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Abstract

Biomolecular phase separation in the formation of membraneless organelles and biomolecular 

condensates has recently gained tremendous attention due to the importance of these assemblies 

in physiology, disease, and engineering applications. Understanding and directing biomolecular 

phase separation requires a multi-scale view of the biophysical properties of these phases. Yet, 

many classic tools to characterize biomolecular properties do not apply in these condensed phases. 

Here, we discuss insights obtained from spectroscopic methods, in particular NMR spectroscopy, 

in understanding the molecular and atomic interactions that underlie the formation of protein­

rich condensates. We also review approaches closely coupling NMR data with computational 

methods especially coarse-grained and all-atom molecular simulations, which provide insight into 

molecular features of phase separation. Finally, we point to future developments, particularly 

visualizing biophysical properties of condensates in cells.

Introduction

Biomolecular phase separation has generated tremendous interest recently, having been 

found or attributed to play a role in an ever-growing list of biological processes [1,2]. 

Consequently, the importance of understanding the biophysical basis of phase separation 

is now clear [3]. A repeating theme in work linking phase separation to cellular function 

is: 1) the identification of key components contributing to the formation of a particular 
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membraneless organelle or phase separated structures in cells and organisms using the 

tools of cell biology, and 2) demonstrating that biomolecular condensates can be minimally 

reconstituted in vitro using one or a few of these critical components. This reconstitution 

provides the important opportunity to analyze in detail the components and interactions that 

give rise to phase separation. Yet, unusual biophysical properties common to many phase 

separated condensates, including component density, sample heterogeneity, and disorder – 

preclude application of many common biophysical approaches to understand the structural 

and mechanistic details of phase separation.

Integrative biophysical tools to study biomolecular phase separation

Liquid-liquid phase separation of biomolecules requires molecules that can form multiple 

simultaneous contacts (necessary to stabilize a network to define a condensed phase) that 

lack rigid long-range order (otherwise the assemblies would be solid) [4]. Hence, disordered 

proteins and domains are often important contributors to phase separation as both mediators 

of phase separation or simply as linkers between folded domains that mediate the contacts. 

As liquids, these condensed phases are not directly amenable to x-ray crystallography 

or single-particle cryoelectron microscopy. Therefore, both solution and solid-state NMR 

spectroscopies have emerged as important techniques to probe the structural details of 

phase separation with atomic or residue-by-residue resolution [5]. Yet, NMR experiments 

report on average behavior, hence details on heterogeneous populations and ensembles 

are difficult to interrogate directly. Furthermore, because NMR experiments are uniquely 

sensitive probes of molecular motions, the magnitude and timescales of rotational and 

conformational changes impact NMR spectra – but these same features complicate 

quantitative interpretation. Such motions can obscure highly dynamic or static conformers or 

regions, depending on the particular NMR technique. Therefore, complementary approaches 

including molecular simulation and other spectroscopies can provide frameworks for 

interpreting the NMR data.

Specifically, all-atom molecular dynamics (MD) simulations using physics-based models 

have emerged as an essential tool in linking the laboratory measurements with molecular and 

atomic details with high spatiotemporal resolution [6]. Critical to using MD simulations 

is validation of the model (e.g. protein and water force field) for this new class of 

systems that are distinct from the state (folded protein and even dilute disordered proteins) 

and sequence compositions for which these models were originally parameterized. An 

explosion of activity in the last decade in protein force field refinement, new simulation 

algorithms[7], and the availability of modern computer hardware to generate microsecond­

long trajectories[8] has made feasible near quantitative agreement of simulated properties 

with experimental observables such as chemical shifts, relaxation order parameters, and 

radius of gyration, among others. Applying these approaches to proteins that phase separate, 

residue-level NMR data on low-complexity (LC) disordered proteins that are implicated 

in cellular phase separation was used recently to assess and tune the backbone dihedral 

potential parameters for polar residues to balance the propensity of helical and extended 

structures [9*]. Going forward, these protein models will help develop a molecular 

mechanistic understanding of atomic interactions[10] and other important questions in 

condensates such as water/ion distribution and dynamics[11**]. These approaches are also 
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used to interpret the NMR spectroscopy data on protein structure, interactions, and dynamics 

in dilute and dense protein phases when experimental observations alone cannot distinguish 

between different possible scenarios.

