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Background: Accurate risk stratification of critically ill patients with coronavirus disease 2019 (COVID-19) is 

essential for optimizing resource allocation, delivering targeted interventions, and maximizing patient survival 

probability. Machine learning (ML) techniques are attracting increased interest for the development of prediction 

models as they excel in the analysis of complex signals in data-rich environments such as critical care. 

Methods: We retrieved data on patients with COVID-19 admitted to an intensive care unit (ICU) between March 

and October 2020 from the RIsk Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) 

registry. We applied the Extreme Gradient Boosting (XGBoost) algorithm to the data to predict as a binary out- 

come the increase or decrease in patients’ Sequential Organ Failure Assessment (SOFA) score on day 5 after ICU 

admission. The model was iteratively cross-validated in different subsets of the study cohort. 

Results: The final study population consisted of 675 patients. The XGBoost model correctly predicted a decrease 

in SOFA score in 320/385 (83%) critically ill COVID-19 patients, and an increase in the score in 210/290 (72%) 

patients. The area under the mean receiver operating characteristic curve for XGBoost was significantly higher 

than that for the logistic regression model (0.86 vs . 0.69, P < 0.01 [paired t -test with 95% confidence interval]). 

Conclusions: The XGBoost model predicted the change in SOFA score in critically ill COVID-19 patients admitted 

to the ICU and can guide clinical decision support systems (CDSSs) aimed at optimizing available resources. 
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The coronavirus disease 2019 (COVID-19) outbreak repre-

ents one of the most critical global health emergencies in mod-

rn times, with > 4.7 million deaths reported worldwide as of

he end of September 2021 [1] . The COVID-19 pandemic has

osed an unprecedented healthcare challenge, with intensive

are unit (ICU) capacity rapidly exceeded around the world in
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he first weeks of the outbreak and subsequent resurgences [2] .

he ability to predict patient outcomes by analyzing ICU medi-

al records is hampered by numerous challenges such as a lack of

tructured clinical data, missing values, and datasets with a lim-

ted number of patients. Under these conditions, predicting the

robability that a patient will either develop complications as-

ociated with COVID-19 or improve is important as it may help

o define a personalized risk profile that will optimize clinical
stigators. 
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anagement [3] . The analytical capability of machine learn-

ng (ML) methods has proven extremely accurate and in some

ases, superior to classical statistical approaches [4] . This was

onfirmed by our recent work in this area in which we proposed

L-based methodologies for predicting the risk of certain con-

itions and complications related to chronic diseases [5–7] . The

se of ML to design a Clinical Decision Support System (CDSS)

lso has practical value beyond clinical diagnosis and disease

odeling [8] . 

Real-world datasets from the ICU usually consist of data with

igh dimensionality in terms of both an absolute number of

onitored parameters and sampling frequency. On the other

and, the collected features are usually characterized by noise

nd/or redundancy. While managing and modeling this amount

f data, there are several challenges such as overfitting, low in-

erpretability, data heterogeneity, and missing values. 

Data-driven techniques may be useful for analyzing stored

ultifactorial temporal ICU data to construct advanced ML

odels that can predict clinical outcomes and reveal complex

atterns that may not be obvious to physicians [9] . Predictive

L models can also aid physicians in predicting early-stage dis-

ase by identifying the most relevant clinical factors in the risk

rofile of a given condition. Among existing ML algorithms, the

xtreme Gradient Boosting (XGBoost) model has gained popu-

arity for its generalizability, low risk of overfitting, and high in-

erpretability; it outperforms other data mining methods for pre-

ictive medicine tasks based on tabular (e.g., electronic health

ecord [EHR]) data [10] and has been applied to critical care

ituations such as cardiovascular compromise with volume re-

uscitation [ 9 , 10 ] and other conditions [11–13] . 

We speculated that the XGBoost model can be used as a plat-

orm to predict disease course in COVID-19 patients. To test this

ypothesis, in the present study, we applied the model to pre-

ict changes in the Sequential Organ Failure Assessment (SOFA)

core in COVID-19 patients within the first 5 days of admission

o the ICU. We also compared the performance of the XGBoost

odel with that of a standard regression method. 

ethods 

etting and descriptive statistics 

The study population was retrieved from the RIsk Stratifica-

ion in COVID-19 patients in the Intensive Care Unit (RISC-19-

CU) registry, which includes patients diagnosed with COVID-19

nd admitted to the ICU or semi-ICU. The registry was launched

n March 17, 2020, and was created for near real-time tracking

f patients at up to 96 centers in 15 different countries who de-

eloped a critical illness due to COVID-19 [ 14 , 15 ]. The number

f critically ill COVID-19 patients has been increasing steadily,

ith 1613 individual admissions at the end of October 2020.

