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Summary

Dopamine is a modulatory neurotransmitter involved in learning, motor functions, and reward. 

Many neuropsychiatric disorders including Parkinson’s disease, autism, and schizophrenia are 

associated with imbalances or dysfunction in the dopaminergic system. Yet, our understanding 

of these pervasive public health issues is limited by our ability to effectively image dopamine 

in humans, which has long been a goal for chemists and neuroscientists. The last two decades 

have witnessed the development of many molecules used to trace dopamine. We review the small 

molecules, nanoparticles, and protein sensors used with fluorescent microscopy / photometry, 

MRI, and PET that shape dopamine research today. None of these tools observe dopamine itself, 

but instead harness the biology of the dopamine system – its synthetic and metabolic pathways, 

synaptic vesicle cycle, and receptors – in elegant ways. Their advantages and weaknesses are 

covered here, along with recent examples and the chemistry and biology that allow them to 

function.
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Post and Sulzer broadly review the molecules and approaches used to image dopamine release. 

The small molecules, nanoparticles, and protein sensors that have been developed for use 

with fluorescent microscopy / photometry, MRI, PET and MRI are covered. Each technique’s 

advantages, disadvantages, and underlying chemistry and biology discussed.
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Introduction

Dopamine is a small molecule neurotransmitter that in contrast to glutamate and GABA, 

which interact with ionotropic receptors to inhibit or excite neurons, binds to G protein

coupled receptors to modulate neuronal responses (Berke, 2018; Surmeier et al., 2014). 

Dopamine’s effects vary with respect to the dopamine receptor type: dopamine type-1 

receptors (which include D1 and D5 dopamine receptors) were classically identified by 

enhancing cyclic AMP levels and are Gs protein-coupled, while dopamine type-2 receptors 

(encompassing D2, D3, and D4 receptors) were defined by their decrease of cyclic AMP, 

and are coupled to Gi/o (Beaulieu and Gainetdinov, 2011). Dopamine’s activation of these 

receptors – which in the striatum are highly expressed on the primary spiny projection 

neurons (SPNs, also referred to as medium spiny neurons) – initiates chemical cascades 

that enhance or depress other signals, in some cases acting as a high-pass filter of other 

ionotropic synapses (Pignatelli and Bonci, 2015). Our understanding of dopamine continues 

to evolve, with new work suggesting it might act as a morphogen during development 

(Lieberman et al., 2018).

Classical studies used techniques in which a reaction of catecholamines with aldehydes, 

principally the Falck-Hillarp technique, produced fluorescent dopamine and norepinephrine 

(NE) derivatives, and were used to identify dopaminergic and norepinephrinergic neurons 

and projections in the brain (Falck et al., 1982). This approach indicated that the largest 

populations of dopaminergic neurons are those of the substantia nigra pars compacta (SNc) 
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and the neighboring ventral tegmental area (VTA) (Falck, 1962). SNc neurons mostly 

project into the dorsal striatum and are classically associated with the development and 

selection of motor function (Hodge and Butcher, 1980). Neurons in the VTA extend mostly 

into the ventral striatum, including the nucleus accumbens (NAc), as well as some cortical 

regions, and they are classically associated with acquisition reward-mediated behaviors 

(Morales and Margolis, 2017). Both populations of neurons contain pools of dopamine

filled synaptic vesicles throughout their axons, typically of 40–50 nm diameter, although 

larger vesicles are also present, particularly at apparent en passant presynaptic varicosities 

(Arluison et al., 1984). Upon depolarization, the vesicles fuse with the axonal membrane to 

release their contents at various points along the axon from sites that often appear to have 

limited presynaptic and postsynaptic specialization; this stands in contrast to the morphology 

of classical synaptic terminals at motor endplates or pyramidal projection neurons that 

innervate dendritic spines (Cragg et al., 2004; Rice et al., 2011). In the dorsal striatum and 

NAc, most of these dopamine synaptic vesicle clusters appear near the neck of dendritic 

spines, which would be consistent with a role in modulating the synapses of pyramidal 

neurons.

