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Physics-informed learning of governing equations
from scarce data
Zhao Chen1, Yang Liu 2✉ & Hao Sun3,4,5✉

Harnessing data to discover the underlying governing laws or equations that describe the

behavior of complex physical systems can significantly advance our modeling, simulation and

understanding of such systems in various science and engineering disciplines. This work

introduces a novel approach called physics-informed neural network with sparse regression

to discover governing partial differential equations from scarce and noisy data for nonlinear

spatiotemporal systems. In particular, this discovery approach seamlessly integrates the

strengths of deep neural networks for rich representation learning, physics embedding,

automatic differentiation and sparse regression to approximate the solution of system

variables, compute essential derivatives, as well as identify the key derivative terms and

parameters that form the structure and explicit expression of the equations. The efficacy

and robustness of this method are demonstrated, both numerically and experimentally, on

discovering a variety of partial differential equation systems with different levels of data

scarcity and noise accounting for different initial/boundary conditions. The resulting com-

putational framework shows the potential for closed-form model discovery in practical

applications where large and accurate datasets are intractable to capture.
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Current practices on modeling of complex dynamical systems
have been mostly rooted in the use of ordinary and/or
partial differential equations (ODEs, PDEs) that govern the

system behaviors. These governing equations are conventionally
obtained from rigorous first principles such as the conservation laws
or knowledge-based phenomenological derivations. However, there
remain many real-world complex systems underexplored, whose
analytical descriptions are undiscovered and parsimonious closed
forms of governing equations are unclear or partially unknown.
Luckily, observational datasets become increasingly rich and offer
an alternative of distilling the underlying equations from data.
Harnessing data to uncover the governing laws or equations can
significantly advance and transform our modeling, simulation, and
understanding of complex physical systems in various science and
engineering disciplines. For example, obtaining mathematical
equations that govern the evolution of sea ice from observational
data (e.g., satellite remote sensing images) brings distinct benefits
for better understanding and predicting the growth, melt and
movement of the Arctic ice pack. Distilling an explicit formulation
from field sensing data (e.g., Doppler radar recordings) will accel-
erate more accurate prediction of weather and climate patterns.
Recently, advances in machine learning theories, computational
capacity, and data availability kindle significant enthusiasm and
efforts towards data-driven discovery of physical laws and gov-
erning equations1–13.

Pioneering contributions by Bongard and Lipson1 and Schmidt
and Lipson2 leveraged stratified symbolic regression and genetic
programming to successfully distil the underlying differential
equations that govern nonlinear system dynamics from data.
However, this elegant approach does not scale up well with the
dimensionality of the system, is computationally expensive, and
might suffer from overfitting issues. Recently, an impressive
breakthrough made by Brunton et al.5 leads to an innovative
sparsity-promoting approach called sparse identification of non-
linear dynamics (SINDy), which selects dominant candidate func-
tions from a high-dimensional nonlinear function space based on
sparse regression to uncover parsimonious governing equations,
ODEs in particular. The sparsity was achieved by a sequential
threshold ridge regression (STRidge) algorithm which recursively
determines the sparse solution subjected to hard thresholds5,6. Such
an approach is capable of balancing the complexity and accuracy of
identified models and thus results in parsimony. SINDy has drawn
tremendous attention in the past few years, leading to variant
algorithms with applications to identify projected low-dimensional
surrogate models in the form of first-order ODEs, alternatively with
linear embedding8,10, for a wide range of nonlinear dynamical
systems, such as fluid flows14,15, structural systems16,17, biological
and chemical systems18–20, active matter21, predictive control of
nonlinear dynamics22, multi-time-scale systems23, a predator–prey
system24, and stochastic processes25, just naming a few among
many others. There are also a number of other extensions of
SINDy that discover implicit dynamics18,26, incorporate physics
constraints14, and embed random sampling to improve the
robustness to noise for sparse discovery of high-dimensional
dynamics27. The convergence and error estimate analyses28 theo-
retically sustain the family of SINDy approaches.

The sparsity-promoting paradigm has been later extended for
the data-driven discovery of spatiotemporal systems governed by
PDEs, e.g., the PDE-FIND algorithm6,7, where the library of
candidate functions is augmented by incorporating spatial partial
derivative terms. This method has been further investigated or
improved to, for example, obtain parametric PDEs from data29,
discover PDEs enhanced by Bayesian inference30 and gene
expression programming31, identify diffusion and Navier-Stokes
equations based on molecular simulation32, and learn PDEs for
biological transport models33. Nevertheless, a critical bottleneck

of the SINDy framework, especially for the data-driven discovery
of PDEs, lies in its strong dependence on both quality and
quantity of the measurement data, since numerical differentiation
is required to compute the derivatives in order to construct
governing equation(s). Especially, the use of finite difference
or filtering to calculate derivatives leads to a pivotal challenge
that reduces the algorithm robustness. This specially limits the
applicability of SINDy in its present form to scenarios given
highly incomplete, scarce and noisy data. It is notable that
variational system identification9 shows satisfactory robustness
of calculating derivatives based on isogeometric analysis for dis-
covering the weak form of PDEs. However, such an approach
doesn’t scale down well with respect to the fidelity of available
data. Another work34 shows that weak formulation can sig-
nificantly improve the discovery robustness against noise, but
requires careful design of test functions, which is intractable for
high-dimensional spatiotemporal systems.

Automatic differentiation35 is well-posed to address the above
issue, which has been proven successful in physics-informed
neural networks (PINN) for forward and inverse analyses of
nonlinear PDEs36–40. In particular, the deep neural network
(DNN) is used to approximate the solution constrained by both
the PDE(s) and a small amount of available data. PINN has
attracted increasing attention for tackling in a wide range of
scientific problems such as fluid flows39,40, vortex-induced
vibrations41, cardiovascular systems42, among many others,
when the explicit form of PDEs is known. Recently, the
important work by Raissi43 introduced a deep hidden physics
model for data-driven modeling of spatiotemporal dynamics
based on sparse data, where the unknown underlying physics
characterized by possible PDE terms is weakly imposed and
implicitly learned by an auxiliary neural network. Nevertheless,
the resulting model is still a “black box” and lacks sufficient
interpretability since the closed-form governing equations can-
not be uncovered. Latest studies44,45 show the potential of using
DNNs and automatic differentiation to obtain closed-form
PDEs, from noisy data, in a constrained search space with a pre-
defined library of PDE terms; yet, false-positive identification
occurs due to the use of less rigorous sparse regression along
with DNN training. In fact, simultaneously optimizing the DNN
parameters and sparse PDE coefficients, while accurately
enforcing sparsity, is non-trivial and remains a significant
challenge in closed-form PDE discovery.

To this end, we leverage these advances and leap beyond to
present a novel PINN-SR method (i.e., PINN with sparse
regression), possessing salient features of interpretability and
generalizability, to discover governing PDEs of nonlinear spa-
tiotemporal systems from scarce and noisy data. Our approach
integrates the strengths of DNNs for rich representation learning,
automatic differentiation for accurate derivative calculation as
well as ℓ0 sparse regression to tackle the fundamental limitation of
existing methods that scale poorly with data noise and scarcity. In
particular, the paper involves two methodological contributions:
(1) a “root-branch” network, constrained by unified underlying
physics, that is capable of dealing with a small number of multi-
datasets coming from different initial/boundary conditions, and
(2) a simple, yet effective, alternating direction training strategy
for optimization of heterogeneous parameters, i.e., DNN trainable
parameters and sparse PDE coefficients. The efficacy and
robustness of our method are demonstrated on a variety of PDE
systems, based on both numerical and experimental datasets.

