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Abstract

Basement membranes (BMs) are thin, dense forms of extracellular matrix (ECM) that underlie or 

surround most animal tissues. BMs are enormously complex and harbor numerous proteins that 

provide essential signaling, mechanical, and barrier support for tissues during their development 

and normal functioning. As BMs are found throughout animal tissues, cells frequently migrate, 

change shape, and extend processes along BMs. Although sometimes used only as passive 

surfaces by cells, studies in developmental contexts are finding that BMs are often actively 

modified to help guide cell motility and cell morphogenesis. Here, I provide an overview of recent 

work revealing how BMs are remodeled in remarkably diverse ways to direct cell migration, cell 

orientation, axon guidance, and dendrite branching events during animal development.
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Introduction

BMs are sheet-like ECMs that arose in animals at the time of multicellularity [1]. 

These specialized ECMs are pervasive in animals and underlie all epithelia and surround 

endothelial vessels, muscles, and fat tissues [2]. Two major components of BMs are laminin 

and type IV collagen, which form independent self-oligomerizing networks. Laminin is 

a heterotrimer composed of an α, β, and γ chain and assembles into a non-covalently 

associated network that initiates BM formation and anchors BMs to tissues through 

binding to cell surface integrin and dystroglycan receptors [3]. Type IV collagen is also 

a heterotrimer and is made up of two α1-like chains and one α2-like chain that wrap around 
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each other into a long rigid triple helix [4]. The triple-helical structure, as well as covalent 

cross-linking between N-terminal 7S domains and C-terminal NC1 domains, bestow type IV 

collagen networks stiffness and tensile strength, which allows BMs to mechanically support 

tissues [4]. Type IV collagen networks can be linked to cell-associated laminin through the 

cross-bridging glycoprotein nidogen as well as the heparan sulfate proteoglycans perlecan 

and agrin [5,6]. A hallmark of BMs is their diversity, which arises from different amounts 

of core BM components and post-translational modifications, as well as the presence of 

regulatory proteins, such as matricellular proteins, proteases, and growth factors [7–10]. 

Proteomic studies have indicated that BMs may harbor over 100 distinct proteins [11], 

suggesting vast complexity.

BMs are built with distinctive compositions during animal development to serve as 

specialized scaffoldings that direct cell differentiation, mediate cell polarity, and ensure 

cell survival [5]. They are also uniquely constructed to carry out mechanical functions 

that shape organs, connect tissues, and filter blood [12,13]. Although BMs sometimes 

appear to be passive surfaces along which cells move [14,15], they also have active roles 

in guiding cell motility and directing cell morphogenesis events like neuronal process 

extension. Deciphering the function of BMs in cell migration and cell morphogenesis has 

been hampered by BM complexity—the numerous BM proteins and many roles of BMs in 

supporting cells and tissues. It is also challenging to visualize dynamic cell-BM interactions 

in vivo as these often occur deep in tissues beyond the reach of light microscopy. Yet, 

recent studies using advanced genetics, new imaging approaches, endogenously tagged BM 

proteins, ex vivo tissue culture, and analysis of BM physical properties are expanding our 

understanding of the diverse ways in which BMs are modified to specifically guide cell 

migration and cell morphogenesis events during development [16–21]. Here, I highlight 

these new insights and provide an overview of this important role of BMs, which is not only 

vital for understanding the functions of BMs in animal development, but also has powerful 

implications for human disease.