In situ molecular spectroscopy of phase separated condensates is an area where NMR 

spectroscopy is challenged due to the inherently heterogeneous nature of the sample (e.g. 

condensates within a homogenous bulk phase). Several solution state NMR studies of 

condensates have been performed with “macro-droplets” [12], while others have explicitly 

tested and demonstrated the correspondence between these samples and two-phase systems 

[13–15]. (We note that the interpretation that our previous work demonstrating direct 

observation of chemical shift differences in the condensed phase is due to interaction with 

glass [15] is not consistent with the quantification of peak intensity and spectral analysis we 

and others performed.) Still, spatially or spectroscopically probing droplets and particularly 

droplet interfaces is not straightforward. Optical spectroscopies, such as vibrational or 

fluorescence spectroscopy, offer an alternative set of approaches. Combined with imaging 

platforms to spatially resolve condensate phases in situ, they can provide fingerprints of 

molecular structural and chemical interactions with sub-micron spatial resolution. Below, 

we focus on vibrational spectroscopies (Fourier transform infrared (FTIR) spectroscopy and 

Raman spectroscopy) and fluorescence spectroscopy (fluorescence correlation spectroscopy 

(FCS)) that report on the intrinsic physical chemical environment and contacts in the phases.

Following on the success of previous work combining complementary techniques to study 

disordered protein conformational properties[16], here we review biophysical questions in 

phase separation, focusing on proteins, and integrative approaches to revealing the molecular 

details of phase separation (Figure 1).

Probing Conformational Properties and Structure

NMR spectroscopy:

An essential question in the biophysical characterization of phase separation is the structure 

of the components both in the dispersed and condensed phases. Many phase separating 

proteins contain sequence-repetitive low complexity domains (LCs) that are predicted 

to be disordered but also prone to assembly [17]. Therefore, it is not surprising that 

solution NMR spectroscopy (Figure 1), which provides a residue-by-residue picture of the 

dynamic ensemble of conformations including the secondary structure of these proteins, 

have shown that these domains are disordered when in the dispersed phase (i.e. not phase 

separated). Based on pioneering earlier work showing the formation of amyloid “hydrogels” 

(Box 1) from tagged forms of these domains and the correlative impact of mutations on 

amyloid formation and, later, phase separation[18–20], some studies have claimed that these 

disordered domains phase separate primarily due to β-sheet contacts. Yet, solution NMR 

studies directly observing the liquid condensed phases have found no support for assertions 

of increased β-sheet ordering. On the contrary, despite different sequence compositions and 

driving forces for phase separation, the LC domains of FUS, DDX4, hnRNPA2, and elastin­

like peptides all retain predominant disorder within liquid condensed phases [12–14*,21]. 

Similarly, the acidic disordered domains of nucleophosmin (NPM1) remain disordered even 

in the context of a viscoelastic condensed phase formed with an arginine-rich peptide that 
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contributes to nucleolar formation [22**]. We note that solution NMR is not sensitive 

to slowly moving species or minority populations. For our work, we have overcome this 

challenge for FUS LC with exchange-based NMR and coherent Raman scattering (CRS) 

to probe for conformational exchange and slow-moving states, which further confirmed no 

evidence of structured conformations in the liquid condensed phase [14]. Still for some 

proteins including FUS, it is clear that gradual conversion of liquid phases into more 

static structures can involve β-sheet formation depending on the conditions and missense 

mutations[23**]. Additionally, electron paramagnetic resonance (EPR) of site-specifically 

labeled samples has recently been applied to the question of disordered domain structure in 

droplets to probe chain motions and dimensions upon phase separation[15].

While we have focused on disordered domains until now, folded domains, especially those 

that oligomerize, can also contribute to scaffolds for phase separation[25]. Thus, a logical 

question is if the structure of folded domains changes due to phase separation? The NPM1 

contains a folded, pentamerizing N-terminal domain that facilitates phase separation of 

NPM1’s acidic disordered domains with R-rich motif peptides and RNA [26]. After phase 

separation, the NPM1 pentamers remain spaced as seen by neutron scattering. Solid-state 

