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Nash equilibria in human 
sensorimotor interactions 
explained by Q‑learning 
with intrinsic costs
Cecilia Lindig‑León1,2*, Gerrit Schmid1,2 & Daniel A. Braun1

The Nash equilibrium concept has previously been shown to be an important tool to understand 
human sensorimotor interactions, where different actors vie for minimizing their respective 
effort while engaging in a multi-agent motor task. However, it is not clear how such equilibria are 
reached. Here, we compare different reinforcement learning models to human behavior engaged in 
sensorimotor interactions with haptic feedback based on three classic games, including the prisoner’s 
dilemma, and the symmetric and asymmetric matching pennies games. We find that a discrete 
analysis that reduces the continuous sensorimotor interaction to binary choices as in classical matrix 
games does not allow to distinguish between the different learning algorithms, but that a more 
detailed continuous analysis with continuous formulations of the learning algorithms and the game-
theoretic solutions affords different predictions. In particular, we find that Q-learning with intrinsic 
costs that disfavor deviations from average behavior explains the observed data best, even though 
all learning algorithms equally converge to admissible Nash equilibrium solutions. We therefore 
conclude that it is important to study different learning algorithms for understanding sensorimotor 
interactions, as such behavior cannot be inferred from a game-theoretic analysis alone, that simply 
focuses on the Nash equilibrium concept, as different learning algorithms impose preferences on the 
set of possible equilibrium solutions due to the inherent learning dynamics.

Nash equilibria are the central solution concept for understanding strategic interactions between different 
agents1. Crucially, unlike other maximum expected utility decision-making models2–4, the Nash equilibrium 
concept cannot assume a static environment that can be exploited to find the optimal action in a single sweep, 
but it rather defines a fixed point representing a combination of strategies that can be found by iteration, so that 
finally no agent has anything to gain by deviating from their equilibrium behavior. Here, a strategy is conceived 
as a probability distribution over actions, so that Nash equilibria are in general determined by combinations 
of probability distributions over actions (mixed Nash equilibria), and only in special cases by combinations of 
single actions (pure equilibria)5. An example of the first kind is the popular rock-papers-scissors game which 
can be simplified to the matching pennies game with two action choices, where in either case the mixed Nash 
equilibrium requires players to randomize their choices uniformly. An example of the second kind is the pris-
oner’s dilemma6 where both players choose between cooperating and defecting without communication. The 
pure Nash equilibrium in this game requires both players to defect, because the payoffs are designed in a way 
that allow for a dominant strategy from the perspective of a single player, where it is always better to defect, no 
matter what the other player is doing.

The Nash equilibrium concept has not only been broadly applied in economic modeling of interacting rational 
agents, companies and markets7–10, but also to explain the dynamics of animal conflict11,12, population dynamics 
including microbial growth13,14, foraging behavior15–18, the emergence of theory of mind19–22, and even monkeys 
playing rock-papers-scissors23,24. Recently, Nash equilibria have also been proposed as a concept to understand 
human sensorimotor interactions25–29. In these studies human dyads are typically coupled haptically30 and expe-
rience physical forces that can be regarded as payoffs in a sensorimotor game. By designing the force payoffs 
appropriately in dependence of subjects’ actions, these sensorimotor games can be made to correspond to clas-
sic pen-and-paper games like the prisoner’s dilemma with a single pure equilibrium, coordination games with 
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multiple equilibria, or signaling games with Bayesian Nash equilibria to model optimal sensorimotor communi-
cation. In general, it was found in these studies that subjects’ sensorimotor behavior during haptic interactions 
was in agreement with the game theoretic predictions of the Nash equilibrium, even though the pen-and-paper 
versions of some games systematically violate these predictions. This raises the question of how such equilibria 
are attained, especially since the Nash equilibrium concept itself provides no explanation of how it is reached, 
especially when there are multiple equivalent equilibria.

In this study we investigate what kind of learning models could explain how humans that are interacting 
through a haptic sensorimotor coupling reach a Nash equilibrium. The problem of learning in games can be 
approached within different frameworks, including learning of simple fixed response models like partial best 
response dynamics for reaching pure Nash equilibria31,32, or fictitious play with smoothed best response dynamics 
for mixed equilibria33,34, as well as more sophisticated reinforcement learning models like Q-learning35,36, policy 
gradients37,38, minimax Q-learning39 or Nash Q-learning40,41, together with learning models in evolutionary game 
theory for reaching Nash equilibria (evolutionary stable strategies) through population dynamics42. Here we 
focus on model-free reinforcement learning models to explain subjects’ sensorimotor interactions, as in many 
of the previous experiments25–27 subjects interact only through haptic feedback and cannot otherwise “see” the 
choices of the other player. In particular, we consider model-free reinforcement learning models like Q-learning 
and direct policy search methods like policy gradients that exclusively rely on force feedback during learning. 
We compare Q-learning and policy gradient learning in games with pure and mixed Nash equilibria, including 
the prisoner’s dilemma and two versions of the matching pennies game with symmetric and asymmetric pay-
offs respectively. While the prisoner’s dilemma game has a single pure equilibrium, the sensorimotor version 
of the matching pennies games has infinitely many mixed Nash equilibria that are theoretically equivalent, 
and we investigate whether the different learning algorithms introduce additional preferences between these 
equilibrium strategies based on the inherent learning dynamics and we check how these match up with human 
learning behavior.