Results
PINN with sparse regression for PDE discovery. We consider
a multi-dimensional spatiotemporal system whose governing
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equations can be described by a set of nonlinear, coupled, para-
meterized PDEs in the general form given by

ut þ F u; u2; ¼ ;∇xu;∇
2
xu;∇xu � u; ¼ ; λ

� � ¼ p ð1Þ
where u ¼ uðx; tÞ 2 R1 ´ n is the multi-dimensional latent solution
(dimension= n) while ut is the first-order time derivative term;
t∈ [0,T] denotes time and x∈Ω specifies the space; F ½�� is a
complex nonlinear functional of u and its spatial derivatives,
parameterized by λ;∇ is the gradient operator with respect to x;
p= p(x, t) is the source term (note that, in many common cases, p
= 0 represents no source input to the system). The PDEs are also
subjected to initial and boundary conditions (I/BCs), if known,
denoted by I ½x 2 Ω; t ¼ 0; u; ut � ¼ 0 and B½x 2 ∂Ω; u;∇xu� ¼ 0.
For systems that obey Newton’s second law of motion (e.g., utt in
wave equations), the governing PDEs can be written in a state-space
form of Eq. (1) by defining v= {uut} as the solution variable. Our
objective is to find the closed form of F ½�� from available spatio-
temporal measurements which are assumed to be incomplete,
scarce and noisy commonly seen in real-world applications (e.g.,
when data capture is very costly or the data itself is sparse in
nature). We assume that the physical law is governed by only a few
important terms which can be selected from a large-space library of
candidate functions, where sparse regression can be applied5–7.
Inherent in this assumption leads to a reformulation of Eq. (1) in
the following (assuming zero or unknown source for simplicity):

ut ¼ ϕΛ ð2Þ
Here, ϕ ¼ ϕðuÞ 2 R1 ´ s is an extensive library of symbolic func-
tions consisting of many candidate terms, e.g., constant, poly-
nomial, and trigonometric terms with respect to each
spatial dimension6,7, assembled in a row vector given by
ϕ ¼ f1; u; u2; ¼ ; ux; uy; ¼ ; u3 � uxy; ¼ ; sinðuÞ; ¼ g, where⊙
represents the element-wise Hadamard product; s denotes the total
number of candidate terms in the library; the subscripts in the
context of {x, y, z} depict the derivatives; Λ 2 Rs ´ n is the sparse
coefficient matrix (only the active candidate terms in ϕ have non-
zero values), e.g., Λ ¼ λu λv λw½ � 2 Rs ´ 3 for u= {u, v,w}. If there is
an unknown source input, the candidate functions for p can also be
incorporated into ϕ for discovery (see Supplementary Note 3.1).
Thus, the discovery problem can then be stated as: given the spa-
tiotemporal measurement data Du, find sparse Λ such that Eq.
(2) holds.

We present a new PINN-SR paradigm to simultaneously model
the system response and identify the parsimonious closed form of
the governing PDE(s). The innovative algorithm architecture of
this method is shown in Fig. 1, where datasets sampled from two
different I/BC scenarios are considered: (1) one dataset from a
single I/BC and (2) r ≥ 2 independent datasets from multiple I/
BCs. For the case of single dataset, we interpret the latent solution
u by a DNN (denoted by N ), namely, uθ= u(x, t; θ), where θ
represents the DNN trainable parameters including weights and
biases, as shown in Fig. 1a. When multiple independent datasets
are available, a “root-branch” DNN depicted in Fig. 1b is designed
to approximate the latent solutions ui (i= 1,…, r) corresponding
to different I/BCs, viz., uθi ¼ u x; t; θð0Þ; θðiÞ

� �
, where θ(0) and θ(i)

denote the trainable parameters of the root layers N ð0Þ and the
branch layers N ðiÞ, respectively. Noteworthy, the I/BCs are
unnecessarily either known a priori or measured since the
measurement data already reflects the specific I/BC (e.g., there
exists a one-to-one mapping between the I/BC and the PDE
solution). The DNN essentially plays a role as a nonlinear
functional to approximate the latent solution with the data loss
function Ldðθ;DuÞ. With automatic differentiation where deri-
vatives on u are evaluated at machine precision, the library of

candidate functions ϕθ can be computed from the DNN. For the
case of multiple independent datasets, the libraries ϕ(i) resulted
from the branch nets are concatenated to build ϕθ for
constructing the unified governing PDE(s). Thus, the sparse
representation of the reconstructed PDE(s) can be written in a
residual form, namely, Rθ :¼ uθt � ϕθΛ ! 0, where Rθ 2 R1 ´ n

denotes the PDE residuals. The basic concept is to adapt both the
DNN trainable parameters θ and the PDE coefficients Λ such that
the neural network can fit the measurement data while satisfying
the constraints defined by the underlying PDE(s). The PDE
residuals will be evaluated on a large number of collocation points
Dc ¼ fxi; tigNc

i¼1, randomly sampled in the spatiotemporal space,
leading to the residual physics loss function Lpðθ;Λ;DcÞ. When
multiple I/BCs are considered, the measurement data and the
collocation points will be stacked when calculating the data loss
and the physics loss (based on a unified physics residual
formulation Rθ ! 0).

The total loss function for training the overall PINN-SR
network is thus composed of the data loss Ld , the residual physics
loss Lp and a regularization term, expressed as

Lðθ;Λ;Du;DcÞ ¼ Ldðθ;DuÞ þ αLpðθ;Λ;DcÞ þ β k Λk0 ð3Þ

where α is the relative weighting of the residual physics loss
function; β is the regularization parameter; ∥ ⋅ ∥0 represents the ℓ0
norm. Optimizing the total loss function can produce a DNN that
can not only predict the data-driven full-field system response,
but also uncover the parsimonious closed-form PDE(s), i.e.,
fθ?;Λ?g :¼ argminfθ;Λg Lðθ;Λ;Du;DcÞ

� �
, where {θ⋆,Λ⋆} denote

the optimal set of parameters. Noteworthy, the total loss function
has an implicit complex form, and thus, directly solving the
optimization problem is highly intractable since the ℓ0 regular-
ization makes this problem np-hard. To address this challenge, we
present an alternating direction optimization (ADO) algorithm
that divides the overall optimization problem into a set of
tractable subproblems to sequentially optimize the trainable
parameters, as shown in Fig. 1c. Pre-training of PINN-SR is
conducted before running the ADO algorithm for discovery, by
simply replacing ∥Λ∥0 in Eq. (3) with ∥Λ∥1 where brute-force
gradient-based optimization for both θ and Λ becomes applicable.
The ℓ1-regularized pre-training can accelerate the convergence of
ADO by providing an admissible “initial guess”. More detailed
formulation and algorithm description are found in Methods and
Supplementary Note 1.

The synergy of DNN and sparse regression results in the
following outcome: the DNN provides accurate modeling of the
latent solution, its derivatives and possible candidate function
terms as a basis for constructing the governing PDE(s), while the
sparsely represented PDE(s) in turn constraints the DNN
modeling and projects correct candidate functions, eventually
turning the measured system into closed-form PDE(s).

Discovery of benchmark PDEs with single dataset. We observe
the efficacy and robustness of our methodology on a group of
canonical PDEs used to represent a wide range of physical systems
with nonlinear, periodic and/or chaotic behaviors. In particular,
we discover the closed forms of Burgers’, Kuramoto–Sivashinsky
(KS), nonlinear Schrödinger, Navier–Stokes (NS), and λ-ω
reaction–diffusion (RD) equations from scarce and noisy time-
series measurements recorded by a number of sensors at fixed
locations (data are polluted with Gaussian white noise) from a
single I/BC. Results are presented in Table 1, Fig. 2 and Supple-
mentary Note 2.1, which show quite accurate discovery and
demonstrate satisfactory performance of the proposed method and
its robustness to measurement data scarcity and noise. We also
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extensively compare our method with SINDy considering different
levels of data scarcity and noise (summarized in Supplementary
Note 2.2 and Supplementary Table 1).