BMs direct cell movement and neuronal processes by localizing cues

The best understood role of BMs in guiding cells during development is BM’s ability to 

harbor localized or enriched BM components and signaling ligands (referred to generally 

as BM cues) that steer cells. A diverse array of ligands, BM matrix proteins, cell surface 

receptors, and signaling pathways have been identified that direct cell migration, axon 

pathfinding, and dendritic branching along BMs (Table 1). Modifications to BM matrix 

proteins can also help steer cells. Analysis of genetic mutants in zebrafish revealed that 

the ER resident glycosyltransferase Lh3, which appears to modify the BM component 

type XVIII collagen, is required both for the extension of motor axons from the spinal 

cord into the periphery and for the proper migration of the neural crest cells from the 

neural tube [22,23]. Gaps in our understanding of BM-associated cues still remain. One 

challenge is that it is often difficult to discern whether implicated BM components act 

directly on cells or through association with other proteins. For example, it was initially 

shown that localized accumulation of perlecan directs dendrite arborization of the PVD 

neuron in C. elegans at a hemidesmosome-like structure, the fibrous organelle, which 

links body wall muscles to the epidermis [24]. A recent study extended this finding by 
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characterizing a fortuitous mutation in perlecan that removes four immunoglobulin domains, 

which were discovered to localize the BM protein nidogen [18]. Genetic studies further 

indicated that perlecan and nidogen act together to then promote netrin signaling, which 

mediates dendritic branching. This likely represents a common feature of how BM scaffolds 

function, where combinatorial interactions of proteins within BMs provide specificity to 

either signaling ligand localization, cue construction (the cue is composed of multiple 

proteins), or ligand presentation to direct cell movements. Mechanistically how perlecan 

and nidogen promote netrin signaling, however, is still unclear, as the C. elegans netrin 

ligand (UNC-6) has not been detected at sites of perlecan and nidogen enrichment at 

fibrous organelles. This illustrates another challenge in understanding BM directed guidance

—many signaling ligands identified genetically as steering cells along BMs, such as netrin, 

Slit, Decapentaplegic (Dpp), and the cleaved ectodomain of the transmembrane collagen 

COL-99, appear to be present at low levels, as they have not been detected directly at sites 

of BM mediated guidance [25–28]. Instead, these ligands have required overexpression or 

activity sensors to implicate BM localization [25–27].

In many cases, cells respond to cues within BMs that are deposited by other cells or the 

tissue on which the BM resides [22,23,25,26,29–33]. However, a recent study examining 

migration of enteric neural crest-derived cells (ENCDCs) within the developing chick and 

mouse gut revealed how migrating cells lay down their own BM migration cues (Figure 

1) [31]. The ENCDC’s are predominantly derived from multipotent neural crest cells that 

delaminate from the vagal neural tube, enter the foregut, and migrate proximally-to-distally 

along the gut blood vessel BM to populate the midgut and then hindgut to form the 

neurons and glia of the enteric nervous system [34]. Notably, as the ENCDCs reach the 

hindgut, the migratory wavefront cells secrete type XVIII collagen, which promotes rapid 

directional migration of ENCDCs. As the ENCDCs stop migrating, they secrete the BM 

component agrin, which inhibits ENCDC movement [31]. Other cells also appear to secrete 

their own directional cues into BMs. For example, expression of the Slit2 gene by spinal 

cord motor neurons in mice has recently been discovered to halt the transmigration of 

these motor neurons across the spinal cord BM [35], where the Slit protein is thought to 

accumulate [36]. Furthermore, motor neurons of the Drosophila embryonic ventral nerve 

cord secrete perlecan along motor axon trajectories and branching points, where perlecan 

promotes semaphorin-plexin mediated repulsive guidance [37]. Thus, the secretion of 

matrix components and signaling ligands by migrating cells and process extending neurons 

themselves into the BMs they encounter or move on, appears to be a common way that cells 

regulate their own navigation.

BM physical properties control cell morphogenesis and cell invasion

Recent studies have discovered that the physical properties of BMs can also help direct 

cells. The Drosophila ovarian follicle (egg chamber) has emerged as a powerful model for 

understanding how dynamic alterations in BM stiffness and physical features guide cellular 

morphogenetic behaviors. Each Drosophila ovarian follicle is composed of a germ cell 

cluster surrounded by a follicular epithelium, which secretes a BM that localizes to their 

basal side and encircles the follicle. The egg chamber starts as a small sphere, but then 

during 14 stages of development undergoes dramatic growth and a 3-fold elongation along 
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the anterior-posterior (AP) axis (Figure 2) to transform its size and shape [38]. Advances in 

ex vivo culture and live imaging revealed that the follicle epithelium cells collectively crawl 

along the inside of the stationary BM and rotate the follicle along the AP axis during stages 