Results
To investigate learning during sensorimotor interactions with pure and mixed Nash equilibria, we designed three 
continuous sensorimotor games that are variants of the traditional two-player matrix games of the prisoner’s 
dilemma, the asymmetric matching pennies game, and the symmetric matching pennies game (see Fig. 1 and 
Methods for details). During the experiment two players were sitting next to each other and interacted through 
a virtual reality system with the handles of two robotic interfaces that were free to move in the horizontal plane 
(see Fig. 1A). In each trial, players were requested to move their handle to cross a target bar ahead of them, 
where the lateral position of both handles determined the individual magnitude of a resistive force opposing the 
forward motion of the handle. Thus, the movement of each player directly impacted on the forces experienced 
by both players in a continuous fashion. This way, our sensorimotor game differs in three essential aspects from 
the traditional cognitive versions, in that first, we have an implicit effort cost through haptic coupling, second, 
subjects could choose from a continuum of actions defining a continuous payoff landscape, where the payoffs in 
the four corners correspond to the payoffs in the traditional payoff matrices, and third, that subjects are unaware 
of the structure of the haptic coupling, i.e., they do not have complete information about the payoffs, as they only 
have access to their own payoffs through force feedback.

Since the payoffs can only be learned from experience, we devised different reinforcement learning models 
that can emulate subjects’ behavior by adapting their choice distributions in a way that avoids punitive forces. As 
subjects were only communicated their own payoff when making their choices, we compare only model-free rein-
forcement learning schemes, in particular Q-learning and policy gradient models. We consider two reward con-
ditions, with and without intrinsic costs added to the extrinsically imposed reward defined by the haptic forces, 
where the intrinsic costs make it more expensive for the learner to change actions abruptly between trials—see 
Methods for details. We focus on trial-by-trial learning across the 40 trial blocks where games were repeated 
and neglect within-trial adaptation, as we found that initial and final positions of movement trajectories were 
close together most of the time. In particular, we found that in approximately 65% of the trials for the prisoner’s 
dilemma, and in 90% and 95% of the trials for the asymmetric and symmetric matching pennies respectively, 
the subjects’ final decision laid within a 3.6cm neighborhood ( 20% of the entire workspace) of their initial posi-
tion in each trial, and there was no systematic change across the block of trials. We found that the distribution 
of distances between the initial and final position in each trial did not change significantly when comparing 
the first 20 trials of each block with the last 20 trials of each block (Kolmogorov-Smirnov test, p > 0.05 for all 
games). Therefore we concentrate only on the final position of each trial, where the force pay-off was strongest.

Categorical analysis.  Previously, we have studied subjects’ choices in the sensorimotor game in a binary 
fashion25,26 to allow for a direct comparison with the corresponding pen-and-paper 2-by-2 matrix game. To 
this end, we divide each subject’s action space into two halves and categorize actions accordingly—compare 
Fig. 2. The four quadrants of the combined action space then reflect all possible combinations, for example in 
the prisoner’s dilemma (defect, defect), (defect, cooperate), (cooperate, defect) and (cooperate, cooperate). When 
comparing the histogram over subjects’ choices over the first 10 trials compared to the last 10 trials of each block 
of 40 trials, it can be clearly seen that behavior adapts and becomes more consistent with the Nash equilibrium 
solution of the 2-by-2 matrix games for the prisoner’s dilemma and the asymmetric matching pennies game. In 
particular, in the prisoner’s dilemma game, subjects increasingly concentrate on the defect/defect solution, even 
though the Nash solution is never perfectly reached, as other action combinations also occur late in learning. In 
the asymmetric matching pennies game, player 1 displays the expected asymmetric action distribution, whereas 
player 2 shows the expected 50:50 behavior. In both games, the entropy of the joint action distribution decreases 
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Figure 1.   Experimental setup. (A) Sensorimotor game. Subjects were sitting next to each other without 
communication, and interacted through two handles that generated a force on their hand opposing their 
forward movement. (B) Payoff matrices for each one of the 3 games. The 2-by-2 payoff matrices determine the 
boundary values of the force payoffs at the extremes of the x1x2-space for both players (left). Interpolation of 
the payoffs defining a continuous payoff landscape for a continuum of actions (right). (C) Subjects’ results in 
the continuous prisoner’s dilemma game. Final decisions shown as a scatter plot in the x1x2-space (left), where 
the single pure Nash equilibrium is located in the top-right corner at (1,1). The same responses binned into an 
8-by-8 histogram (middle), and the corresponding categorical representation (right). (D) Subjects’ results in 
the continuous asymmetric matching pennies game. Final decisions (left), where the mixed Nash equilibrium 
strategies have expectation (0.8, 0.5). The same responses binned into an 8-by-8 histogram (middle), and the 
corresponding categorical representation (right). (E) Subjects’ results in the continuous matching pennies. 
Final decisions game (left), where the mixed Nash equilibrium strategies have expectation (0.5, 0.5). The same 
responses binned into an 8-by-8 histogram (middle), and the corresponding categorical representation (right). 
Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.
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significantly over the block of 40 trials—see Supplementary Fig. 1. In the case of the symmetric matching pen-
nies game, the histograms do not reveal any learning or entropy decrease, as expected, because the random Nash 
strategy coincides with the random initial strategy.