atient characteristics at ICU admission are reported as counts,

ercentages (%), means, standard deviations, or medians and in-

erquartile ranges (IQRs) as appropriate. These were compared

etween patients with an increase vs. a decrease in SOFA score

f ≥ 2 points within the first 5 days of ICU admission using the

ndependent samples t -test or Wilcoxon rank-sum test for con-

inuous variables and the chi-squared test for categorical vari-

bles. Statistical analysis was performed with a fully scripted

ata management pathway using R v3.6.3 (cran.r-project.org).
111 
 two-sided P -value < 0.05 was considered statistically signifi-

ant. 

rediction model 

tudy variables 

The SOFA score assesses the acute morbidity of critically ill

atients and has been validated in different settings [16] . Pa-

ient characteristics and laboratory and physiologic parameters

t the time of ICU admission or within the first 24 h were used as

redictors [ Fig. 1 and Supplementary Table S1]. Features with

 70% missing values were excluded from the model. 

redicted outcome 

Predicting the probability of organ failure can help physi-

ians in deciding whether to intensify or de-escalate monitor-

ng and treatment. We used the XGBoost model to predict the

hange in SOFA score of patients on day 5 after ICU admission

pattern discrimination). An increase in SOFA score ≥ 2 points

r a decrease of ≤ 2 points according to the Sepsis-3 definition

as defined as worsening or improvement, respectively, of the

atient’s clinical status [17] . 

odel development 

The process used to construct the XGBoost model to predict

he increase or decrease in SOFA score is shown in Fig. 2 . The

radient tree boosting algorithm extends the concept of adap-

ive boosting by sequentially adding predictors and correcting

revious models using the gradient descent algorithm [18] ; the

earning process involves iteratively refitting a weak classifier

o errors in previous models. Each successive classifier focuses

n patients misclassified in the previous round of fitting to min-

mize the generalization error. A classification tree was used as

he weak learner, and the learning objective function was binary

ogistic. 

Once the worsening or improvement of critically ill COVID-

9 patients was detected in the features, we analyzed where this

nformation was encoded (feature importance). The model was

onstructed using the entire RISC-19-ICU dataset after exclud-

ng patients with a change in SOFA score ≤ 1 and those with

 missing SOFA score at admission or on day 5 after admis-

ion. The model was tested using a 10-fold cross-validation (CV-

0) procedure that divided the entire study cohort into 10 non-

verlapping folds for each cross-validation cycle by selecting 9

olds for training and 1 for testing. To improve generalizability,

L model complexity was modulated by optimizing the param-

ters controlling the training process (e.g., hyperparameters) us-

ng nested cross-validation within the training set. XGBoost hy-

erparameters included the number of iterations of the boosting

rocedure, learning rate, maximum depth of a tree, and subsam-

le ratio of the training features. The optimal hyperparameters

ere determined by implementing a grid search and optimizing

he macro-recall in a nested 5-fold CV. Hence, each split of the

uter loop was trained with the optimal hyperparameters tuned

n the inner loop. Although this procedure is computationally

ostly, it allows an unbiased and robust performance evaluation

19] . We compared the predictive performance of the XGBoost

odel to that of a standard logistic regression-based prediction

odel based on a confusion matrix and area under the receiv-

ng operating characteristic (ROC) curve with a 95% confidence
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Fig. 1. The timeline used to collect features 

to include in the model and the predicted out- 

comes. ICU: Intensive care unit; SOFA: Sequen- 

tial organ failure assessment. 

Fig. 2. Description of the steps applied to build and test the prediction model. ICU: Intensive care unit; ML: Machine learning; RISC-19-ICU: RIsk Stratification in 

COVID-19 patients in the Intensive Care Unit; XGBoost: Extreme gradient boosting. 
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nterval (CI). All experiments were reproducible and were per-

ormed using Python 3.7 with a 2.3 GHz Intel Core i7 quad-core

rocessor and 16 GB RAM. 

esults 

Of the 1613 patients included in the RISC-19-ICU registry as

f October 2020, 1030 had stayed in the ICU for ≥ 5 days and

ad valid SOFA scores both at ICU admission and on day 5 after

dmission. The model was applied to the entire RISC-19-ICU

ohort comprising 675 patients with an absolute change in SOFA

core of ≥ 2 points between the two time points. The median

ge of patients was 64 years (IQR: 56–63 years) and 74% were

ales. At ICU admission, the median SOFA score was 11 (IQR:

–14), the median time from symptom onset was 8 days (IQR:

–11 days), median arterial oxygen partial pressure to fractional

nspired oxygen ratio (pO 2 /FiO 2 ) was 122 (IQR: 81–171), and

6% of patients were mechanically ventilated [ Table 1 ]. 