1–8 of development [20]. Visualization of GFP-tagged collagen, laminin, and perlecan have 

shown that follicle rotation helps form and polarize BM fibrils that align perpendicular 

to the AP axis and embed within a planar BM [39,40]. In addition, examination of BM 

levels and development of atomic force microscopy approaches revealed that overall BM 

deposition and stiffness increase during follicle cell rotation. Furthermore, a gradient of type 

IV collagen levels forms with higher collagen in the central follicle that tapers at the both 

poles. This asymmetry in collagen deposition generates a BM stiffness gradient along the 

AP axis by stage 8 [16,39], with highest stiffness at the center of the egg chamber and softer 

BM at the poles. Recent studies have uncovered how these dynamic physical BM properties 

direct several cellular behaviors that contribute to follicle elongation.

Morphometric analysis of follicle cell behavior during elongation has revealed a fascinating 

cell orientation shift that contributes to follicle elongation. During stages 4–8 follicle cells 

in the anterior region of the egg chamber reorient such that their long axis shifts from 

being perpendicular to the AP axis to running more parallel to AP axis—a reorientation 

that collectively helps elongate the follicle [21]. Through genetic screens, BM stiffness 

manipulations, immunohistochemistry, and fluorescence recovery after photobleaching 

(FRAP) experiments, it was discovered that BM stiffness modulates Src kinase activation, 

which alters junctional E-cadherin trafficking and facilitates the change in orientation of 

anterior follicle cells [21]. Although it is unclear how BM stiffness modifies Src activity 

and why the posterior follicle cells are not similarly reoriented by soft BM (Figure 2), these 

studies are amongst the first to link BM stiffness to directing specific cellular behaviors. 

Interestingly, new findings in the Drosophila ovary have further implicated type IV collagen 

deposition and expression of the nuclear lamin, LamC, a marker of mechanical constraint, 

in promoting cell intercalation of stalk cells—the cells that link adjacent follicles [41]. 

In addition, a recent study that pioneered BM stiffness analysis in mice through pressure 

myography, AFM, and the stiffness-sensitive structure of caveolae, found that netrin-4, 

which disrupts laminin networks, softens BMs in vivo and decreases the ability of cancer 

cells to invade through BMs in vitro. Consistent with a role in cancer progression, increased 

netrin-4 expression is associated with improved patient prognosis in breast, kidney, and 

melanoma patients [17]. While the mechanisms through which BM stiffness promotes stalk 

cell intercalation and cancer cell invasion are unknown, these studies suggest that BM 

stiffness might guide many different cellular behaviors.

In addition to regional stiffness, evidence has emerged through recent studies in the 

Drosophila egg chamber that BM topography—the oriented fibrils embedded within the 

BM—can also guide cells. The ECM receptor Dystroglycan and the cytosolic protein 

Dystrophin are part of a complex that links the ECM to the F-actin cytoskeleton. 

Live imaging, mutant analysis, and spatiotemporal knockout and rescue experiments, 

demonstrated that Dystroglycan and Dystrophin translate the perpendicular BM fibril 

orientation established early in egg chamber development into perpendicularly oriented 

basal F-actin stress fibers within follicle cells during the last stages of elongation—stage 

12 and onward [38]. This F-actin alignment allows anisotropic myosin contractions that 
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promote late stages of elongation [42]. How Dystroglycan and Dystrophin translate the 

orientation of BM fibrils to F-actin stress fibers is unclear, but might involve the higher 

density of binding sites for Dystroglycan [38]. Collagen and laminin based BM fibrils have 

not yet been observed in other BMs, but the BM-associated matrix proteins hemicentin 

and CPSG4 form into tracks and fibrils linked with cell migration and morphogenesis 

events during C. elegans, mouse, and sea urchin development [43–45]. Thus, as more 

imaging approaches are developed to examine individual BM components, it seems likely 

that additional examples of BM-associated fibrils guiding cells will be discovered.