We compared the binary Q-learning described in the methods as model 1, and the policy gradient described 
as model 2, to the human data by exposing both models to the same kind of game sequence that was experienced 
by subjects. In the simulations, we always applied the same learning model for both players, albeit with player-
specific parameters that were fitted to match subjects’ action distributions. In Fig. 2 it can be seen that both kinds 
of learning models explain subjects’ behavior equally well. Also when repeating the same analysis including the 
intrinsic cost function that discourages deviations from previous positions, the result remains essentially the 
same. This leaves open the possibility that the categorical analysis may be too coarse to distinguish between 
these kinds of models. In the following, we therefore study the continuous games in terms of their continuous 
responses and not just their binary discretization. We compare subjects’ behavior in the three different games to 
two continuous reinforcement learning models, where one is a policy gradient model with a continuous action 
distribution, and the other one a continuous Q-learning model.

Continuous analysis.  Prisoner’s dilemma: Endpoint distributions. In Fig.  3A subjects’ final decisions 
in the continuous prisoner’s dilemma game are shown as a scatter plot within the x1x2-space, where the single 
pure Nash equilibrium is located in the top-right corner at position (1, 1). Over the course of 40 trials subjects’ 
responses increasingly cluster around the Nash equilibrium, even though a considerable spread remains. The 
difference in endpoint distribution between the first 10 trials in a block and the last 10 trials was highly signifi-
cant for player 1 and player 2 (KS-test, p < 0.01 for each player). A two-dimensional histogram binning of the 
experimental scatter plots can be found in Fig. 3B.

Figure 3E shows the performance of two coupled continuous policy gradient learners on the same task. The 
model learners also converge to the Nash solution, but the variability is spread mainly along the boundaries and 
corners, which is in stark contrast to subjects’ behavior. The same is also true if the policy gradient learners are 
parameterized slightly differently with the logit-normal—see Supplementary Figure 2. Figure 3M shows two 
coupled continuous Q-learning agents performing the prisoner’s dilemma sensorimotor task. The model learn-
ers slowly start concentrating probability mass in the quadrant of the Nash equilibrium, but their responses are 
spread out more uniformly than the subjects’ responses, giving in comparison a distribution that is too flat due 
to the broad exploration. One way to enforce more specific exploration is through the consideration of intrinsic 
costs, for example by assuming that selecting actions that significantly deviate from the action prior, given by 
averaging over all trials, is costly44,45. Figure 3I and Q show the performance of the two learning models consid-
ering such an intrinsic cost. While the behavior of the gradient learner still shows a sharp peak in the corner, 
the Q-learning model concentrates actions in a way that is more similar to human behavior in the quadrant of 
the Nash equilibrium, and it even shows the exponential decline in probability that is observed in the human 
data when moving away from the Nash corner. Accordingly, the Q-learning model with intrinsic costs achieves 
the most similar two-dimensional histogram to the data, as quantified by the Euclidean distance between the 
subjects’ and the models’ histograms—compare Supplementary Table 1.

Prisoner’s dilemma: Response frequency adaptation. A statistical measure to assess the effects of learning 
is the change of the mean endpoint (averaged for both players) for each trial across the block of 40 trials. Fig-
ure 3C shows a slow increase from 0.5 to approximately 0.7. The Q-learning model without intrinsic costs shows 
a flat distribution resulting from the broad exploration (see Fig. 3O). In contrast, both the gradient learning 
models (see Fig. 3G and K) and the local Q-learning model with intrinsic costs (see Fig. 3S), manage to mimic 
the experimental responses, with the latter model achieving the lowest mean-squared error compared to the 
data—compare Supplementary Table 1.

To study the direction of adaptation in the endpoint space, we look at the difference vectors resulting from 
subtracting the mean endpoints of each mini-block of 10 trials from the preceding mini-block of 10 trials. The 

Figure 2.   Categorical analysis. Final decisions in the x1x2-space categorized into two halves for the 
experimental data (left) and, from left to right, the results of the binary gradient descent, binary gradient descent 
with prior cost, binary Q-learning, and binary Q-learning with prior cost. We show the first 10 trials compared 
to the last 10 trials of each block of 40 trials.(A) Prisoner’s dilemma. (B) Asymmetric matching pennies. (C) 
Matching pennies. Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.

https://www.mathworks.com
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Figure 3.   Prisoner’s dilemma. (A),(E),(I),(M), and (Q) show scatter plots of final decisions in the x1x2-plane, 
where subjects’ actions are expected to cluster around the single pure Nash equilibrium located in the top-right 
corner at position (1,1). (B),(F),(J),(N), and (R) show two-dimensional histograms binning the experimental 
scatter plots. (C),(G),(K),(O), and (S) represent the change of the mean endpoints (averaged for both players) 
for each trial across the block of 40 trials. (D),(H),(L),(P), and (T) show the direction of adaptation in the 
endpoint space. The experimental data is shown at the top, the four continuous models are shown below. 
Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.

https://www.mathworks.com
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arrow plot in Fig. 3D shows that subjects move towards the Nash equilibrium on a straight path, where the step 
size of learning becomes smaller over time. As can be seen in Fig. 3H and L this adaptation pattern is reproduced 
by both the gradient learning models as well as the Q-learning model with intrinsic costs (see Fig. 3T). Without 
the intrinsic costs, the extensive search of the Q-learning agents generates an almost uniform adaptation (see 
Fig. 3P). In summary, our analysis demonstrates that it is not enough to look at the mean behavior to distinguish 
between the different models. In fact, when looking at the entire two-dimensional histogram over the continu-
ous action space, it becomes apparent that the Q-learning model with intrinsic costs is the only one that can 
capture subjects’ behavior well, as it is the only model that concentrates actions in the Nash quadrant where the 
concentration increases gradually with proximity to the Nash solution (compare Fig. 3B,F,J,N,R).