NMR of phase separated of NPM1 showed that the folded domain of NPM retains the same 

structural fingerprint (i.e. folded pentamer) in a condensed phase [22]. Can phase separation 

influence folded conformations? The Dcp1/Dcp2 mRNA decapping complex can phase 

separate with the enhancer of decapping 3 (Edc3) to form mRNA processing body and speed 

mRNA decapping [27]. In these phases, the LSm domain of Edc3, which interacts with 

Dcp2, remains folded but is dynamically tethered via an RNA-binding disordered region 

to the dimerization domain[28]. Recent findings suggest that Dcp1/Dcp2 form an inactive 

conformation inhibiting decapping when at high concentration in condensed phases but co­

condensation of Dcp1 and Dcp2 with Edc3 activates decapping within the phase-separated 

compartment by inducing a conformation change in the catalytic domain[29*]. Curiously, 

Edc3 is dimeric and hence in this model interactions with multiple copies of Dcp2 replace 

the autoinhibitory multivalent Dcp2 self-interactions, effectively “rewiring” the interactions 

that stabilize condensation.

Vibrational spectroscopy:

Though missing the atomic resolution of NMR, vibrational spectroscopy also reports on 

molecular structure and interactions with the added advantage that these features can be 

quantified in samples with heterogenous structure and motions. Linear FTIR has been used 

to follow pressure-induced self-assembly of γD-crystallin with crowding agents [30] and 

thermally-triggered phase separation of fatty-acid-modified elastin-like polypeptides [31]. 

Specifically, FTIR was used demonstrate the changes in solute-protein and protein-protein 

interactions along the process of phase separation and material maturation. Coherent, 

two-dimensional FTIR (2D IR), which can resolve overlapping peaks and correlations of 

molecular vibrations over femto- to picosecond timescales (often considered an optical 

analog of 2D NMR), was recently applied to study LLPS of dipeptide repeats of proline­

arginine (PR) chains [32]. In this study, PR20 chains phase separated into droplets when 

crowded with PEG and phase separated PR20 displayed spectral signatures consistent with 
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backbone configurations associated with polyproline I and II helices compared to a random 

coil state when in the dispersed phase.

Imaging spectroscopies such as atomic force microscopy IR (AFM-IR) [33**] and coherent 

Raman scattering (CRS) [34] can discriminate between the continuous phase and protein­

rich phase separated droplets. AFM-IR offers the promise of molecular spectroscopy with 

~50 nm spatial resolution but is challenging in water; CRS does not have limitations in water 

but offers only optical (~300 nm) resolution. St George-Hyslop and Knowles used AFM-IR 

to show that methylation state of FUS changes the thermodynamic state, average protein 

secondary structure, and mechanics of FUS condensates [35]. Our own studies, using CRS, 

have recently shown that various promiscuous interactions stabilize liquid FUS LC droplets, 

which on average showed the same overall secondary structure as dispersed FUS LC [14*]. 

As complementary methods to NMR, vibrational spectroscopies are useful methods to study 

heterogeneous phase separation samples in situ.

Molecular simulations:

Rauscher and Pomes conducted one of the first all-atom simulations of the liquid-like 

state of a short elastin-like peptide[36], highlighting conformational disorder within the 

assembled state consistent with experiment [13]. In this case, hydrophobic interactions were 

found to contribute to intermolecular contacts of hydrated peptides within the protein-rich 

phase. Some groups have also used coarse-grained (CG) models to access longer timescales 

including the process of phase separation as well as examine partitioning and surface 

properties [37,38]. To complement these approaches, we recently used our CG model 

based protein-rich phase configurations to generate fully atomistic models with explicit 

solvent/ions and probed structure and motions inside the condensed phase and on the 

droplet interface[11**] (Figure 3). These recent investigations suggest that these simulations 

can provide meaningful information that is difficult to access by experiment is available 

on protein structure, contacts, and motions. To realize the potential of this new frontier, 

accessing longer timescales in order to ensure adequate sampling of states and observe 

the full range of structural transitions will require further advances in both hardware and 

software.