BM Proteolysis Guides Cell Migration and Dendrite Reshaping

Matrix metalloproteases of the ADAMTS and MMP families cleave BM components and 

can both degrade BMs and generate bioactive ECM fragments that have unique signaling 

activities [46]. Determining whether MMP-mediated functions are carried out by ECM 

fragments has been challenging, as it is not yet possible to visualize the precise localization 

of ECM fragments or eliminate ECM fragments without perturbing the parent BM protein. 

Thus, while addition of BM-derived ECM fragments to cells and tissues in culture 

can regulate branching morphogenesis and epithelial-to-mesenchymal transitions (EMTs) 

[47,48], determining their localization and function in vivo has not yet been possible.

Despite experimental challenges, elegant studies are beginning to establish that 

metalloproteases guide cells through their localized action on BMs in vivo. For example, 

the Drosophila ADAMTS family member AdamTS-A is expressed by surface glial cells 

of the developing Drosophila central nervous system (CNS). The surface glial cells sit 

under the BM that enwraps the CNS. Reduction of AdamTS-A activity causes a mass 

exodus of neuronal and glial cells from the CNS, which then invade other tissues [49]. 

Loss of AdamTS-A function leads to a buildup of type IV collagen within the CNS BM 

and reducing collagen suppresses the AdamTS-A migration and invasion phenotype. As 

increased collagen leads to greater BM stiffness, these observations suggest that AdamTS-A 

might counteract a BM stiffness signal that triggers neuronal and glial migration [49]. 

Consistent with a possible shared function in precisely tuning type IV collagen levels within 

BM to regulate cell migration, the C. elegans ortholog of AdamTS-A, GON-1, is secreted by 

the BM-encased migrating distal tip cell in C. elegans, where it functions to lower BM type 

IV collagen levels and promote distal tip cell movement [50,51].

There is also evidence that matrix metalloprotease MMP family members guide cells by 

degrading and removing BM in specific locations. A study in Drosophila examining sensory 

neuron dendrites in the abdomen of young adults found that MMP-2, a plasma membrane 

tethered MMP, is crucial for dendrite reshaping [52]. MMP-2 is transiently expressed in 

the epidermis of early adults and degrades the underlying BM between the epidermis and 

musculature. The BM that rests in the grooves between muscle fibers, however, is not in 

contact with epidermal cells and is thus protected from MMP-2 mediated degradation. The 

sensory neuron dendrites initially adhere to the intact BM near the epidermis, but BM 

degradation is thought to loosen this dendrite-BM attachment and allow dendrites to move 

between the muscle fibers and bind to the remnant BM in the channels between the muscle 

fibers. This movement remodels the dendrites into a lattice-like pattern that follows the 

Sherwood Page 5

Curr Opin Cell Biol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



grooves between the muscle fibers [52]. Localized removal of BM by MMPs also appears 

to guide cells during mouse gastrulation, where the primordial germ layers of ectoderm, 

mesoderm, and endoderm are established. In the early mouse embryo, the expression of 

several MMPs correlates with the formation of holes within the epiblast BM (Figure 3) 

[19]. These BM holes presage the path of the primitive streak—a progressive EMT of 

epiblast cells that initiates in the proximal posterior region of the embryo and moves to 

the distal anterior zone (Figure 3) [53]. Cells undergoing EMT transmigrate the BM and 

ingress into the space between the epiblast and embryonic visceral endoderm and give rise 

to mesoderm and endoderm. Culturing embryos in the presence of MMP inhibitors prior to 

primitive streak formation, led to a loss of BM holes, defective primitive streak extension, 

and a failure to properly gastrulate [19]. These results suggest that the generation of holes 

in the BM via MMP activity may facilitate EMT and ingression of the mesoderm and 

endoderm. Importantly, it is unknown whether MMP activity instructs EMT and primitive 

streak formation, or simply acts permissively to allow BM transmigration during EMT. 