Asymmetric matching pennies: endpoint distribution. Figure 4A shows subjects’ final decisions in the 
continuous asymmetric matching pennies game as a scatter plot in the x1x2-plane, where the set of mixed Nash 
equilibria corresponds to all joint distributions p(x1, x2) where the marginal distribution of player 1 has the 
expected location Ep[x1] = 0.8 and the marginal distribution of player 2 has the expected location Ep[x2] = 0.5 . 
Throughout the course of 40 trials, subjects’ responses evolve from a symmetric distribution centered approxi-
mately at (0.5, 0.5) to an asymmetric distribution that is tilted for player 1 as expected. The difference in endpoint 
distribution between the first 10 trials in a block and the last 10 trials was highly significant (KS-test, p < 0.01 ). 
A two-dimensional histogram binning of the scatter plots can be seen in Fig. 4B.

Figure 4E shows the endpoint distribution of two coupled policy gradient learners performing in the continu-
ous asymmetric matching pennies game. As expected, player 1 shifts to an asymmetric behavior, while player 2 
remains random, but the model actions are mainly spread along the two opposing boundaries, which singles 
out a possible Nash solution, but is in stark contrast to subjects’ behavior that concentrates in the upper quad-
rants of the workspace. This preference for extreme responses of the gradient model is even more extreme when 
including intrinsic costs, which eliminates most of the asymmetry (see Fig. 4I) and also holds for a logit-normal 
parameterization of the gradient learners (compare Supplementary Figure 3).

Figure 4M shows two coupled continuous Q-learning agents performing the same task. In contrast to the 
gradient learning models, the best-fitting Q-learning models manage to preserve substantial probability mass in 
the center of the workspace, but this happens at the expense of such a slow learning progress that the resulting 
action distribution is close to uniform, and therefore also does not capture subjects’ behavior well. This changes, 
however, when including intrinsic costs. Figure 4Q shows two fitted continuous Q-learning agents with intrinsic 
costs that manage to qualitatively capture the experimentally observed distribution in that player 1 concentrates 
its probability mass in the top quadrants, whereas player 2 shows more uniform behavior, as expected.

Asymmetric matching pennies: response frequency adaptation. Figure 4C shows the change of the mean 
endpoint (independently for each player) in each trial across the block of 40 trials. We can observe an increase 
from 0.5 to approximately 0.8 for player 1, whereas for player 2 the mean value remains constant along all trials 
around 0.5. This behavior is also observed in Fig. 4D, which shows the average direction of subjects’ adaptation. 
These mean adaptation patterns are reproduced by the gradient learning model (see Fig. 4G,H), however, when 
including the intrinsic costs, the symmetry between extreme responses causes more random behavior in both 
players (see Fig. 4K,L), although this is not so much the case in the logit-normal parameterization (compare Sup-
plementary Figure 3). We see also that the Q-learning model without intrinsic costs depicted in Fig. 4O is very 
slow in learning, which can also be seen from the mean direction of adaptation depicted in Fig. 4P. However, 
when considering intrinsic costs in the Q-learning model, the change of the mean endpoint (see Fig. 4S) and 
the average direction of adaptation (see Fig. 4T) match subjects behavior quite well. Even though the Q-learning 
model with intrinsic costs is initially slightly slower than the human subjects in picking up the equilibrium 
behavior, taken together with the two-dimensional histogram binning of the scatter plots in Fig. 4B,F,J,N,R the 
Q-learning model with intrinsic costs provides the best fit to subjects’ behavior, confirmed by the lowest Euclid-
ean distance between model and subject histograms—compare Supplementary Table 1.

Symmetric matching pennies: endpoint distribution.  While the asymmetric matching pennies 
game requires adaptation in action frequency, learning in the symmetric game is not expected to show changes 
in the action frequency, and thus we finally need to look for other signatures of learning. In Fig. 5A subjects final 
decisions in the continuous matching pennies game are shown as a scatter plot in the x1x2-plane, where the set of 
mixed Nash equilibria corresponds to all joint distributions p(x1, x2) where the marginal distribution of player 1 
and player 2 has the expected location Ep[x1] = Ep[x2] = 0.5 . Subjects’ responses generally cluster around the 
center position with mean (0.5, 0.5) in the first block of 10 trials and remain that way through the entire block of 
40 trials. A two-dimensional histogram binning of the scatter plots can be seen in Fig. 5B. While subjects’ initial 
behavior can be explained as a result of ignorance, the same behavior is also compatible with the Nash solution, 
and so the response frequencies remain stable throughout the block of 40 trials. This can be seen from the mean 
endpoint (averaged for both players) across the block of 40 trials shown in Fig. 5C, and from the average direc-
tion of subjects’ adaptation depicted in Fig. 5D.

The endpoint distribution of two coupled policy gradient learners performing in the continuous symmetric 
matching pennies game is shown in Fig. 5E, and the corresponding version including intrinsic costs is shown 
in Fig. 5I. In both cases the distribution of responses for both players is rather uniform. Figure 5M shows two 
coupled continuous Q-learning agents performing the same task, and Fig. 5Q the same model including intrinsic 
costs. Contrarily to the gradient learning models, the Q-learning models manage to preserve substantial prob-
ability mass in the center of the workspace.