Burgers’ Equation: We first consider a dissipative system with
the dynamics governed by a 1D viscous Burgers’ equation
expressed as ut=−uux+ νuxx, where ν (equal to 0.1) denotes
the diffusion coefficient. The equation describes the decaying
stationary viscous shock of a system after a finite period of time,
commonly found in simplified fluid mechanics, nonlinear acoustics
and gas dynamics. We test the PINN-SR approach on the recorded
traveling shock waves from the solution to Burgers’ equation
subjected to a Gaussian initial condition. In particular, 10 sensors
are randomly placed at fixed locations among the 256 spatial grids
and record the wave for 101 time steps, leading to 3.19% of the
dataset used in ref. 6. A full description of the dataset, design of the

library of candidate functions (16 terms) and model training is
given in Supplementary Note 2.1.1. Figure 2a shows the discovered
Burgers’ equation for a dataset with 10% noise. The evolution of
the coefficients Λ 2 R16´ 1 illustrates robust convergence to the
ground truth (error about 0.88%), resulting in accurate discovery.
The trained PINN-SR properly reproduces the dynamical response
from noisy measurements (e.g., the full-field ℓ2 prediction error is
1.32%) as shown in Supplementary Fig. 1. The ADO algorithm
converges only after the first alternating iteration and shows
capacity to recover the correct sparsity pattern of the PDE. We also
discover the Burgers’ equation with an unknown/unmeasured
source sinðxÞ sinðtÞ, given scarce u-measurement with 10% noise.
When discovering the underlying governing equation, the source
should be considered and reconstructed concurrently. In this
case, we incorporate 14 source candidate functions, composed of

Fig. 1 Schematic architecture of the framework of PINN-SR for data-driven discovery of PDE(s). a the network for one dataset from a single I/BC, b the
“root-branch” network for r≥2 independent datasets from multiple I/BCs, and c schematic for training the networks based on alternating direction
optimization. The network consists of two components: a DNN governed by the trainable parameters θ, which maps the spatiotemporal coordinates {x, t}
to the latent solution u= {u, v,w}, and the physical law described by a set of nonlinear PDEs, which are formed by the derivative candidate functions ϕ
parameterized by the unknown sparse coefficients Λ. Note that, for the case of multiple independent datasets, the libraries ϕ(i) are concatenated to build ϕ
for constructing the unified governing PDE(s). The total loss function Lðθ;Λ;Du;DcÞ is composed of the data loss Ldðθ;DuÞ, the physics loss αLpðθ;Λ;DcÞ,
and the ℓ0 regularization term β∥Λ∥0 that promotes the sparsity. Here, α and β denote the relative weighting of the loss functions, while Du and Dc

represent the measurement data and collocation samples respectively. Note that the physics loss, in a residual form, is only evaluated on the
spatiotemporal collocation samples. The colored dots in the sparse coefficients matrix (or vector) on the right denote non-zero values. Simultaneous
optimization of the unknown parameters {θ,Λ} leads to both the trained DNN for inference of the data-driven full-field solution and the discovered
parsimonious closed-form PDEs.

Table 1 Summary of the PINN-SR discovery results in the context of accuracy for a range of canonical models.

PDE name Err. (N-0%) Err. (N-1%) Err. (N-10%) Description of data discretization

Burgers’ 0.01 ± 0.01% 0.19 ± 0.11% 0.88 ± 0.03% x 2 ½�8; 8�~n¼256, t 2 ½0; 10�~n¼101, sub. 3.19%
KS 0.07 ± 0.01% 0.61 ± 0.04% 0.94 ± 0.05% x 2 ½0; 100�~n¼1024, t 2 ½0; 100�~n¼251, sub. 12.6%%
Schrödinger 0.09 ± 0.04% 0.65 ± 0.29% 0.08 ± 0.03% x 2 ½�4:5;4:5�~n¼512, t 2 ½0; π�~n¼501, sub. 37.5%
NS 0.66 ± 0.72% 0.86 ± 0.63% 1.22 ± 0.69% x 2 ½0; 9�~n¼449, y 2 ½�2; 2�~n¼199, t 2 ½0; 30�~n¼151,

sub. 0.22%
λ-ω RD 0.07 ± 0.08% 0.25 ± 0.30% 1.84 ± 1.48% x; y 2 ½�10; 10�~n¼256, t 2 ½0; 10�~n¼201, sub. 0.29%

The error is defined as the average relative error of the identified non-zero coefficients w.r.t. the ground truth. The percentage values in the parentheses denote the noise levels (e.g., noise free 0%, 1%
and 10%) and the subscript ~n represents the number of discretization. Our method is also compared with SINDy (the PDE-FIND approach presented in ref. 6) as illustrated in Supplementary Table 1. It is
noted that much less measurement data polluted with a higher level of noise are used in our discovery. Gaussian white noise is added to the synthetic response with the noise level defined as the root-
mean-square ratio between the noise and the exact solution.
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fsinðtÞ; sinðxÞ; cosðtÞ; cosðxÞg and their combination, into the
aforementioned library, resulting in a total of 30 candidate terms
for simultaneous discovery of the PDE and reconstruction of the
unknown source. The corresponding discovery result is summar-
ized in Supplementary Fig. 12, which includes the discovered
equation and source function, the evolution of sparse coefficients
Λ 2 R30´ 1, and the predicted full-field response. It turns out that
both PDE and source terms along with their coefficients are well
identified. Nevertheless, if the source is very complex with its
general expression or form completely unknown, distinct chal-
lenges arise when designing the source candidate functions. This
may require an extraordinarily large-space library to retain
diversifying representations, and thus pose additional computa-
tional complexity for accurate discovery of the PDEs. More
discussions are presented in Supplementary Note 3.1.

Kuramoto–Sivashinsky (KS) Equation: Another dissipative
system with intrinsic instabilities is considered, governed by the
1D Kuramoto-Sivashinsky (KS) equation ut=−uux− uxx−
uxxxx, where the reverse diffusion term−uxx leads to the
disruptive behavior while the fourth-order derivative uxxxx
introduces chaotic patterns as shown in Supplementary Fig. 2,
making it an ideal test problem for equation discovery. The KS
equation is widely used to model the instabilities in laminar flame
fronts and dissipative trapped-ion modes among others. We
randomly choose 320 points as fixed sensors and record the wave
response for 101 time steps, resulting in 12.6% of the dataset used
in ref. 6. A total of 36 candidate functions are employed to
construct the underlying PDE. Detail description of this example

is found in Supplementary Note 2.1.2. It is notable that the
chaotic behavior poses significant challenges in approximating
the full-field spatiotemporal derivatives, especially the high-order
uxxxx, from poorly measured data for discovery of such a PDE.
Existing methods (e.g., the family of SINDy methods6,7)
eventually fail in this case given very coarse and noisy
measurements. Nevertheless, PINN-SR successfully distils the
closed form of the KS equation from subsampled sparse data with
10% noise, shown in Fig. 2b. The evolution of the coefficients
Λ 2 R36 ´ 1 in Fig. 2b illustrates that both the candidate terms and
the corresponding coefficients are correctly identified (close to the
original parameters; error around 0.94%) within a few ADO
iterations. The predicted full-field wave by the trained PINN-SR
also coincides with the exact solution at a relative ℓ2 error of
2.14% (Supplementary Fig. 2).