The model correctly predicted SOFA worsening in 320/385

atients (83%) with increased SOFA score and improvement

n 210/290 patients (72%) with a decreased score, with an

rea under the mean ROC curve of 0.86 (95% CI: 0.85–0.90;

ig. 3 A). As expected, the features most relevant to changes in

he SOFA score were its components including Glasgow coma

cale score, state of shock, use of vasopressors, and bilirubin

oncentration [ Fig. 3 B]. However, other features are known to

e related to patient outcomes such as type of respiratory sup-

ort, Acute Physiology and Chronic Health disease Classifica-

ion System (APACHE) II score, and Simplified Acute Physio-

ogic Score (SAPS) II score also contributed to the correct pre-

iction. Notably, while the prevalence of diabetes was similar

etween patients with improved vs. worsened SOFA scores, the

resence/absence of diabetes mellitus was among the most rele-

ant conditions for predicting the change in SOFA score on day

 after ICU admission. 

Because of differences in the management of missing data,

he predictive model developed by standard logistic regression

ncluded 669 patients. SOFA worsening was correctly predicted
112 
n 263/380 patients (69%) presenting an increased SOFA score

hile SOFA improvement was correctly predicted in 210/287

72%) patients with a decreased SOFA score, corresponding to

n area under the mean ROC curve of 0.69 (95% CI: 0.66–0.72;

upplementary Figure S1a). The XGBoost model performed sig-

ificantly better than the logistic regression model in predict-

ng an increase or decrease in SOFA score on day 5 ( P < 0.01;

aired t -test). Interestingly, the most important features with

he logistic regression model differed from those identified by

he XGBoost model, with SAPS II score, bilirubin concentra-

ion, and use of norepinephrine at ICU admission being the

nly three features common to both models [Supplementary

igure S1b]. 

iscussion 

The results of the present study showed that the XGBoost

odel based on an ML algorithm was more effective than the

lassical method of logistic regression in identifying critically

ll COVID-19 patients admitted to the ICU whose clinical con-

ition was likely to worsen or improve. After mortality, disease

everity was found to be the most important determinant of re-

ource use in the management of critically ill patients, which

s especially important during the current COVID-19 pandemic

14] . 

Health informatics technology is highly valuable for predic-

ive medicine as it provides clinicians with tools for obtaining

nformation regarding individuals at risk, disease onset, and po-

ential interventions. However, EHRs have been unable to re-

uce the clerical burden or improve clinical care by support-

ng physicians in clinical decision-making [20] . EHRs should

rovide reliable and clinically significant information, facili-

ate the early detection of treatable conditions, and produce

 measurable improvement in clinical practices. Driven by in-

reases in computational power, storage, and memory and the

eneration of staggering volumes of data, ML methodologies

an facilitate the accurate analysis and optimal use of EHR

ata. 
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Table 1 

Characteristics at ICU admission of critically ill COVID-19 patients that have experienced a change in SOFA score of at least two points between 

ICU admission and day 5, stratified by an increase or decrease in SOFA score during the first 5 days of ICU treatment. 

Variables Decreased SOFA score at day 5 in the ICU Increased SOFA at day 5 in the ICU P- value 

