was used to merge nonpolar hydrogen 

atoms, to split the receptor into rigid and flexible parts, and to convert the two parts into 

the PDBQT format [15]. The number of wolves used in the first benchmark is one, because 

this setting puts the most stress on the computational infrastructure, such as the cluster file 

system, due to the minimal docking time per ligand and thus maximum amount of file 

transfers and related activities.

We have also tested the virtual screening speed for different numbers of wolves which are 

utilized by the grey wolf optimization algorithm of GWOVina. With only one wolf the 

docking speed is by far the fastest, while the computational costs of using six wolves is 

roughly double as fast compared to that of using 12 wolves (Fig. 3b).
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Conclusion

Virtual screenings have an enormous potential in making drug discovery faster and more 

affordable in the future, and in allowing to find cures for diseases which so far were 

incurable. With ultra-large virtual screenings now in the accessible computational range, 

their power has substantially increased, and they could soon become a standard approach for 

finding new initial hit and lead compounds. Furthermore, due to the vast chemical spaces 

which can be screened in comparison to traditional approaches, tight binders to even highly 

challenging targets can be identified. And with that, the generally more challenging class of 

protein-protein interactions can be targeted via virtual screening approaches. Protein-protein 

interactions play a role in almost any disease, and are expected to become the most 

important class of targets in the future. For any docking efforts the choice of the protein 

structure and the target site on the protein is critical to the success of the screen. Normally 

the starting points for the docking efforts are structures derived from X-ray crystallography, 

cryo-EM or NMR. These structures normally represent a single snapshot of the protein 

and in most cases the lowest energy conformation. However in solution, inside the cell, 

where the hit molecule from the screen should function, the structure could be dynamic 

and accommodating this information about the protein dynamics will substantially improve 

the true hit rate. Capturing protein dynamics is not a trivial task. NMR studies can provide 

information about protein dynamics over a wide timescale (nanoseconds to hours), but 

it is not simple to relate it back to precise structural information. Molecular dynamics 

simulations can provide structural information but are limited in the timescale they can 

sample, typically up to a few microseconds. The interesting conformational changes and 

allosteric changes happen in the microsecond to millisecond time regime. There have been 

a few simulation that have been extended to milliseconds by the group of DE Shaw using 

the custom designed Anton computer [20]. In the absence of detailed structural information 

to capture dynamics, which is the case in most efforts, incorporating side chain dynamics is 

a good alternative to account for dynamics. The combination of GWOVina and VirtualFlow 

unifies the best of both worlds, to account for dynamics and identify genuine hits, facilitated 

by the power of supercomputing platforms. VFVS, including the new feature, is available on 

GitHub (https://github.com/VirtualFlow/VFVS).
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Figure 1. 
Principle of virtual screening and scoring of small molecules
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Figure 2. 
Biomolecular test system consisting of nsp12 used for the benchmarks
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Figure 3. 
Scaling behavior of VFVS using GWOVina as the docking program
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