Nonlinear Schrödinger equation: In the third example, we
discover the nonlinear Schrödinger equation, iut=−0.5uxx−
∣u∣2u, where u is a complex field variable. This well-known
equation is widely used in modeling the propagation of light in
nonlinear optical fibers, Bose-Einstein condensates, Langmuir
waves in hot plasmas, and so on. We take 37.5% subsamples (e.g.,
randomly selected from the spatial grids) of the dataset as shown
in Table 1 to construct the PDE using 40 candidate functions
ϕ 2 R1 ´ 40. Since the function is complex-valued, we model
separately the real part (uR) and the imaginary part (uI) of the
solution in the output of the DNN, assemble them to obtain
the complex solution u= uR+ iuI, and construct the complex-
valued candidate functions for PDE discovery. To avoid complex

Fig. 2 Discovery of selected benchmark PDEs for sparsely sampled measurement data with 10% noise. a Discovered Burgers' equation: evolution of the
sparse coefficients Λ 2 R16´ 1 for 16 candidate functions ϕ 2 R1 ´ 16 used to form the PDE, where the color represents the coefficient value. b Discovered KS
equation: Evolution of the sparse coefficients Λ 2 R36 ´ 1 for 36 candidate functions ϕ 2 R1 ´ 36. c Discovered nonlinear Schrödinger equation: evolution of
the sparse coefficients Λ 2 R40 ´ 1 for the candidate functions ϕ 2 R1 ´40. d Discovered NS equation: evolution of the sparse coefficients Λ 2 R60 ´ 1 for 60
candidate functions ϕ 2 R1 ´60. e Discovered RD equations: evolution of the sparse coefficients λu 2 R110´ 1 and λv 2 R110 ´ 1 (Λ= [λuλv]) for 110 candidate
functions ϕ 2 R1 ´ 110 used to reconstruct the u-equation and the v-equation, respectively.
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gradients in optimization, we use the modulus ∣u∣, instead of the
ℓ2 norm shown in Eq. (5), for the residual physics loss Lp (see
Supplementary Note 2.1.3 for more details). Figure 2c shows the
discovered Schrödinger equation for the case of 10% noise. The
evolution history of the sparse coefficients Λ 2 R40 ´ 1 clearly
shows the convergence to the actual values (Fig. 2c; error about
0.08%) resulting in accurate closed-form identification of the
PDE, while the reconstructed full-field response, for both real and
imaginary parts, matches well the exact solution with a slight
relative ℓ2 error of 0.26% (Supplementary Fig. 3).

Navier-Stokes (NS) Equation: We consider a 2D fluid flow
passing a circular cylinder with the local rotation dynamics
governed by the well-known Navier-Stokes vorticity equation
wt=− (u ⋅ ∇ )w+ ν∇2w, where w is the spatiotemporally variant
vorticity, u= {u, v} denotes the fluid velocities, and ν is the
kinematic viscosity (ν= 0.01 at Reynolds number 100). We
leverage the open simulation data6 and subsample a dataset of the
flow response {u, v, w} at 500 spatial locations randomly picked
within the indicated region in Supplementary Fig. S4, which
record time series for 60 time steps. The resulting dataset is only
10% of that used in ref. 6. A comprehensive discussion of this
example is found in Supplementary Note 2.1.4. Figure 2d
summarizes the result of the discovered NS equation for a
dataset with 10% noise. It is encouraging that the uncovered PDE
expression is almost identical to the ground truth, for both the
derivative terms and their coefficients, even under 10% noise
corruption. The coefficients Λ 2 R60 ´ 1, corresponding to 60
candidate functions ϕ 2 R1 ´ 60, converge very quickly to the
correct values with precise sparsity right after the first ADO
iteration (Fig. 2d). The vorticity patterns and magnitudes are also
well predicted as indicated by the snapshot (at t= 23.8) shown in
Supplementary Fig. 5 (the full-field ℓ2 error for all snapshots is
about 2.58%). This example provides a compelling test case for
the proposed PINN-SR approach which is capable of discovering
the closed-form NS equation with scarce and noisy data.

Reaction–diffusion (RD) equations: The examples above are
mostly low-dimensional models with limited complexity. We
herein consider a λ-ω reaction–diffusion (RD) system in a 2D
domain with the pattern forming behavior governed by two
coupled PDEs: ut= 0.1∇2u+ λ(g)u− ω(g)v and vt= 0.1∇2v+
ω(g)u+ λ(g)v, where u and v are the two field variables,
g= u2+ v2, ω=− g2, and λ= 1− g2. The RD equations exhibit
a wide range of behaviors including wave-like phenomena and
self-organized patterns found in chemical and biological systems.
The particular RD equations considered here display spiral waves
subjected to periodic boundary conditions. Full details on the
dataset, selection of candidate functions and hyper-parameter
setup of the PINN-SR model are given in Supplementary
Note 2.1.5. Fig. 2e shows the evolution of the sparse coefficients
λu; λv 2 R110 ´ 1 for 110 candidate functions ϕ 2 R1 ´ 110, given a
dataset with 10% noise. Both the sparse terms and the associated
coefficients are precisely identified to form the the closed-form
equations (as depicted in Fig. 2e). Due to the complexity of the
PDEs and the high dimension, slightly more epochs are required
in ADO to retain reliable convergence. The predicted response
snapshots (e.g., at t= 2.95) by the trained PINN-SR in
Supplementary Fig. 6 are close to the ground truth. This example
shows especially the great ability and robustness of our method
for discovering governing PDEs for high-dimensional systems
from highly noisy data.

Discovery of PDEs with multiple independent datasets. To
demonstrate the “root-branch” network presented in Fig. 1b for
the discovery of PDE(s) based on multiple independent datasets
sampled under different I/BCs, we consider (1) the 1D Burgers’

equation with light viscosity that exhibits a shock behavior, and
(2) a 2D Fitzhugh–Nagumo (FN) type reaction–diffusion system
that describes activator-inhibitor neuron activities excited by
external stimulus. The measurement data are sparsely sampled
(e.g., time series or snapshots) with 10% noise under three
different I/BCs. Note that the I/BCs are unnecessarily either
measured or known a priori since the measurements already
reflect the specific I/BC which holds uniquely one-to-one map-
ping to the system response. The discovery results are discussed
as follows.

Burgers’ equation with shock behavior: In this example, we test
the previously discussed Burgers’ equation with a small diffusion/
viscosity parameter (ν= 0.01/π ≈ 0.0032) based on datasets
generated by imposing three different I/BCs. Such a small
coefficient creates shock formation in a compact area with sharp
gradient (see Fig. 3c) that could challenge the DNN’s approxima-
tion ability and thus affect the discovery. The three initial and
Dirichlet boundary conditions include

I/BC 1: uðx; 0Þ ¼ �sinðπxÞ; uð�1; tÞ ¼ uð1; tÞ ¼ 0

I/BC 2: uðx; 0Þ ¼ GðxÞ; uð�1; tÞ ¼ uð1; tÞ ¼ 0

I/BC 3: uðx; 0Þ ¼ �x3; uð�1; tÞ ¼ 1; uð1; tÞ ¼ �1

where G denotes a Gaussian function. Although the measurement
datasets for different I/BCs exhibit completely distinct system
responses, they obey the same underlying PDE, namely, ut=−
uux+ 0.0032uxx. For all I/BCs, we assume that there are
30 sensors randomly deployed in space (x∈ [−1, 1]) measuring
the wave traveling (e.g., u) for 500 time instants (t∈ [0, 1]). A
denser sensor grid is needed herein, compared with the previous
Burgers’ example, in order to capture the shock behaviors.
Figure 3a shows some of the measurements recorded by six
typical sensors under 10% noise. A three-branch network (r= 3)
shown in Fig. 1b is used for discovery. The full description of the
dataset, the library of candidate functions (16 terms) and model
training is given in Supplementary Note 2.3.1. Figure 3b depicts
the evolution of the coefficients (Λ 2 R16 ´ 1) of candidate
functions, where the correct terms in the library (uux and uxx)
are successfully distilled while other redundant terms are
eliminated (e.g., hardly thresholded to zero) by ADO. The
coefficients of the active terms are accurately identified as well (in
particular the small viscosity parameter that leads to shock
formation, e.g., 0.0039). The discovered PDE reads ut=−1.002
uux+ 0.0032uxx. Figure 3c, d shows the predicted responses and
errors for three I/BC cases, with a stacked full-field ℓ2 error of
0.65%.