Molecular interactions in condensed phases

One of the central goals of many studies integrating experimental and computational results 

is to identify the fundamental rules (aka “molecular grammar”) based on atomic interactions 

that dictate the sequence-dependent phase separation of proteins [39–41]. Although 

perhaps starting from different initial hypotheses regarding the primary interactions (Is 

the dominant contribution cation-π vs. sp2/ π interactions to phase separation over non­

specific hydrophobic effect and hydrogen bonding?), many studies have arrived at similar 

conclusions about the role of certain amino acids in promoting the phase separation, leading 

to some confusion about several important issues. Most importantly, are few residue types 

solely responsible for driving the phase separation as expected for associative polymers or 

do most amino acids in the sequence contribute to the phase separation to varying degrees 

(primary, secondary, tertiary, etc. drivers)[39,42,43]? Mutagenesis experiments, changing 

Fawzi et al. Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one residue type at a time in the low complexity domains have highlighted tyrosine and 

arginine as particularly important in polar-rich sequence phase separation [40,44,45]. Yet, 

other residues including glutamine/serine [14,46] and charged residues [21,44,47] contribute 

to phase separation in some systems while even hydrophobicity plays a role in some 

contexts [48]. In our view, together these approaches have generated consequential insights 

about the primary drivers of phase separation (e.g. Tyr and Arg over Phe and Lys for 

many polar-rich domains in vertebrates) and the role of other stabilizing interactions, e.g., 

involving residues such as glutamine and threonine in the case of FUS LC and stabilization 

of small helical motifs in case of TDP-43 CTD[49].

Still, these approaches cannot easily show what ensemble of contacts these residues types 

make. Therefore, NMR experiments that directly interrogate contacts have played an 

important role. In the dispersed phase, the contacts contributing to phase separation may 

form transient weak intramolecular interactions due to the repetitive nature of the sequences. 

Using this approach, the contribution of aromatic (tyrosine to phenylalanine) contacts was 

directly observed for hnRNPA1 LC using nuclear Overhauser effect experiments, where 

amino acids in proximity can be detected even if the interaction is transient [45]. Going 

further, in condensed phase samples where the density of proteins is high and hence provides 

higher signal to noise, a full network of contacts between many different residue types 

has been observed for several disordered domains often using a combination of mixing 

peptides with distinct isotopic labeling patterns and heteronuclear edited (and filtered) NMR 

experiments[13,14,21,50]. These observations are in accordance with both fully atomistic 

and coarse-grained simulations demonstrating a broad array of contacts both in initial 

contacts mimicking the interactions leading to phase separation and within condensed 

phases[51]. Therefore, these insights have informed efforts to understands the role of 

disease-associated mutations and post-translational modifications on phase separation[52–

54].

It is important to note that although residue-residue contributions are directly observed by 

NMR and validated by mutagenesis, it is not trivial to parse out the energetic balance 

of specific and overlapping interaction modes that these residues make such as cation-π, 

sp2/π, hydrophobicity, and hydrogen bonding using available experimental techniques and 

computational models[55]. On the experimental side, it will be beneficial to conduct phase 

separation studies using non-natural amino acids to more precisely perturb the interaction 

modes in hope of disentangling their contributions, including further work such as the 

impact of fluorination of aromatic residues on phase separation[56]. On the simulation side, 

all-atom simulation studies could be complemented with more complex and polarizable 

models[57] or ab initio models that could more accurately represent, for example, explicit 

π-interactions and the behavior of surface water to provide confidence that they capture the 

interaction modes and to further probe the unusual chemical environment created by phase 

separation[58].

Molecular motions in condensed phases

Phase separated condensates contain high concentrations of biomolecules, and hence, it is 

not a surprise that local and global motions of molecules are distinct in the condensed 
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phase compared to studies in bulk. NMR has been extensively used to demonstrate that 

local motions on the ns/ps timescale are slowed but the chain remains highly mobile in 

liquid condensed phases of disordered proteins[12–14,21,59**]. Curiously, signatures of 

slower timescale (ms) conformational transitions have been observed for condensed phases 

of DDX4, yet the origin of these remain unknown[60]. Translational protein diffusion as 

measured by diffusion NMR is slowed by orders of magnitude[14*,21], consistent with 

results from fluorescent recovery after photobleaching readily accessible via microscopy and 

consistent with a dense (percolated) phase[4].

Fluorescence spectroscopies, specifically FCS and FRET, have a long history in biophysical 

measurements. Unique from NMR or vibrational spectroscopy, these methods do not 

directly probe molecular interactions in protein, using fluorophores as handles to measure 

fluorophore environment, motions or fluorophore-fluorophore distances; however, FCS 

and FRET offer unparalleled single-molecule sensitivity and exquisite spatial selectivity. 