While all four models capture the effect of stable mean response frequencies—see Fig. 5G,H,K,L,O,P, and 
S,T for comparison—, the gradient learning models predict a more uniform distribution of responses, including 
in particular a high amount of extreme responses at the borders of the workspace that were mostly absent in 
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Figure 4.   Asymmetric matching pennies. (A),(E),(I),(M), and (Q) show final decisions as a scatter plot in the 
x1x2-plane, where subjects’ actions are expected to cluster in top quadrants. (B),(F),(J),(N), and (R) show a two-
dimensional histogram binning of the experimental scatter plots. (C),(G),(K),(O), and (S) present the change of 
the mean endpoint  (independently for each player) for each trial across the block of 40 trials. (D),(H),(L),(P), 
and (T) show the direction of adaptation in the endpoint space. The experimental data is shown on the top, the 
four continuous models are below. Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.
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Figure 5.   Symmetric matching pennies. (A),(E),(I),(M), and (Q) show final decisions as a scatter plot in the 
x1x2-plane, where subjects’ actions are expected to cluster around the center of the workspace. (B),(F),(J),(N), 
and (R) show a histogram binning of the experimental scatter plots. (C),(G),(K),(O), and (S) present the change 
of the mean endpoint (averaged for both players) for each trial across the block of 40 trials. (D),(H),(L),(P), and 
(T) show the direction of adaptation in the endpoint space. The experimental data is shown in the top, the four 
continuous models are below. Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.
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the experiment. In contrast, the Q-learning models cluster in the center of the work space. Moreover, the inclu-
sion of intrinsic costs that punish large deviations from behavior in the previous trial lead to a slightly stronger 
concentration of responses in the center of the work space in agreement with subject data. Again, based on the 
two-dimensional histogram binning of the scatter plots in Fig. 5B,F,J,N,R the Q-learning model with intrinsic 
costs achieves the best fit to subjects’ behavior, confirmed by the lowest Euclidean distance between the fourth 
binned histogram—compare Supplementary Table 1.

Symmetric matching pennies: response frequency adaptation.  As there is no change in response 
frequencies, assessing learning in this game is more challenging, even though the difference in endpoint distri-
bution between the first 10 trials in a block and the last 10 trials was significant (KS-test, p > 0.01 ). To study the 
trial-by-trial adaptation process in more detail, we correlated subjects’ positional response from the current trial 
either to their positional response in the previous trial or the positional response of the other player in the previ-
ous trial. The correlations across four batches of ten consecutive trials that make up the blocks of 40 trials are 
shown in Fig. 6. The positive correlations displayed by the solid lines indicate that subjects had a strong tendency 
to give the same kind of response in consecutive trials. In contrast, the close-to-zero correlations displayed by the 
dashed lines indicate that subjects’ behavior cannot be predicted from the other player’s response in the previous 
trial. These correlations were stable across the block of 40 trials. The close-to-zero correlations represented by the 
dashed lines are reproduced by all learning models. However, the solid lines representing the first-order auto-
correlation behave quite differently in the models. The gradient learners start out with zero correlation between 
successive actions and increase this correlation slightly over trials, but always far below the high autocorrelation 
displayed by subjects. In contrast, the Q-learning models exhibit an autocorrelation comparable in magnitude to 
the subject data. Although the modeled autocorrelation decreases slightly over time, the continuous Q-learning 
models again fit the data best.

Discussion
In this study we investigate human multi-agent learning in three different kinds of continuous sensorimotor 
games based on the three 2× 2-matrix games of matching pennies, asymmetric matching pennies and the 
prisoner’s dilemma. In these games, subjects were haptically coupled and learned to move in a way that would 
reduce the experienced haptic coupling force resisting their forward motion, which served as a negative reward 
during the interaction. To explain subjects’ learning behavior across multiple repetitions, we compare their move-
ments to different reinforcement learning models with or without internal costs arising when deviating from 
the previous action or average behavior. In previous studies25, the attainment of Nash equilibria in sensorimotor 
interactions has been reported, but without investigating the mechanisms of learning. In the current study we 
found, when simulating different learning models, that it is not enough to study binary discretizations of the 
continuous games as previously, as this coarse analysis does not reveal fine differences between learning models. 
However, clear differences between learning models arise when studying the games in their native continuous 
sensorimotor space. In particular, we found that a continuous Q-learning model with intrinsic action costs best 
explains subjects’ co-adaptation.

While we considered binary and continuous models in the paper to highlight the advantage the latter may 
have compared to the former, there is a gradual spectrum from discrete to continuous models. Naively, discrete 
models with more than two actions can be used to approximate the continuous case, but then learning is slower, 
because there are many more independent actions to learn. In the reinforcement learning literature46, this prob-
lem is remedied with multiple tilings, where each tiling contains a fixed number of tiles that cover the workspace. 
Having multiple tilings that are shifted with respect to each other introduces neighbourhood relationships where 
the number of tiles per tiling reflects the width of the neighbourhood. When formulating the Q-learning model 
in our examples as a discrete tiled agent, we get qualitatively similar results to the continuous agents, however, 
sometimes there are border effects. Therefore, we decided to use continuous models that more closely reflect the 
experimental setup, and that can be discretized for visualization.