Patients ( n ) 293 383 

Characteristics 

Age (years) 61.4 (12.7) 63.9 (11.7) 0.010 

Male sex (%) 80 (4) 70 (5) < 0.010 

Body mass index (kg/m 

2 ) 29.4 (5.3) 28.8 (5.6) 0.170 

Time from symptom onset to hospitalization (days) 7.6 (5.6) 7.4 (5.3) 0.710 

Time from hospitalization to ICU admission (days) 2.9 (6.3) 2.8 (4.9) 0.960 

Preexisting conditions 

Number of preexisting conditions 0.7 (1.0) 0.7 (1.1) 0.930 

Ischemic heart disease 147 (50.2) 182 (47.5) 0.540 

Chronic heart failure 33 (11.3) 42 (11.0) 1.000 

Atherosclerotic arteriopathy 23 (7.8) 43 (11.2) 0.180 

Arterial hypertension 73 (24.9) 104 (27.2) 0.570 

Diabetes mellitus 36 (12.3) 39 (10.2) 0.460 

Insulin-dependent diabetes mellitus 37 (12.6) 53 (13.8) 0.730 

Physiologic status at ICU admission 

APACHE II score 16.8 (6.6) 16.5 (7.4) 0.530 

SAPS II score 55.8 (17.0) 53.9 (17.9) 0.150 

SOFA score 13.8 (3.9) 11.7 (4.0) < 0.010 

-Respiratory system sub-score 3.0 (0.9) 2.8 (0.9) < 0.010 

-Coagulation system sub-score 0.2 (0.5) 0.3 (0.6) 0.660 

-Liver sub-score 2.4 (1.6) 1.7 (1.7) < 0.010 

-Cardiovascular system sub-score 2.2 (1.6) 1.7 (1.7) < 0.010 

-Central nervous system sub-score 2.6 (1.9) 2.2 (1.9) 0.010 

-Renal sub-score 3.8 (0.7) 3.7 (1.0) 0.020 

Mean arterial pressure (mmHg) 80.0 (15.1) 84.3 (15.6) < 0.010 

Norepinephrine dose (μg/kg) 7.3 (9.7) 4.4 (14.2) 0.020 

PaO 2 /FiO 2 ratio (mmHg) 151.4 (149.5) 162.0 (194.0) 0.470 

Ventilatory ratio 2.0 (1.0) 2.1 (1.5) 0.510 

Laboratory measurements at ICU admission 

White blood cell count (g/L) 10.1 (7.1) 9.4 (5.2) 0.180 

Neutrophil granulocyte count (g/L) 8.3 (6.6) 7.8 (3.9) 0.300 

Lymphocyte count (g/L) 1.3 (2.1) 1.7 (2.2) 0.060 

IL-6 (ng/L) 125.0 (75.9, 289.0) 129.7 (66.5, 253.3) 0.600 

C-reactive protein (mg/L) 147.1 (79.2, 241.1) 135.6 (62.5, 219.0) 0.160 

Procalcitonin (μg/L) 0.3 (0.2, 1.1) 0.4 (0.2, 1.0) 0.710 

D-dimers (μg/L) 1.4 (0.8, 3.3) 1.2 (0.7, 2.8) 0.030 

Lactate dehydrogenase (U/L) 522.0 (376.0, 701.0) 494.0 (387.0, 691.5) 0.980 

Ferritin (μg/L) 1527.0 (1002.0, 2801.0) 1141.0 (657.8, 2205.0) 0.010 

Bilirubin (μmol/L) 9.3 (6.1, 14.0) 6.0 (1.0, 9.8) < 0.010 

Creatinine (μmol/L) 83.8 (66.8, 114.0) 84.0 (62.0, 109.6) 0.460 

Creatine kinase (U/L) 139.0 (64.0, 365.0) 177.5 (88.0, 350.5) 0.100 

Myoglobin (μg/L) 77.0 (50.2, 294.0) 78.5 (36.0, 203.5) 0.670 

Troponin (ng/L) 18.0 (10.0, 45.9) 15.3 (9.0, 34.0) 0.300 

Albumin (g/L) 29.0 (25.0, 33.0) 30.0 (26.0, 33.0) 0.600 

ICU outcome 

ICU survival 223 (80.5) 249 (66.9) < 0.001 

ICU length of stay (days) 17.8 (16.7) 20.3 (13.9) 0.068 

Estimates are reported as mean (standard deviation) or median (IQR) according to data distribution. 

APACHE: Acute Physiology and Chronic Health disease Classification System; COVID-19: Coronavirus disease 2019; ICU: Intensive Care Unit; 

IQR: Interquartile range; SAPS: Simplified Acute Physiologic Score; SOFA: Sequential Organ Failure Assessment. 
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From a pathophysiologic standpoint, the deterioration of or-

an function as represented by an increasing SOFA score is

articularly important for critically ill patients diagnosed with

OVID-19. A recent study demonstrated a relationship between

OFA score and changes in microcirculation in COVID-19 pa-

ients: only patients with a score < 10 could enhance their oxy-

en extraction capacity by increasing capillary density and cap-

llary hematocrit, while those with a score ≥ 10 lacked this ca-

acity and had higher levels of microcirculatory leukocytes and

icroaggregates [21] . Interestingly, microvascular dysfunction

as recently shown to contribute to the association between

OVID-19 outcome and diabetes [22] . This was supported by

 study conducted in France that reported an adjusted 2-fold in-

reased risk of mortality within 7 days of hospital admission in

iabetes patients with COVID-19 and microvascular complica-

ions compared with patients without such complications [23] .
113 
hus, systemic impairment of the microcirculation may lead to

orse outcomes in COVID-19 patients. 