Here, we focus on FCS as it is detected as a traditional spectroscopic measurement as a 

measure of molecular motion in condensed phases. FCS was used to show how RNA-FUS 

interactions modified the tracer mobility of condensed phases, identifying two populations 

of FUS upon RNA-FUS interaction[61]. Similarly, the effect of RNA concentration on 

morphology of hollow phase-separated protamine condensates and the mobility in the rim 

regions was also probed by FCS. The rim, where protein and RNA co-condense, showed 

significantly reduced dynamics compared to the lumen [62]. In an alternative system, FCS 

was used to probe protein-protein interactions between FG nucleoporins (Nups) and nuclear 

transport receptors, identifying changes in Nup mobility with nuclear transport receptor 

addition [63]. Finally, as FCS provides a measurement of mobility, it has also been used 

to quantify the microrheological properties in LAF-1 condensates formed with different 

macromolecular constituents [64]. The versatility and relative ease of FCS make it a very 

attractive method for physical-chemical analysis of phase separation, and one that provides 

highly complementary data for phase field models of condensate dynamics[65].

Conclusion

Taken together, magnetic resonance and optical spectroscopies combined with molecular 

simulation offer a complementary set of tools to probe the biophysical details of phase 

separation with atomistic and molecular resolution. As more complex condensates are 

reconstituted and in order to realize the ultimate goal of probing the structure, interactions, 

and molecular motions in condensates in living cells, cooperation between these techniques 

becomes even more important.
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Box 1:

Phase separation, gels, “hydrogels”.

It is important to distinguish between the rapid phase separation into liquid droplets 

from the slow conversion of liquid phases to “hydrogels”, which has been seen for FUS 

LC, nucleoporin FGs, hnRNPA2 LC. In phase separation, condensed phase droplets – 

with varying viscosities – forms, depleting the dispersed solution of the biopolymer 

components. For NMR samples of condensed phases, 15 to 50 ml of solution is often 

created in order to generate <500 μl of >200 mg/ml (up to 25 mM) condensed phase 

[5,21,22**]. By contrast, amyloid-based “hydrogels” are formed gradually (over days) 

and uniformly (the entire sample changes from a liquid to a hydrogel, phase separation 

is not required) from samples of ~mM concentration of proteins (that are often tagged to 

prevent avid phase separation). We surmise that the addition of solubility tags modifies 

the self-assembly process, resulting in different final states. Taking this into account, it 

is possible that additional semantic confusion regarding phase separation, “hydrogels”, 

and “gels” arises for the following reasons: 1) liquid condensed phases are sometimes 

referred to as “gels” as they are loosely-held networks that can achieve a percolated 

state, 2) very high concentration samples of liquid forming components (i.e. beyond the 

high concentration arm of the binodal) undergo “gelation without phase separation” in 

this sense that protein-dense liquids are “gels” [4], 3) some proteins with disordered 

regions phase separate into viscoelastic condensed phases that do not readily flow (i.e. 

they “gel” according to a different common usage of the word) based on the conditions, 

temperature, and valency/strength of interactions[12,22] yet are distinct from amyloid 

hydrogels, and 4) some liquid-liquid phase separated condensates “age” into static and 

even amyloid structures that may also be referred to as “gels” [24]. These distinctions are 

important because, although the same residues may contribute to both phase separation 

and amyloid formation, the physical features and hence molecular structures are different.
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Figure 1: Integrative approach to biophysical characterization of phase separation.
Integration of information from NMR (or EPR) and optical and vibrational spectroscopies 

combined with insight from molecular simulations are a powerful combination to probe 

structure, interactions, and molecular motions in phase separated biomolecular condensates.
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Figure 2. NMR spectroscopy of phase separation.
NMR spectroscopy of samples where the condensed phase (gray, center) fills the observation 

(coil) volume enables direct interrogation of structure and disorder in proteins and their 

contacts (center) with residue-by-residue resolution (right). Image concept by Vinald 

Francis.
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Figure 3: All atom simulation of phase separation.
Creation and simulation of a fully atomistic “slabs” (top left) by conversion of coarse­

grained models of phase separation enables atomistic analysis of contact modes (bottom 

left), molecular structure and solvent/ion properties (bottom center), and predicted NMR 

observables (right).
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