FitzHugh–Nagumo (FN) reaction–diffusion system: We con-
sider the FitzHugh–Nagumo (FN) type reaction–diffusion system,
in a 2D domain Ω= [0, 150] × [0, 150] with periodic boundary
conditions, whose governing equations are expressed by two
coupled PDEs: ut= γuΔu+ u− u3− v+ α and vt= γvΔv+
β(u− v). Here, u and v represent two interactive components/
matters (e.g., biological), γu= 1 and γv= 100 are diffusion
coefficients, α= 0.01 and β= 0.25 are the coefficients for reaction
terms, and Δ is the Laplacian operator. The FN equations are
commonly used to describe biological neuron activities excited by
external stimulus (α), which exhibit an activator-inhibitor system
because one equation boosts the production of both components
while the other equation dissipates their new growth. Three
random fields are taken as initial conditions to generate three
independent datasets for discovery, each of which consists of 31
low-resolution snapshots (projected into a 31 × 31 grid) down-
sampled from the high-fidelity simulation under a 10% noise
condition (see Supplementary Fig. 8). We assume the diffusion
terms (Δu and Δv) are known in the PDEs, whose coefficients (γu
and γv) yet need to be identified. A library with 72 candidate

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26434-1

6 NATURE COMMUNICATIONS |         (2021) 12:6136 | https://doi.org/10.1038/s41467-021-26434-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


functions (ϕ 2 R1´72) is designed for discovery of the coupled
PDEs (in particular, the nonlinear reaction terms). Similar to the
previous example, a root-branch network shown in Fig. 1b is
employed for discovery. More description of the data generation,
the specific candidate functions and model training can be found
in Supplementary Note 2.3.2. Figure 4a, b depicts the evolution of
the sparse coefficients λu; λv 2 R72 ´ 1 for 72 candidate functions.
The pre-training step provides a redundant projection of the
system onto 72 candidates; however, minor candidates are pruned
out right after the first ADO iteration. The rest ADO iterations
continue to refine all the trainable parameters including θ, λu and
λv. The finally discovered PDEs are listed in Fig. 4 in comparison
with the ground truth. It is seen that the form of the PDEs is
precisely uncovered with all correct active terms (including the
unknown external stimulus in the first equation). The corre-
sponding identified coefficients are generally close to the ground
truth except the diffusion coefficient for v (i.e., γv) which seems to
be a less sensitive parameter according to our test. It should be
noted that, given very scarce and noisy measurement datasets in

this example, the “root-branch” DNN is faced with challenges to
accurately model the solutions with sharp propagating fronts (see
Fig. 4c). The less accurate solution approximation by DNN then
affects the discovery precision. This issue can be naturally
alleviated by increasing the spatiotemporal measurement resolu-
tion (even still under fairly large noise pollution, e.g., 10%).
Nevertheless, the exact form of the PDEs is successfully
discovered in this challenging example, which is deemed more
important since the coefficients can be further tuned/calibrated
when additional data arrives. Figure 4c shows typical snapshots of
the predicted u and v components, the ground truth reference
and the error distributions for one unmeasured time instance
(t= 18.72). The stacked full-field ℓ2 error is 5.02%.

Experimental discovery of cell migration and proliferation. The
last example is placed to demonstrate the proposed approach for
discovering a governing PDE that describes cell migration and
proliferation, based on the sparse and noisy experimental data
collected from in vitro cell migration (scratch) assays46. The 1D

Fig. 3 Discovered Burgers’ equation with small viscosity based on datasets sampled under three I/BCs with 10% noise. a Visualization of noisy
measurements for the three datasets. Note that there are 30 sensors and only a few are illustrated in this figure. b Evolution of the sparse coefficients
Λ 2 R16´ 1 for 16 candidate functions ϕ 2 R1 ´ 16 used to construct the PDE, where the color represents the coefficient value. The correct terms (uux and
uxx) and their coefficients are successfully identified while other redundant terms are eliminated by ADO. c, d The predicted responses and errors for three
I/BC cases. The ground truth is not listed herein since the visualization is almost indistinguishable from the prediction (see Supplementary Fig. 7). The
relative full-field ℓ2 error of the stacked prediction is 0.65%.
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cell density distributions at different time instants (0 h, 12 h, 24 h,
36 h, 48 h) were extracted from high-resolution imaging via image
segmentation and cell counting. A series of assays were per-
formed under different initial cell densities (e.g., the total number
of cells spans from 10,000 to 20,000 following the designated
initial distribution in the test well shown in Supplementary
Fig. 10 at t= 0h). A more detailed description of the experiment
setup and datasets can be found in ref. 46. Our objective herein is
to uncover a parsimonious PDE for modeling the dynamics of cell
density ρ(x, t). Here, we consider four scenarios with the initial
number of cells ranging from 14,000, 16,000, 18,000 to 20,000.
We take the mean of the test data from three identically-prepared

experimental replicates for each scenario (see Supplementary
Fig. 10) to train our model shown in Fig. 1a for PDE discovery.
Given our prior knowledge that the cell dynamics can be
described by a diffusion (migration) and reaction (proliferation)
process, we assume the PDE holds the form of ρt ¼ γρxx þ F ðρÞ,
where γ is the unknown diffusion coefficient and F denotes the
underlying nonlinear reaction functional. We use 8 additional
candidate terms (e.g., {1, ρ, ρ2, ρ3, ρx, ρρx, ρ2ρx, ρ3ρx}) to recon-
struct F , whose coefficients are sparse. Hence, the total number
of trainable coefficients remains 9 (e.g., Λ 2 R9 ´ 1). We believe
incorporating our domain-specific prior knowledge is reasonable
and should be encouraged in interpretable model discovery,

Pretraining ADO

Iter. 1 Iter. 2-6

Pretraining

a.

b.

c.

Equa�on

Equa�on

1.69

0.23

− 0.23

0.98

0.87

− 0.85

− 0.92

0.99

Post-training

ADO
Iter. 1 Iter. 2-6

Fig. 4 Discovered Fitzhugh–Nagumo equations based on data sampled under three initial conditions (ICs) with 10% noise. a Evolution of the sparse
coefficients λu 2 R72 ´ 1 for 72 candidate functions used to construct the first PDE (u-equation), where the color represents the coefficient value. b
Evolution of the sparse coefficients λv 2 R72 ´ 1 for the second PDE (v-equation). For visualization purpose, we re-scale the identified coefficients of the
constant stimulus term “1” in the u-equation by multiplying 100 and of the diffusion term Δv in the v-equation by dividing 50. c Snapshots of predicted
response, ground truth and error distributions for all three ICs at an unmeasured time instance (t= 18.72). The relative ℓ2 error for the predicted full-field
response (stacked u and v) is 5.02%.
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which could help improve our solution confidence when available
data is very sparse and noisy (e.g., in this example). Other details
on the PINN-SR model setting and training can be found in
Supplementary Note 2.4.