In all of the games, the continuous Q-learning model trained without additional intrinsic costs tends to 
spread its probability fairly evenly across the workspace, and shows rather slow learning. The reason is not that 
Q-learning per se would be too slow to learn, but is rather a consequence of the fitting procedure that determines 
that the slow learning in that case provides the best fit, as faster learning would produce behavior that deviates 

Figure 6.   Autocorrelation in the symmetric matching pennies. The solid lines show the autocorrelation 
between actions from the current and the previous trial for both players. The dashed lines indicate cross-
correlations between one players action in the current trial with another player’s action in the previous 
trial. From left to right: experimental data, policy gradient, policy gradient with intrinsic costs, Q-learning, 
Q-learning with intrinsic costs. Created using MATLAB R2021a (https://​www.​mathw​orks.​com)43.

https://www.mathworks.com
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from subjects’ behavior even more. However, we found that introducing an intrinsic cost that punishes large 
deviations from the previous action could alleviate this problem, allowing for more concentrated learning and 
making the Q-learning model qualitatively the best fit to human behavior. The intrinsic cost can be interpreted 
as a simple intrinsic cost for motor effort, that is not considered in the payoff function of the game, or it could 
be the consequence of an intrinsic motor planning cost that favors similar actions. As all our models were ini-
tialized with a uniform distribution, such an intrinsic cost could also be thought of as a non-uniform prior that 
one could use to initialize the models.

An alternative interpretation would be to conceptualize the minimization of the trial-by-trial deviation as 
minimizing the information difference between each action and the marginal distribution over actions given by 
the average behavior. Such an implicit information penalization of action policies can be regarded as a form of 
bounded rational decision-making, where decision-makers trade off between utility and information costs that 
are required to achieve a certain level of precision47–49. Such information costs have been previously suggested to 
model costs of motor planning and abstraction50,51. Another form of limited information-processing capability is 
subjects’ limited sensory precision regarding the perception of force, that we have modeled by assuming Gaussian 
sensory noise with a magnitude roughly corresponding to ten percent of the maximum force52,53. The assumption 
of this sensory noise is vital for all the models, as otherwise the simulations predict very fast convergence and 
steep learning transients that are not observed in human subjects.

Compared to the Q-learning model, the policy gradient learners preferentially converged to strategies involv-
ing actions at the extremes, even though average behavior of these models fitted with game-theoretic predictions. 
This preference for extremes occurs not only for the particular parameterization that we chose (Kumaraswamy 
or beta-distribution), but also occurs for other parameterizations like the logit-normal model—compare Sup-
plementary Figures 2- 4. While this can only happen when the policy gradient models are initialized uniformly, 
a non-uniform initialization of these models must assign zero probability to the extremes of the workspace, and 
therefore trivially avoids this problem. When initialized uniformly, the gradient learners prefer the extreme solu-
tions, as the reward gradient is steepest in this direction. This demonstrates that the choice of learning algorithm 
imposes a preference on the set of possible equilibrium solutions, that a priori would all be equally acceptable, 
due to the inherent learning dynamics. We conclude that it is important to study different learning algorithms 
for understanding sensorimotor interactions, as such behavior cannot be inferred from a game-theoretic analysis 
alone, that simply focuses on the Nash equilibrium concept. While our study can of course not exclude the pos-
sibility that there could be many other learning algorithms that could explain the data equally well or better, it 
shows also that it is not trivial that the Q-learning with intrinsic costs manages to capture the adaptive behavior 
of human interactions.

Unlike the abstract concept of the Nash equilibrium solution, reinforcement learning models are deeply 
rooted in the psychology literature of classical and operant conditioning46 and thereby open up a mechanistic 
approach to understanding sensorimotor interactions. In the neurosciences there have been numerous attempts 
to relate these psychological concepts to neuronal mechanisms like spike-timing dependent plasticity and dopa-
minergic modulation54,55. In human strategic interactions, previous reinforcement learning models have been 
used to explain, for example, the emergence of dominant strategies56–58, conditional cooperation59,60, learning 
in extensive form games61–63, and transfer of reward-predictive representations64,65. The interactions in these 
studies were mostly based on cognitive strategies that participants could develop, as they were made explicitly 
aware of the meaning of different choice options. Instead, we have focused on haptic interactions with forces that 
require implicit learning that can be construed as the minimization of reward prediction error in the context of 
reinforcement learning66,67.

The role of reinforcement learning in the context of implicit learning has been previously examined in a num-
ber of studies on motor learning68–70, including physical robot-human interactions71,72 and group coordination73, 
however, not in the context of game theory and haptic interactions. While our task was simple enough to allow 
for model-free reinforcement learning, a challenge for the future remains to study reinforcement learning in 
more complex environments with multiple agents. This may include, for example, studying model-based learning 
strategies74 or learning strategies that succeed in the presence of multiple equilibria26. Although parallel single-
agent Q-learning over multiple trials can lead to successful action coordination in some strategic interactions, 
game-theoretic learning algorithms like Nash Q-learning make it more likely to reach a joint optimal path in 
more general games41. Whether human players would devise such strategies during sensorimotor interactions 
remains an open question. In summary, our study adds to a growing body of research harnessing the power of 
reinforcement learning models to understand human interactions and highlights that a more detailed under-
standing of learning mechanisms can also contribute to a better understanding of equilibrium behavior.