Furthermore, in all of these examples of matrix protease activity guiding cells, their direct 

BM substrates are unknown, and it is possible that bioactive ECM fragments generated by 

protease activity contribute to their mechanism of action.

Outlook

BM complexity provides a seemingly infinite reservoir of mechanical and chemical cues 

to guide cells. As outlined in this review, recent studies indicate that BMs are deposited 

and modified in diverse ways to steer cells throughout animal development. Elucidating 

the role of BMs in directing cell migration and morphogenesis in dynamic and complex 

native settings, however, remains a challenge. While new adaptive light-sheet microscopy 

and computational image analysis methods in mice and zebrafish are allowing single cell 

analysis of cellular behaviors in living embryos [54,55], BM matrix components have not 

yet been endogenously tagged with genetically encoded fluorophores in vertebrates, limiting 

our understanding of dynamic cell-BM interactions in these animals. Recent advances 

in comprehensive tagging of endogenous BM components with genetically encoded 

fluorophores in C. elegans [8], should help provide genome editing strategies to fill this 

gap in vertebrate experimental systems. In addition, new methods to assess BM mechanical 

properties in vivo in the Drosophila egg chamber and adult mouse tissues, [16,17] can now 

be adopted in other developing animals and tissues to explore the recently recognized role 

of BM stiffness in guiding cells. As cell migration and changes in cell morphogenesis play 

critical roles in the pathogenesis of cancer, autoimmune disease, and neurological disorders, 

studies in dynamic and experimentally accessible developmental contexts will not only help 

to reveal how animals develop, but also provide important insights into human disease.
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Figure 1. Neural crest cells secrete matrix components to control their own migration.
Most of the enteric nervous system of the gut is derived from vagal neural crest cells 

that undergo an epithelial-to-mesenchymal transition (EMT) at the dorsal neural tube, 

delaminate, and then migrate and colonize the mesenchyme of the foregut. Once in the 

gut, the neural crest cells are referred to as enteric neural crest-derived cells (ENCDCs) and 

they undergo a long migration along the basement membrane (BM) of gut blood vessel (not 

shown) to populate the entire gut. At embryonic day 7 (E7) the wave front of the ENCDCs 

reaches the distal hind gut where they secrete collagen XVIII, which promotes ENCDC 

migration. Later, at E10, the ENCDCs secrete agrin, which inhibits ENCDC migration.
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Figure 2. Basement membrane (BM) physical properties help drive Drosophila follicle 
elongation.
The Drosophila follicle (egg chamber) is initially small and spherical, but dramatically 

expands in volume and elongates along the anterior-posterior (AP) axis during its 14 stages 

of development. A key driver of elongation is the BM surrounding the follicle. During 

stages 1–8 the follicle cells collectively migrate, causing the egg chamber to rotate within 

its encasing BM. As the chamber rotates, the follicular epithelium deposits more planar BM 

as well as BM fibrils (first seen at stage 4) that embed within the planar BM and orient 

perpendicular to the AP axis. Also, a gradient of type IV collagen forms along the AP axis, 

with increased levels in the central region that tapper at both poles. The overall increase in 

BM deposition, fibril formation, and the gradient of type IV collagen increases BM stiffness 

and creates a BM stiffness gradient. During stages 6–8 the softer BM in the anterior region 

of the follicle is translated into appropriate Src activation, which alters junctional E-cadherin 

trafficking and facilitates the reorientation cells such that their long axis is more parallel to 

the AP axis. This reorientation helps promote follicle elongation. In addition, during stages 