Imbalances in dopamine neurotransmission are implicated in the pathogenesis of a myriad 

of psychiatric and neurological disorders, including schizophrenia, Parkinson’s disease (PD), 

autism, depression, drug dependence, and attention deficit disorders (Bohnen and Albin, 

2011; Dunlop and Nemeroff, 2007; Howes and Kapur, 2009), and these diseases are treated 

by various drugs that regulate dopamine neurotransmission. However, except for the motor 

symptoms of PD, which are strongly linked to a loss of the neurons of the SNc, the roles 

of dopamine synapses in these disorders are unknown. All of these are pervasive public 

health issues; yet, understanding, diagnosing, and treating these disorders is limited by 

our ability to effectively analyze dopamine neurotransmission, particularly at the level of 

the synapse (Abi-Dargham and Horga, 2016). Such analysis requires the development of 

imaging approaches.

Over the past decade, many novel approaches to imaging dopamine release have been 

developed, some introducing entire new classes of molecules or elegant uses of chemical 

biology. This review is intended to provide a broad survey of the molecules and 

methods currently in use, including small molecules, nanoparticles, and biomolecules that 

are detected by fluorescence microscopy, positron emision tomography (PET) imaging, 

and magnetic resonance spectroscopy/imaging (MRS/MRI). While these techniques and 

modalities (summarized in Table 1) are quite diverse, they all take advantage of aspects of 

the basic biology of the dopaminergic system.

Dopaminergic System and Non-imaging Approaches

Dopamine is synthesized in the cytosol from tyrosine, which is first hydroxylated by 

tyrosine hydroxylase (TH) to form L-DOPA and then decarboxylated by aromatic amino 

acid decarboxylase (AADC), as shown in Figure 1 (Molinoff and Axelrod, 1971). As 

mentioned, dopamine is stored in synaptic vesicles that cluster throughout the axon, often 

in apparent varicosities (Gaugler et al., 2012; Pereira et al., 2016). The synaptic vesicles are 

loaded by the vesicular monoamine transporter (VMAT2), which exchanges two protons for 
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one monoamine: this transporter is promiscuous in that it transports not only dopamine but 

also serotonin, NE, drugs and metabolites such as tyramine (an observation that introduced 

the term “false transmitters” by Irwin Kopin), amphetamine, and some neurotoxins (Fischer 

et al., 1965). The pH gradient that VMAT2 relies on is established by the vacuolar ATPase 

in the vesicular membrane (Edwards, 2007; Knoth et al., 1981; Lohr et al., 2017). After 

release, dopamine is either metabolized by monoamine oxidase (MAO) or accumulated back 

into the neuronal cytosol through the dopamine active transporter (DAT) where it can be 

repackaged into synaptic vesicles by VMAT2 (Hersch et al., 1997).

As dopamine does not activate ionotropic receptors, its release cannot be straightforwardly 

detected by recording from a post-synaptic neuron using whole-cell electrophysiological 

recordings, the standard means by which glutamate or GABA release has been estimated. 

Instead, intensive research over several decades yielded two different non-imaging methods 

to study dopamine release.

Brain microdialysis is used to monitor dopamine release in awake behaving rats and was 

developed primarily by Urban Ungerstedt (Chefer et al., 2009; Justice, 1993). Here, a 

probe that contains a small stretch of microdialysis tubing is implanted and a cerebrospinal 

fluid-like solution is pumped through. Neurotransmitters and other molecules diffuse into 

the tubing, which is connected to an HPLC for monitoring the contents by electrochemical 

or mass spectrometry detection. This technique can be used to measure dopamine release on 

the timescale of minutes. Microdialysis is limited by low spatiotemporal resolution, which is 

due to the size of the probe, its surrounding dead-space, and a slow sample collection rate. 

For example, microdialysis has been used extensively to study reward-mediated behaviors 

such as drug addiction, and demonstrated an increase in extracellular dopamine but missed 

forms of rapid plasticity that were later detected by techniques with greater spatiotemporal 

resolution (Torregrossa and Kalivas, 2008),

The second technique takes advantage dopamine’s redox properties to measure release. 