Figure 5a shows the evolution of 9 coefficients for the example
case of 18,000 cells, where redundant candidate terms are pruned
right after the first ADO iteration via hard thresholding of the
corresponding coefficients to zero. The next ADO iterations
followed by post-tuning refine the coefficients of active terms for
final reconstruction of the PDE. Figure 5b depicts the identified
active term coefficients and the corresponding PDEs for different
quantities of cells, sharing a unified form of ρt= γρxx+ λ1ρ+
λ2ρ2 which exactly matches the famous Fisher-Kolmogorov
model47. The rates of migration (diffusion) and proliferation
(reaction) generally increase along with the number of cells, as
seen from the identified coefficients in Fig. 5b. With the
discovered PDEs, we simulate/predict the evolution of cell
densities at different time instants (12h, 24h, 36h and 48h)

presented in Fig. 5c–f, where the measurement at 0h is used as
the initial condition while ρx(x= 0, t)= ρx(x= 1900, t)= 0 is
employed as the Neumann boundary condition. The satisfactory
agreement between the prediction and the measurement provides
a clear validation of our discovered PDEs. It is noted that the
extremely scarce and noisy experimental datasets unfortunately
pose intractable challenge for any other existing methods (e.g.,
SINDy5,6) to produce a reasonable discovery. This experimental
example further demonstrates the strength and capacity of the
proposed methodology in regard to handling high level of data
scarcity and noise for PDE discovery.

Discussion
In summary, we have presented a novel deep learning method for
discovering physical laws, in particular parsimonious closed-form
PDE(s), from scarce and noisy data (commonly seen in scientific
investigations and real-world applications) for multi-dimensional

Fig. 5 Discovery result for cell migration and proliferation. a Example evolution of the sparse coefficients Λ 2 R9 ´ 1 for 9 candidate functions used to
construct the underlying PDE for the case of 18,000 cells. The diffusion and reaction coefficients for Δu and u are re-scaled for visualization purpose.
b Discovered active terms {Δρ, ρ, ρ2}, their coefficients and the corresponding PDEs for 14,000, 16,000, 18,000 and 20,000 cells, respectively.
c, f Simulated cell densities at different time instants based on the discovered PDEs for 14,000, 16,000, 18,000 and 20,000 cells, respectively, where the
measurement at 0h is used as the initial condition while ρx(x= 0, t)= ρx(x= 1900, t)= 0 is employed as the Neumann boundary condition. The simulation
result is represented by solid curves while the markers denote the measurement data.
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nonlinear spatiotemporal systems. This approach combines the
strengths of DNNs for rich representation learning of nonlinear
functions, automatic differentiation for accurate derivative cal-
culation as well as ℓ0 sparse regression to tackle the fundamental
limitation faced by existing sparsity-promoting methods that
scale poorly with respect to data noise and scarcity. The use of
collocation points (having no correlation with the measurement
data) can render the proposed framework tolerable to scarce and
noisy measurements, making the DNN for PDE solution
approximation generalizable (see Supplementary Note 3.3). The
special network architecture design is able to account for multiple
independent datasets sampled under different initial/boundary
conditions. An alternating direction optimization strategy is
proposed to simultaneously train the DNN and determine the
optimal sparse coefficients of selected candidate terms for
reconstructing the PDE(s). The synergy of DNN and sparse PDE
representation results in the following outcome: the DNN pro-
vides accurate modeling of the solution and its derivatives as a
basis for constructing the governing equation(s), while the spar-
sely represented PDE(s) in turn informs and constraints the DNN
which makes it generalizable and further enhances the discovery.
The overall approach is rooted in a comprehensive integration of
bottom-up (data-driven) and top-down (physics-informed) pro-
cesses for scientific discovery, with fusion of physics-informed
deep learning, sparse regression and optimization. We demon-
strate this method on a number of dynamical systems exhibiting
nonlinear spatiotemporal behaviors (e.g., chaotic, shock, propa-
gating front, etc.) governed by multi-dimensional PDEs based on
either single or multiple datasets, numerically or experimentally.
Results highlight that the approach is capable of accurately dis-
covering the exact form of the governing equation(s), even in an
information-poor space where the multi-dimensional measure-
ments are scarce and noisy. The proposed method also maintains
satisfactory robustness against different types of noises (Gaussian
and non-Gaussian; see Supplementary Note 3.4) for PDE
discovery.

There still remain some potential limitations associated with
the present PINN-SR framework for physical law discovery.
Firstly, we have to admit that the computational cost of PINN-SR
is much higher compared with the state-of-the-art SINDy
method, primarily due to the time-consuming DNN training (see
Supplementary Note 2.2). However, the critical bottleneck of
SINDy lies in its requirement of large high-quality (clean)
structured measurement data, owing to its use of numerical dif-
ferentiation, which poses critical limitation of SINDy in practical
applications where data is sparse and noisy (e.g., the experimental
data in the cell migration and proliferation example). There is
obviously a trade-off between computational efficiency and need
of high-quality data. Another limitation is that, although the fully
connected DNN used in this work has advantage of analytical
approximation of the PDE derivatives via automatic differentia-
tion, directly applying it to model the solution of higher dimen-
sional systems (such as long/short-term response evolution in a
3D domain) results in computational bottleneck and optimization
challenges, e.g., due to the need for a vast number of collocation
points to maintain satisfactory accuracy. Advances in discrete
DNNs with spatiotemporal discretization (e.g., the convolutional
long short-term memory network (ConvLSTM)48 or similar)
have the potential to help resolve this challenge, which will be
demonstrated in our future work. In addition, the “root-branch”
scheme might suffer from scalability issues when a large number
of independent datasets sampled under various I/BCs are avail-
able, resulting in many branches of the network for PDE solution
approximation. The number of DNN trainable variables, the
requirement of collocation points for retaining solution accuracy,
and thus the computing memory, will grow in general linearly

with the number of independent datasets (e.g., OðrÞ). Never-
theless, this issue can be potentially well resolved by multi-GPU
parallelization. Ideally, if the I/BCs are known a priori and can be
parameterized under the condition that large and diverse datasets
are available, a parametric DNN learning scheme39 or neural
operator learning49,50 could be developed into the proposed
PINN-SR for parametric PDE solution approximation that
accounts for different I/BCs. Nevertheless, we emphasize that the
assumption of large datasets is out of the scope of our present
study, since this requirement is generally hard to meet in equation
discovery related applications where data is commonly scarce.

The current version of PINN-SR is inapplicable to the scenario
where the PDE coefficients are variant (e.g., time and/or space
dependent). However, given PINN’s ability of identifying varying
coefficients of PDEs51, PINN-SR can be naturally extended to
discover the closed form of PDEs where the varying coefficients
are separately modeled and identified. Moreover, PINN is not
good at modeling system with chaotic behaviors or sharp pro-
pagating wave fronts, primarily due to the way of its solution field
approximation with global basis. This limitation is particularly
evident when the labeled data is missing (e.g., solving PDEs given
I/BCs52) or when the model form is unknown (e.g., data-driven
modeling with constrained by hidden physics43). However, such a
limitation can be apparently alleviated, when the labeled data is
relatively rich and a clear PDE model is explicitly given (e.g., the
library-based model). Nevertheless, the learned full-field response
still possesses errors in the propagating wave fronts if the training
data is sparse and noisy. Although these errors did not affect
much the discovered PDE structure, they result in less accurate
identification of PDE coefficients. A network with local basis
support might help resolve this issue. Lastly, while PINN-SR
relies on a pre-defined library of candidate terms, designing a
priori inclusive but not unnecessarily large library remains a
difficult task (see more details in Methods). Combining expres-
sion trees53 or symbolic neural networks54 with PINN and
automatic differentiation has the potential to break the limitation
of library-based methods for PDE discovery under sparse and
noisy data conditions.

Several other aspects (including optimal placement of sensors,
convergence history, parametric study on the network size, list of
hyper-parameters used in the examples, and other limitations of
the method) are further discussed in Supplementary Note 3.5–3.9.