12–14, the follicle cells, through the dystroglycan matrix receptor, use the orientation of 

the BM fibrils to guide the alignment of F-actin stress fibers, which promotes later follicle 

elongation.
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Figure 3. Basement membrane (BM) perforations presage primitive streak extension during 
mouse gastrulation.
During early mouse development, the embryo consists of the abutting epiblast and 

extraembryonic ectoderm, which is enveloped by a BM and the visceral endoderm. By 

embryonic day 6.5 (E6.5) matrix metalloproteinase (MMP) activity generates perforations 

within the BM on the posterior side of the embryo. Gastrulation initiates at the most 

distal region of these BM perforations at the extraembryonic/embryonic boundary in a 

region called the primitive streak, where epiblast cells undergo an epithelial-to-mesenchymal 

transition (EMT), move through the BM gaps and ingress into the space between the epiblast 

and extraembryonic ectoderm. The first ingressing cells are nascent mesoderm, which then 

migrate as a sheet between the visceral endoderm and epiblast to create a layer of mesoderm 

around the embryo. The primitive streak extends through a progressive wave of EMT that 

follows the BM perforations. Primitive streak extension helps to complete gastrulation by 

giving rise to additional mesoderm and the definitive endoderm of the embryo. Inhibiting 

MMP activity blocks BM perforations, prevents primitive streak extension, and disrupts 

gastrulation.
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Table 1

Cell Migration and Neuronal Processes Guided by Localized or Enriched BM Cues

Guided cell process/Animal Localized or enriched BM component/Tissue 
BM where enriched

Receptor or molecular 
pathway activated to 

guide cell
References

Cell invasion through BM/C. elegans larva UNC-6 (netrin)/uterine vulval connection site UNC-40 (DCC) receptor [17,51]

Longitudinal neuronal axon pathfinding/C. 
elegans larva

Nidogen (may localize ectodomain of 
transmembrane collagen COL-99)/Sublateral nerves 
and edges of body wall muscles

Discoidin domain 
receptor

[20,25,52]

Halting somatic gonad precursor 
migration/C. elegans embryo

Laminin/Posterior endoderm cells pathway unknown [21]

PVD neuron dendrite branching/C. elegans 
larva

Perlecan and nidogen (may localize 
UNC-6(netrin))/Fibrous organelles (muscle linkage 
site to epidermis)

SAX-7 (L1CAM) 
adhesion molecule and 
UNC-40 (DCC) receptor

[15,16]

Sematosensory neuron peripheral axon 
pathfinding/Zebrafish embryo

Heparan sulfate proteoglycan/Skin LAR receptor tyrosine 
phosphatase

[22]

Commissural neuron axon crossing/Chick 
embryo

Cleaved F-spondin/Spinal cord floor plate pathway unknown [24]

Commissural neuron axon crossing/Mouse 
embryo

Glycosylated dystroglycan binding Slit/, Spinal 
cord floor plate

Robo receptor [28]

Retinal ganglion cell axon projections/
Zebrafish larva

Type IV collagen binding Slit/Surface of optic 
tectum

Robo receptor [18]

Renal tubule elongation pathfinding/
Drosophila embryo

Type IV collagen (may localize Decapentaplegic 
(Dpp))/Leading anterior tubule cells

BMP receptor [19]

Motor axon pathfinding in embryonic 
ventral nerve cord/Drosophila embryo

Perlecan secreted by motor neurons/Enriched along 
motor axon trajectories and pathway choice points

Semaphorin-Plexin [29]

Enteric neural crest-derived cell 
(ENCDCs) migration/Mouse, chick, 
zebrafish embryos

Collagen XVIII secreted by ENCDCs at wavefront 
and agrin secreted by trailing cells/Gut blood 
vessels

Collagen XVIII pathway 
unknown, Agrin 
may signal through 
dystroglycan receptor

[23,26]

Ventral spinal motor neuron migration/
Mouse embryo

Slit gene expressed by spinal cord motor neurons/
Spinal cord floor plate

Robo receptor [27,28]

Neural crest mid-segmental migration & 
Motor axon outgrowth/Zebrafish embryo

Lh3 glycosyl transferase and presumptive substrate 
collagen XVIII / Adaxial muscle cells

Pathway unknown [53,54]
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