Dopamine can be reversibly oxidized to dopamine-o-quinone (Figure 1) and is therefore 

amenable to amperometry and cyclic voltammetry. Fast-scan cyclic voltammetry (FSCV), 

introduced by Ralph “Buzz” Adams, Zygmunt Kruk, and Julian Millar, uses an electrode 

embedded amongst dopamine axons (Stamford et al., 1984). A major improvement in the 

technique was the introduction of the carbon fiber electrode by Francois Gonon (Gonon 

et al., 1980). Typically, the FSCV electrode applies a constant train of triangular voltage 

ramps from −0.4 to 1.0 V and back. The current measured at 0.6 V, the peak oxidation 

potential of dopamine, is proportional to the concentration of dopamine present (Robinson 

et al., 2003). Due to its ability to measure extracellular concentrations as low as 50 nM at a 

sampling rate of 10 Hz, FSCV offers a vast improvement in temporal resolution compared 

to microdialysis, and has been a major workhorse for studying dopamine release in rodent 

primary dopamine neuron culture and acute brain slice. Work from Regina Carelli and 

Mark Wightman’s labs developed in vivo FSCV to couple the analysis of dopamine release 

with behavior. For example, rapid changes in dopamine concentration were observed in 

the NAc at different stages of cocaine-taking behavior in rats, and this behavior could be 

recapitulated by electrically stimulating the same area to induce dopamine release (Phillips 

et al., 2003).
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Constant potential amperometry, a technique closely related to FSCV, is sensitive and rapid 

enough to detect the release of dopamine from the fusion of synaptic vesicles from an 

individual presynaptic site; it was used to observe the “quantal” release of 10,000 molecules 

of dopamine in less than 100 μsec (Staal et al., 2004). Many additional discoveries and 

advances have been made with these electrochemical approaches, as recently reviewed by 

Roberts and Sombers (Roberts and Sombers, 2018). Furthermore, advances continue to be 

made in FSCV technology, from new fiber coatings to novel strategies to induce dopamine 

release (Rodeberg et al., 2017).

A downside of the electrochemical approaches is the limited spatial resolution in intact 

tissue, which is required to analyze how dopamine release is governed by release site 

properties or interactions on a synaptic scale. Additionally, electrochemical techniques are 

quite invasive when performed in vivo, making them difficult to translate into clinical 

research; although not impossible, as FSCV has been performed during open-brain surgery 

to demonstrate a relationship between dopamine and reward prediction error (Kishida et al., 

2011, 2016).

In contrast, imaging techniques offer exquisite spatial resolution, in some cases without 

sacrificing temporal resolution. Ideally, dopamine could be mapped by directly observing 

it, as glutamate and GABA can be using MRS; however, dopamine’s brain concentration is 

orders of magnitude lower than glutamate and GABA, and this approach remains elusive 

(Rothman et al., 1993). Instead, the proteins involved in the life cycle of dopamine – TH, 

AADC, VMAT2, and DAT – as well as the dopamine receptors and dopamine itself can 

serve as targets for molecules that can then be imaged by a method appropriate for the 

experimental model at hand.

Fluorescent Approaches (Optical Dopamine Sensors)

As established by the classical studies from Falck, Hillarp, and colleagues, fluorescent 

microscopy offers spatial resolutions that provide synapse- and circuit-level detail. Ideally, 

dopamine would be imaged directly, as it has a fluorescence excitation peak at 280 nm 

and an emission maximum of 315 nm; however, light at this ultraviolet wavelength is 

phototoxic (Wang, 2002). Two-photon (2P) microscopy – in which the fluorophore absorbs 

two lower-energy photons to reach an excited state – may provide a potential work-around, 

and there are publications that use 2P to observe dopamine release by exciting at 540 nm in 

mouse slice (Bera et al., 2018; Sarkar et al., 2014). However, even with the 2P approach, this 

excitation wavelength can cause photodamage and lacks sufficient biopenetrance needed to 

image dopamine in vivo. Indeed, to observe a useful signal, the authors had to place their 

photomultiplier detector directly over the slice. Klioutchinikov et. al. recently developed 

a head-mounted three-photon microscopy system in rats, which they use to image a 

fluorescent calcium sensor (GCaMP, discussed below) (Klioutchnikov et al., 2020). Watt 

Webb and colleagues have shown serotonin can be imaged in cell culture natively using 3P 

excitation, so it may be possible to use such a system to image dopamine directly as well 

(Maiti, 1997).

While the direct observation of dopamine release would be ideal, multiple approaches have 

been developed to image dopamine indirectly. These novel techniques involve fluorescent 
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sensors that either co-transit with dopamine through the synaptic vesicle cycle or reversibly 

bind to dopamine resulting in a change in fluorescence; they are depicted in Figure 2 and 

summarized in Table 2 (Beyene et al., 2019a; Sames et al., 2013; Wang et al., 2018).