Methods
The innovations of this work are built upon seamless integration of the strengths of
deep neural networks for rich representation learning, physics embedding, auto-
matic differentiation and sparse regression to (1) approximate the solution of
system variables, (2) compute essential derivatives, as well as (3) identify the key
derivative terms and parameters that form the structure and explicit expression of
the PDE(s). The technical contributions include: (1) a “root-branch” network,
constrained by unified underlying physics, that is capable of dealing with a small
number of multi-datasets coming from different I/BCs, and (2) a simple, yet
effective, multi-step training strategy for optimization of heterogeneous para-
meters. The resulting approach is able to deal with scarce/sparse and highly noisy
measurement data while accounting for different initial/boundary conditions. The
key method components are discussed below.

Network architecture. The proposed network architectures of PINN-SR are
shown in Figs. 1a, b that respectively deal with single-I/BC dataset and multiple-I/
BC (r) independent datasets. The latent solution u is interpreted by a dense (fully
connected) DNN shown in Fig. 1a, namely, uθ= u(x, t; θ), for the case of single
dataset, while a “root-branch” dense DNN depicted in Fig. 1b is designed to
approximate the latent solutions ui (i= 1,…, r) corresponding to different I/BCs,
viz., uθi ¼ u x; t; θð0Þ; θðiÞ

� �
, for multiple independent datasets. Here, θ’s denote the

DNN trainable parameters. The DNNs take the spatiotemporal domain coordi-
nates {x, t} as input followed by multiple fully connected feedforward hidden layers
(each layer has dozens of nodes). We use the hyperbolic tangent (tanh) or sine (sin)
as the universal activation function thanks to their strength for high-order dif-
ferentiation and unbiased estimation for both positive and negative values. The sin
function is used when the system response exhibits periodic patterns. The output
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later is based on linear activation for universal magnitude mapping. When multiple
datasets are available, e.g. sampled from different I/BCs, domain coordinates are
input to the “root” net (shared hidden layers), followed by r “branch” nets (indi-
vidual hidden layers) that predict system response corresponding to each I/BC or
dataset. The “root” learns the common patterns across all datasets (e.g., the
homogeneous part of the solution) while the “branches” learn specific details
determined by each I/BC for each independent dataset (e.g., the causality attributed
by a specific I/BC). The resulting “root-branch” network, constrained by unified
underlying physics, is capable of accounting for different I/BCs. Such an archi-
tecture integrates information from different measurements at the expense of larger
computational efforts and produces solution approximations satisfying a unified
physics (e.g., governing PDE(s)), which essentially strengthens PINN to perform
multi-source data-driven modeling. The DNNs essentially play a role as a non-
linear functional to approximate the latent solution.

The DNN is connected to the physical law (reconstruction of PDE(s)) through a
automatic differentiator where derivatives on u’s are evaluated at machine
precision. The library of candidate functions ϕθ can be computed from the DNNs.
For the case of multiple independent datasets, the libraries ϕ(i) resulted from the
“branch” nets are concatenated to build one unified ϕθ. If there is unknown source
input, the candidate functions for p can also be incorporated into the library for
discovery. The sparse representation of the reconstructed PDE(s) is then expressed
in a residual form: Rθ :¼ uθt � ϕθΛ ! 0 s.t.Λ 2 S, where Rθ 2 R1´ n denotes the
PDE residuals, S represents the sparsity constraint set, and n is the dimension of
the system variable (e.g., u 2 R1 ´ n). Thus, the overall network architecture
consists of heterogeneous trainable variables, namely, DNN parameters θ 2 Rnθ ´ 1

and PDE coefficients Λ 2 S � Rs ´ n , where nθ denotes the number of DNN
trainable parameters and nθ≫ sn.

Physics-constrained sparsity-regularized loss function. The physics-
constrained sparsity-regularized loss function, expressed in Eq. (3), is composed of
three components, the data loss Ld , the residual physics loss Lp and a sparsity
regularization term imposed on Λ. The data loss function reads

Ldðθ;DuÞ ¼
1
Nm

uθ � um
�� ��2

2 ð4Þ

where um is the measurement data, uθ is the corresponding DNN-approximated
solution, Nm is the total number of data points, and ∥ ⋅ ∥2 denotes the Frobenius
norm. The responses are stacked when multiple datasets are available, e.g., um ¼
fum1 ; ¼ ;umr g and uθ ¼ fuθ1; ¼ ; uθr g, where r ≥ 2, as shown in Fig. 1b. The PDE
residuals Rθ are evaluated on a large number of randomly sampled collocation
points Dc, and used to form the residual physics loss function given by

Lpðθ;Λ;DcÞ ¼
1
Nc

_UðθÞ �ΦðθÞΛ
�� ��2

2 ð5Þ

where _U and Φ denote respectively the discretization of the first-order time
derivative term and the library of candidate functions evaluated on the collocation
points; Nc is the total number of spatiotemporal collocation points. For the case of
multiple datasets, _U and Φ are concatenated over the index of different I/BCs to
ensure the identical physical law (in particular, the governing PDE(s)) is imposed,
as depicted in Fig. 1b. Note that Ld ensures that the DNN accurately interpret the
latent solution of the PDE(s) via fitting the data, while Lp generalizes and provides
constraints for the DNN through reconstructing the closed form of the PDE(s).
The ℓ0 regularization term in Eq. (3) promotes the sparsity of the coefficients Λ for
sparse representation of the PDE(s).

Alternating direction optimization. A brute-force training of the network via
solving the optimization problem defined in Eq. (3) is highly intractable since the ℓ0
regularization makes this problem np-hard. Though relaxation of the ℓ0 term by the
less rigorous ℓ1 regularization improves the well-posedness and enables the opti-
mization in a continuous space, false-positive identification occurs where accurate
sparsity of the PDE coefficients cannot be realized44,45. To address this challenge,
we present an alternating direction optimization (ADO) algorithm that divides the
overall optimization problem into a set of tractable subproblems to sequentially
optimize θ and Λ within a few alternating iterations (denoted by k), namely,

Λ?
kþ1 :¼ arg min

Λ
½kU

:
ðθ?kÞ �Φðθ?kÞΛk

2

2 þ βkΛk0� ð6aÞ

θ?kþ1 :¼ arg min
θ

½Ldðθ;DuÞ þ αLpðθ;Λ?
kþ1;DcÞ� ð6bÞ

The fundamental concept of the ADO algorithm is similar to (or can be regarded as
a simplified version of) the alternating direction methods of multipliers55. In each
alternating iteration k+ 1, the sparse PDE coefficients Λ in Eq. (6a) are updated
(denoted by Λ?

kþ1) via STRidge (a sequential thresholding regression process that
serves as a proxy for ℓ0 regularization5,6), based on the DNN parameters from the
previous iteration (e.g., θ?k). The convergence analysis of STRidge can be found in
ref. 28. The DNN parameters θ in the current iteration are then updated (denoted
by θ?kþ1) through a standard DNN training algorithm (in particular, the combined
Adam56 + L-BFGS57 optimizer), taking Λ?

kþ1 as known. Note that a sufficient

number of epochs should be used when training the network in order to achieve
satisfactory solution accuracy of θ?kþ1. The alternations between the sub-optimal
solutions will lead to a high-quality optimization solution satisfying global con-
vergence. The ADO sequence converges q-linearly (see Theorem 1 below), where q
stands for “quotient”. Detailed theoretical analysis of generalized alternating
optimization can be found in ref. 58. It is noteworthy that the Adam optimizer plays
a role for global search while the L-BFGS optimizer takes responsibility of fine
tuning in a local solution region. The learning rate of Adam ranges from 10−5 to
10−3 in the test examples. The algorithm design of ADO as well as the imple-
mentation details and specifications are given in Supplementary Algorithm 1,
Algorithm 2 and Note 1.1.