Methods
Experimental methods.  Participants.  Sixteen naïve subjects participated in this study and provided 
written informed consent for participation. The study was approved by the ethics committee of Ulm Univer-
sity. All sixteen participants were undergraduate students that were compensated for their time with an hourly 
payment of 10 euros, while they played two sensorimotor versions of the matching pennies game. Before the 
experiment, participants were instructed that they should move a cursor to a target bar while trying to minimize 
the resistive forces experienced during the movement. Participants were told that they are not allowed to com-
municate with each other during the experiment. The data of another sixteen subjects was reanalyzed from a 
previous study25, where they performed a sensorimotor version of the prisoner’s dilemma under the same kind 
of experimental conditions presented here in the current study. All methods were carried out in accordance with 
relevant guidelines and regulations.
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Setup.  The experiment was run on two vBOT haptic devices75 that were connected to a virtual reality environ-
ment in which two subjects could control one cursor each by moving a handle in the horizontal plane. This setup 
provides both subjects separately with a visual feedback of their own cursor position, without showing a direct 
view of their hand or the hand of the other player—see Fig. 1A. The subjects were haptically coupled by applying 
individual forces on the two handles representing a negative payoff. Both the forces and the cursors’ positions 
were updated and recorded with a sampling frequency of 1 kHz throughout each trial.

Experimental design.  To begin each trial, subjects had to simultaneously locate their cursor on the 15-cm-wide 
starting bar placed at each bottom side of their respective workspace. Each participant’s workspace was con-
strained by the vBOT simulating solid walls at the extremes left ( −8cm ) and right ( +8cm ) for both players. A 
beep sound informed players that a valid starting position was chosen and a 15-cm-wide target bar was displayed 
in front of each player with the same distance that was randomly drawn from the uniform distribution between 
5 and 20 cm—see Fig. 1A. Subjects were instructed to move as soon as they heard the beep. Each participant had 
to hit their respective target bar with their cursor, for which they had to move forward (y-direction) and touch 
the bar within a maximum time period of 1500 ms. Each trial was finished as soon as both players had hit their 
respective target bar, which they could touch anywhere along its length. For the analysis, we interpreted this 
horizontal position of the target crossing as subjects’ final choice.

To determine the payoffs of the interaction, each player’s cursor was attached to a simulated one-dimensional 
spring whose equilibrium point was located on the starting bar. This generated a force Fi on their hand in the 
negative y-direction that opposed their forward movement with Fi = −Kiyi , where yi corresponds to the y-dis-
tance of the cursor of player i ∈ {1, 2} from the starting bar. Crucially, the spring constants Ki were not constant 
but variable functions Ki(x1, x2) depending on the normalized horizontal positions x1 and x2 of both participants, 
where xi = 0 corresponds to extreme left and xi = 1 represents extreme right of the workspace of player i. In 
particular, the spring functions Ki(x1, x2) were determined by the bilinear interpolation

where α was a constant scaling parameter set to 0.019 N
cm throughout the experiment, and the 2-by-2 matrices 

M(i) corresponds to the 2-by-2 payoff matrix of player i and determine the boundary values of the force payoffs 
at the extremes of the x1x2-space. Consequently, M(i)

j,k is the payoff assigned to player i when player 1 takes action 
x1 = k and player 2 takes action x2 = 1− j where j, k ∈ {0, 1} . Each one of the three games analyzed in this study 
was defined by a different set of payoff matrices corresponding to the 2-by-2 games of the prisoner’s dilemma, 
asymmetric matching pennies, and symmetric matching pennies—see Fig. 1B. Players’ actions are considered 
as the final positions in the x1x2-space, where the continuous responses can be categorized by using different 
binning (see Fig. 1C,D,E). To encourage learning, the payoff matrices were permuted every 40 trials, so that the 
mapping between action and payoff had to be relearned every 40 trials. There were four possible permutations 
corresponding to the possible reassignments x1 → (1− x1) and x2 → (1− x2) . Subject pairs repeated 20 blocks 
of 40 trials each, totaling in 800 trials over the whole experiment.

Prisoner’s dilemma motor game.  In the pen-and-paper version of the prisoner’s dilemma the 2-by-2 payoff 
matrices are given by

and represent a scenario where two delinquents are caught separately by the police and face the choice of either 
admitting their crime (cooperating) or denying it (defecting), while being individually interrogated with no 
communication allowed. For each player it is always best to defect, no matter what the other player is doing, 
even though cooperation would lead to a more favorable outcome if both players choose to do so. Hence, there 
is only one pure Nash equilibrium given by defect/defect. In our continuous sensorimotor version of the game, 
the Nash equilibrium corresponds to a corner of the x1x2-space—see Fig. 1C.

Matching pennies motor games.  In the classic version of the symmetric matching pennies game the 2-by-2 
payoff matrices are given by

and can be motivated from the scenario of 2 football players during a penalty kick with the two actions left and 
right. In this case player 2 (e.g. the goalkeeper) will tryto select the matching action (e.g. x1 = right/x2 = right ) 
to stop the ball, while player 1 (e.g. the striker) will try to unmatch by aiming the shot away from player 1 (e.g. 
x1 = left/x2 = right ). Choosing an action deterministically in this game is a bad strategy, since the opponent can 
exploit predictable behavior. The mixed Nash equilibrium is therefore given by a pair of distributions (p1; p2) with 
p1(left) = p1(right) = 0.5 and p2(left) = p2(right) = 0.5 (see Fig. 1E). In the continuous sensorimotor version 
of the experiment there are infinitely many mixed Nash equilibria corresponding to the set of all distributions 
{p1, p2} where Ep1 [x1] = 0.5 and Ep2 [x2] = 0.5 assuming xi ∈ [0, 1]—see Supplementary Material.