Small Molecule Approaches—Rather than image dopamine directly, efforts have been 

made to track its transit through the vesicle cycle using fluorescent small molecules. Taking 

advantage of the acidic pH of vesicles established by ATPase and used by VMAT to 

transport dopamine, the fluorescent weak base acridine orange (AO) was one of the first 

tools used to image and characterize large secretory vesicles in adrenal gland-derived 

chromaffin cells (Kuijpers et al., 1989; Steyer et al., 1997; Sulzer and Holtzman, 1989). 

AO gains an excitation peak at 460 nm at low pH: after diffusing across the membrane 

into an acidic compartment, it is protonated and cannot diffuse outward. Inducing cells to 

release the contents of their synaptic vesicles causes AO to enter a pH-neutral environment, 

resulting in a decrease in fluorescence. This technique was used in mast cells that secrete 

serotonin to prove that both full exocytosis and more transient ‘kiss-and-run’ occur, in this 

case at a one-to-two ratio (Williams and Webb, 2000). Another report using AO showed 

that applying a weak base drug such as chloroquine or amphetamine decreases fluorescence, 

indicating a collapse in the pH gradient.(Sulzer and Rayport, 1990)

The endocytic probe, FM1–43 (Figure 2, sensor 2), provided a major innovation for 

imaging neurotransmitter release, as recently reviewed by Wong et al (Wong et al., 2015). 

This hydrophilic dye binds to the outer surface of the cell membrane via its nonpolar 

dibutylamino group. When applied to axons that are then stimulated, the probe is taken 

up into the lumen of synaptic vesicles following endocytosis, and in the acute brain slice, 

an ADVASEP-7 wash is used to remove non-specific labeling, effectively labeling the 

recycled vesicle pool (Betz and Bewick, 1992). After a subsequent stimulus, the recycling 

synaptic vesicles fuse again to the cell membrane, allowing the dye to diffuse into the 

extracellular membrane, thereby decreasing total fluorescence intensity. Importantly, FM1–

43 does not specifically label particular neurotransmitter systems; rather, it concentrates 

amongst any recycling synaptic vesicle pool after the first stimulation. Therefore, in order 

to make conclusions about any dopamine-related activity, the dye must be co-imaged with 

some sort of dopamine marker. For example, Jomphe et al. use FM4–64, a red-shifted 

FM1–43 analogue, in a mouse expressing GFP driven by the TH promotor (TH-GFP), which 

specifically labels dopaminergic axons, to study exocytosis in primary dopaminergic culture 

(Jomphe et al., 2005). Another non-specific approach uses the dye NeuO, which selectively 

labels live neurons in vivo – studies in mice and zebrafish have been published – but does 

not discriminate between neurotransmitter types, and therefore requires post-hoc analysis or 

colocalization with a dopaminergic marker (Er et al., 2015; Chai Lean Teoh et al., 2015).

The fluorescent false neurotransmitter (FFN) approach (Figure 2, sensor 1), developed by 

the Sames and Sulzer labs, has been used to image specific neurotransmitter accumulation 

and release. The dopaminergic FFNs consist of a coumarin scaffold substituted with an 

amino-ethyl group thought to confer VMAT2- and in some cases DAT-recognition. The 

first of these probes developed, FFN511, effectively accumulated in synaptic vesicles 

in acute mouse brain slice, appearing as puncta that colocalized with TH-GFP. Puncta 

formation could be blocked by both VMAT2 and DAT inhibitors, and the puncta disappeared 
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following electric stimulation or application of amphetamine in slice (Gubernator et al., 

2009; Zhang et al., 2009). More recently, FFN511 was imaged in chromaffin granules using 

stimulated emission depletion (STED) microscopy to monitor vesicle shrink-fusion.(Shin et 

al., 2020) FFN511, however, is relatively non-selective compared to later generations of FFN 

and labels additional non-dopaminergic synapses. A more selective probe, FFN102, was 

designed to be pH-sensitive by utilizing chlorine and hydroxy ring substituents. With a pKa 

of 6.2, the probe is protonated when sequestered in acidic synaptic vesicles and deprotonated 

when in the cytoplasm or extracellular milieu (Lee et al., 2010; Rodriguez et al., 2013). The 

deprotonation introduces a new resonance form with increased fluorescence. When synaptic 

vesicles fuse to release FFN102, such as in response to electric stimulation or application of 

a secretagogue, this is observed as an optical “flash”.