Theorem 1. Let Θ⋆= {θ⋆,Λ⋆} be a local minimizer of the total loss function
Lðθ;Λ;Du;DcÞ : Rη 7!R and let L be strictly convex in a neighborhood
NðΘ?; δÞ, where η denotes the number of trainable parameters. We choose 0 < ϵ ≤ δ
so that L is strictly convex on NðΘ?; ϵÞ. If y ¼ fθ;Λ?g 2 NðΘ?; ϵÞ and θ* locally
minimizes Lðθ;Λ?;Du;DcÞ, then θ* is the unique global minimizer. This is also
applicable to Λ*. For any admissible initial solution Θ0 2 NðΘ?; ϵÞ, the corre-
sponding ADO iteration sequence converges to Θ⋆q-linearly in theory. The actual
convergence rate depends on the error propagation in each ADO iteration.

Pre-training of PINN-SR is conducted before running the ADO algorithm for
discovery, by simply replacing ∥Λ∥0 in Eq. (3) with ∥Λ∥1 where brute-force
gradient-based optimization (e.g., Adam + L-BFGS) for both θ and Λ becomes
applicable, namely,

fθ?;Λ?g ¼ argmin
fθ;Λg

fLdðθ;DuÞ þ αLpðθ;Λ;DcÞ þ γkΛk1g ð7Þ

where γ denotes the ℓ1 regularization parameter. The ℓ1-regularized pre-training
can accelerate the convergence of ADO by providing an admissible “initial guess”.
During pre-training, the DNN learns the physics patterns underlying the sparse
and noisy data, weakly constrained by the regression formulation of governing
PDEs. Post-training (or post-tuning) is also applicable, which can be applied after
the closed form (structure) of the PDE(s) is uncovered. This can be done by
training the DNN along with the identification of the discovered non-zero
coefficients, viz.,

fθ?;Λ?g ¼ argmin
fθ;Λg

fLdðθ;DuÞ þ αLpðθ;Λ;DcÞg ð8Þ

where the initialization of the unknown parameters {θ,Λ} can be inherited from
the ADO result. The post-training step is completely optional since the ADO
method can already provide a high-quality solution as shown in the test examples.
Nevertheless, the post-training could add additional discovery accuracy through
fine tuning.

It is worthwhile to mention that the underlying intuition of multi-step training
has been widely used and justified effective in the deep learning community, in
particular, for DNN compression59,60 (e.g., network pre-training, weights pruning,
and post-training). The proposed training strategy is similar to this commonly used
procedure. The heuristic justification of the proposed 3-step training strategy reads:
the pre-training phyase learns a good PDE solution approximator, ADO uncovers
the parsimonious PDE structure, while the post-training stage fine-tunes the
coefficients of the discovered PDE structure.

Selection of hyper-parameters. A proper selection of hyper-parameters (e.g., α, β,
γ and those required by Supplementary Algorithm 1 and Algorithm 2) guarantees
the success of the proposed method for PDE discovery. In this study, the hyper-
parameters are selected following the heuristically consistent criteria below.

● α: This hyper-parameter balances the loss contributions from data and
physics regularization for network training, which can be generally
estimated based on the scale ratio between the measured response um

and its temporal derivative umt (estimated/approximated by finite
difference). In particular, the magnitude of α is set to be similar to the
deviation ratio between um and umt , namely, α � rσ ¼ σðumÞ=σðumt Þ

� �2
.

Note that, to facilitate the PDE solution approximation highlighting the
measurement data, we generally reduce the value of α in the pre-training
stage by several times (e.g., 2–10) to relax the physics constraint. In ADO
and post-training, the value of α is increased (e.g., α ~ rσ) to enhance the
discovery of the PDE structure and fine tuning of PDE coefficients.
However, we also find exception such as the λ-ω equations, where α in both
pre-training and ADO stages should be set greater than the scaled ratio. It
is likely due to the high resemblance between u and v in the spiral pattern,
which can be alleviated if datasets from diverse IB/Cs are included in the
measurements. Nevertheless, we have to mention that how to select this
hyper-parameter is a common and critical open question in the PINN
community.

● β: This hyper-parameter is the coefficient of the ℓ0 regularizer on Λ for the
physics regression used in STRidge, which helps adaptively adjust the
threshold tolerance in Supplementary Algorithm 1. We propose a Pareto
front analysis strategy to estimate the value of β in order to best balance the
physics loss and the equation sparsity. We first construct the sparse
regression problem (see Eq. (6a)) solved by STRidge, where _U and Φ are
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evaluated based on the pre-trained DNN (with the trained network
parameters denoted by θ0). A grid search for β is then performed to obtain
the graphical representation of the Pareto set (e.g., Lpðθ0;Λ;DcÞ vs. ∥Λ∥0).
The optimal range of β can then be determined (see Supplementary
Note 3.8). To avoid scaling issues, we further define β ¼ κLpðθ0;Λ0;DcÞ,
where κ is an auxiliary scaling variable determined by the Pareto front
analysis and Λ0 denotes the pre-trained PDE coefficients.

● γ: This hyper-parameter used in pre-training (i.e., coefficient of the ℓ1

regularizer) is set to be a small value, e.g., 1 × 10−7. Our parametric study
showed that this parameter is less important, which can also be set as zero
although a small γ helps weakly promote the coefficient sparsity for PDE
candidate terms.

● nmax: Based on our extensive tests, it is observed that the correct PDE
structure can always be found within the first couple of ADO iterations.
Hence, a safe value of 5–10 for the maximum number of ADO iterations
(nmax) will be sufficient to ensure convergence, e.g., we set nmax as 6 in all
examples.

Other hyper-parameters (e.g., number of epochs, number of STRidge iterations,
and the threshold increment in STRidge) used to activate Supplementary
Algorithm 1 and Algorithm 2 are further discussed in detail in Supplementary
Note 1.1 and 3.8.

Initialization of trainable variables. Initiation of the heterogeneous trainable
variables remains different. Specifically, the DNN weights are initialized based on
Xavier Initialization, while the sparse PDE coefficients are uninformatively initi-
alized either as zero or by uniformly sampling in [−1, 1].

Selection of candidate functions. The library of candidate functions is a sig-
nificant component in PINN-SR. Designing a a priori inclusive but not unne-
cessarily large library is a difficult task. On one hand, we prefer to make the
candidate library as diverse as possible. On the other hand, balancing the increasing
theoretical and computational complexity is crucial for applications. We believe
that a specialized library hinged by our domain-specific knowledge and statistical
experience can constrain the search space and reduce the complexity of PDE
discovery. Although the higher the dimension of the library is, the more likely the
exact terms will be uncovered from data. Nevertheless, a highly large-scale library
(e.g., the number of components on the order of magnitude of ≥103), essentially
approximated by the DNN, is very likely to be rank deficient and have poor
conditioning, in addition to the growing theoretical complexity and computational
burden. Balancing these concerns and finding mathematical principles based on
domain-specific knowledge to establish an efficient candidate library remain an
open problem. Moreover, failing to include essential candidate functions will lead
to false-positive discovery of parsimonious closed form of PDEs, despite that a
“best-of-fit” form can be found (see Supplementary Note 3.2). Since the majority of
well-known first-order PDEs with respect to time can be represented by linear
combination of several active linear/nonlinear terms, we try to include as many as
possible commonly seen terms following polynomial basis in this study.

Data availability
All the used datasets in this study are available on GitHub at https://github.com/isds-
neu/EQDiscovery.

Code availability
All the source codes to reproduce the results in this study are available on GitHub at
https://github.com/isds-neu/EQDiscovery.
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