In the 2-by-2 version of the asymmetric matching pennies game the payoff matrices are given by

(1)Ki(x1, x2) = α

(
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which is similar to the symmetric scenario, only that one player now has a higher incentive to choose a particu-
lar action (e.g. the striker gets awarded more points when choosing x2 = left ). The mixed Nash equilibrium is 
then given by a pair of distributions (p1; p2) with p1(left) = 0.8, p1(right) = 0.2 and p2(left) = p2(right) = 0.5 
(see Fig. 1D). In the continuous sensorimotor version of the experiment there are infinitely many mixed Nash 
equilibria corresponding to the set of all distributions {p1, p2} where Ep1 [x1] = 0.8 and Ep2 [x2] = 0.5 assuming 
xi ∈ [0, 1]—see Supplementary Material.

Theoretical methods
Computational models.  Every model consists of two artificial agents whose parameters are updated over 
the course of 40 trials. Like in the actual experiment, every agent decides independently from the other agent 
about an action, observes the reward signal in the form of a punishing force and adapts their strategy. The mod-
els can be categorized in binary action models with action space A = {0, 1} , and continuous action models that 
operate on the action space A = [0, 1] . All models have the same structure:

•	 At the beginning of every trial t every agent i samples an action ati ∈ A from the distribution Pti .
•	 After both agents have taken their respective action ati simultaneously, they receive a reward Rt

i = 1− Fti  , 
where Fti  is calculated based on the spring constant Ki from Equation (1), such that Fti =

1
10α

Ki(a
t
1, a

t
2)+ ε , 

where ε is a Gaussian random variable with mean zero and standard deviation 0.1 to model the effect of 
sensory noise. 

•	 When considering intrinsic costs, the reward signal is augmented to Rt
i =

(

1− Fti
)

− κ|ati − at−1
i | for all 

t = 2, . . . , 40 in order to punish high trial-by-trial deviations. For all simulations we use κ = 1
2. •	 Depending on the action and reward, the agents adapt their strategy Pti → Pt+1

i  to optimize future rewards.

Binary action models.  Binary action models are limited to the two actions 0 and 1. These models can be 
used for learning in the classic 2× 2 matrix versions of the different games.

Model 1: Q‑learning.  As in standard Q-Learning, agents using the first model represent their knowledge in 
the form of a Q-value lookup table. Since there are only two actions the lookup table for player i has two values, 
namely:

For the distribution Pti  we chose a softmax-distribution with parameter βi:

and the updates for the Q-values are of the following form:

where αt
i  is a learning rate that decreases exponentially over the course of the trials. All Q-values are initialized 

as 0, such that the agents start the game without any initial knowledge.

Model 2: Gradient Decent.  The gradient decent model learns a parameterized policy that can select actions 
without consulting a value function. The policy used by the binary gradient decent learner is the Bernoulli 
probabilty distribution with outcomes {0, 1} . An action a is determined by sampling from the policy:

where pti is a parameter that is adapted whenever a player receives the reward Rt
i  for their current action ati.

with an exponentially decaying learning rate parameter γ that is fitted to the behavior of the human participants. 
The parameter is initialized as p = 1

2 such that both actions are equally probable for the initial policy.

Continuous action models.  Continuous models give a more faithful representation of the sensorimotor 
version of the game in that they are able to sample actions from the full interval [0, 1].
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Model 3: Gradient Descent.  The gradient decent model directly learns a parameterized policy that can select 
actions without consulting a value function. The parameterized policy used in this study is given by the Kumar-
aswamy probability distribution on the interval (0, 1). An action a is determined by sampling from the policy:

where αt
i  and βt

i  are shape-parameters that are adapted whenever a player receives reward or punishment in form 
of a force for their current action. For an action ati and reward Rt

i  , the parameters are updated according to the 
following update equations:

with an exponentially decaying learning rate parameter γ that is fitted to the behavior of the human participants. 
The shape-parameters are initialized as α = β = 1 such that the initial policy for all players is the uniform dis-
tribution on (0, 1).

Model 4: Q‑Learning with Gaussian basis functions.  This model is an extension of the discrete Q-Learning 
model to the continuous action space [0, 1]. Its core consists of an action value function with radial basis func-
tions such that the real action value function Q∗

i (·) is well reflected by a set of weights Qt
i that are adapted 

throughout the trials t = 1, 2, . . . and a set of parameters (ck , σk) with k = 1, 2, . . . that are held constant. For 
the simulation we chose Gaussian basis functions N (ck , σk) centered around ck with standard deviation σk such 
that action samples can be drawn from a Gaussian mixture model. Accordingly, we can generate an action ati at 
time t, by sampling an index j from a categorical distribution with softmax-parameters σ(Qt

j ) and softmax func-
tion σ(.), and then draw a sample a from the j-th basis function in the Gaussian mixture. Samples that lie outside 
of the interval [0, 1] are rejected and resampled. Unlike the discrete case we update all weights Q in every trial 
according to the following rule. If at and Rt are the action taken and the reward at time t, then

where α is a learning rate parameter, γ is a discount factor and ϕck ,σk is the clipped Gaussian density function 
min{1,N (ck , σk)} . All weights were initialized as 0.

Optimizing parameters.  All parameters were optimized such that the simulated agents’ behavior fitted 
the behavior of the average player in a specific player slot (i.e. player 1 or player 2). For the optimization we 
minimized the absolute error:

that occurred over 40 trials between the participants data d and the simulation’s results d̃ . The histogram function 
h maps the data points onto an 8× 8 matrix where each entry of this matrix contains the normalized amount of 
data points that lie in the corresponding bin of an 8× 8 binned histogram. The time index t of dt indicates that 
all data points from the first trial up until trial t are used to generate the matrix.
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