A recent report exploring host-specific genetic factors asso-

iated with COVID-19 severity found a genetic correlation be-

ween type II diabetes and COVID-19 outcome, although there

as no evidence of a causal association in the Mendelian re-

ression analysis; the observed correlation may have been at-

ributable to pleiotropic effects between type II diabetes and

ody mass index, which were shown to be causally linked to

OVID-19 severity [24] . In the present study, we found that

hile diabetes was among the most important features for the

rediction of changes in SOFA score, there was no difference in

he prevalence of diabetes between patients with improved vs.

orsened SOFA scores. Thus, a prediction model that can accu-

ately estimate changes in SOFA score may aid in the early iden-

ification of patients with impaired physiologic adaptation and
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Fig. 3. The description of the model performance (A) and the most important features identified by the model (B). APACHE: Acute Physiology and Chronic Health 

disease Classification System; COVID-19: Coronavirus disease 2019; ICU: Intensive Care Unit; ML: Machine Learning; RISC-19-ICU: RIsk Stratification in COVID-19 

patients in the Intensive Care Unit; ROC: Receiving Operating Characteristics; SAPS: Simplified Acute Physiologic Score; SOFA: Sequential Organ Failure Assessment. 
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ield insight into the pathophysiologic mechanisms underlying

he development of severe COVID-19. Based on this rationale,

L algorithms provide a means of developing a CDSS that can

redict the risk of short-term complications in ICU patients. 

We demonstrated the superiority of the XGBoost model over

 logistic regression model for predicting changes in SOFA score

n critically ill COVID-19 patients. Compared with traditional

ethods that use univariate and multivariate statistics for pat-

ern discrimination, an ML approach based on the XGBoost al-

orithm has superior detection sensitivity and generalizability

ecause it combines multiple types of information across sev-

ral variables (e.g., a high-dimensional problem) based on a rel-

tively small dataset. XGBoost also has advantages over other

L methods: it makes no assumptions regarding data distribu-

ion and uses individual decision trees, and may thus be unaf-

ected by multicollinearity. Another benefit of ensemble meth-

ds such as XGBoost is that they automatically estimate feature

mportance from a trained predictive model, yielding a score for

he utility or value of each feature in the construction of boosted

ecision trees within the model. The more an attribute is used to

ake key decisions in decision trees, the higher its relative im-

ortance. Consequently, the most important features identified

y the model are potential targets for therapeutics aimed at pre-

enting deterioration of the patient’s condition. In our study, the

ost important features contributing to changes in SOFA score

dentified by the XGBoost model differed from those identified

y standard logistic regression; the increased/decreased risk of

rgan failure in COVID-19 patients likely resulted from inter-

ction among several processes, and may therefore be difficult

o detect with conventional approaches. Thus, the application

f the XGBoost model to critically ill COVID-19 patients pro-

ided clinically useful prognostic information that may help to

ptimize resource allocation and aid physicians in making per-

onalized treatment decisions. 

This study had some limitations that must be addressed to es-

ablish accurate and validated models for the creation of a CDSS

hat has clinical utility. First, although the XGBoost algorithm

as a low risk of overfitting, the lack of an external validation

ohort of ICU patients undermines the generalizability of our
114 
redictive model. Additionally, while XGBoost identified impor-

ant global features contributing to changes in SOFA score, our

odel was not fully tailored to support clinical decisions. Fur-

her investigation using XGBoost and post hoc interpretability

ethods is needed to evaluate local feature importance and re-

ationships. 

To conclude, we developed a prediction model using ML

ethodology for evaluating the risk of organ failure in COVID-

9 patients in the ICU. The predictive performance of our model

as superior to that of a standard regression approach, and

e anticipate that it will be further developed and adapted to

he changing needs of a rapidly growing prospective RISC-19-

CU cohort and will provide clinically relevant information re-

arding outcomes such as the need for endotracheal intubation

nd renal replacement therapy as well as mortality. Moreover,

ur model has high interpretability as it identifies features that

re directly related to the development of complications associ-

ted with COVID-19; and extending the model to non-ICU de-

artments can help to identify patients with a high probability

f noninvasive ventilation failure and ICU admission for non-

espiratory complications. Finally, the integration of the model

nto the RISC-19-ICU registry can enable profiling of morbid-

ty risk and resource consumption by patients according to their

linical features. This can ensure the appropriate allocation of

esources to patients who need them the most through the de-

ivery of appropriate care and personalized interventions. 
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epository, analyses on the full dataset may be requested by any

ollaborating center after approval of the study protocol by the

egistry board. Reproducibility of the results in the present study

as ensured by providing code for registry-specific data trans-

ormation and statistical analysis for collaborative development

n the GitHub and Zenodo repositories. The registry protocol

nd data dictionary are publicly accessible at https://www.risc-

9-icu.net . 
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