FFN200, a substrate for VMAT2 but not DAT, offered a DAT-independent way of loading 

dopaminergic synaptic vesicles, making it useful in both the brain slice and dopaminergic 

primary neuronal culture (Pereira et al., 2016). The lack of pH-dependence is also useful 

for tracking the probe during both dopamine storage and release, as it maintains constant 

brightness through the entire cycle. FFN200 provided the observation of presynaptically 

silent synapses – axonal varicosities that accumulate FFN but do not form active release sites 

– in the lateral dorsal striatum and subsequently the globus pallidus (Meszaros et al., 2018; 

Pereira et al., 2016). Dopamine release ‘hot spots’ had previously been theorized based on 

FSCV experiments exploring ethanol- and sucrose-directed behaviors (Cacciapaglia et al., 

2011; Robinson et al., 2009), and these FFN experiments offer an example of the insights 

gained when imaging at the scale of individual synapses using fluorescence microscopy.

FFN270 is more selective for the norepinephrine transporter (NET) than DAT, but it is 

transported by both as well as by VMAT2 (Dunn et al., 2018), and it is pH-sensitive like 

FFN102 (and ES517, see below). It has been used to image cortical NE neurotransmission 

in vivo using 2P microscopy at a cranial window, demonstrating release in response to 

both electrical stimulation and amphetamine (Dunn et al., 2018). Imaging striatal dopamine 

release in vivo using a cranial window is complicated by the need to deliver FFN to the 

striatum of a living mouse while simultaneously imaging such a deep structure, but is 

feasible.

Fluorescent probes of the dopamine system can also be useful for high throughput bioassays. 

FFN206 and APP+, a fluorescent analog of the toxin MPTP (available from Molecular 

Devices as their Neurotransmitter Transporter Uptake Assay Kit), have been developed 

as VMAT- and DAT-specific fluorescent probes (Bernstein et al., 2012; Hu et al., 2013; 

Karpowicz et al., 2013). While originally reported to be only DAT-specific, APP+ has been 

used in medium- and high-throughput assays that identified novel VMAT1 and VMAT2 

inhibitors along with FFN206 (Bernstein et al., 2012). Additionally, FFN206 has been useful 

for Drosophila imaging as well as VMAT1 structure-function studies (Freyberg et al., 2016; 

Sato et al., 2019).

The Neurosensor dyes (Figure 2, sensor 4), developed by Timothy Glass’ lab, offer 

a somewhat different method from FFNs, in that these probes selectively bind to 

monoamine neurotransmitters within the synaptic vesicle, which results in a large increase 

Post and Sulzer Page 7

Cell Chem Biol. Author manuscript; available in PMC 2022 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in fluorescence. The first iteration, NS521, was used to image NE, dopamine, and glutamate 

release in acute mouse brain slice (Hettie et al., 2013). The next generation, Exosensor or 

ES517, features pH-sensitivity, so that it is only fluorescent when bound to neurotransmitter 

and in a pH-neutral environment and is therefore useful for imaging exocytosis (Klockow et 

al., 2013).

Notably, these dyes have faced hurdles for use in vivo, as they mostly operate in the 

blue-green range of the spectrum, which often causes photodamage and lacks biopenetrance. 

These challenges could be addressed in part by red shifting these small molecule dyes 

toward more biopenetrant near-infrared (IR) excitation wavelengths (800–122 nm). A near

IR Neurosensor selective for serotonin, NS715, was reported in 2016, but no small molecule 

DA sensor has been reported at these wavelengths (Hettie and Glass, 2016). Instead, 

nanoparticle sensors have filled this niche.

The Nanoparticle Approach—Nanoparticles offer a broader palate of functionality and 

photophysical properties than small molecules. There is a plethora of examples of probes 

where a graphene oxide or quantum dot core is functionalized to react specifically with 

dopamine, resulting in a decrease in fluorescence. Kamal Eddin and Wing Fen recently 

reviewed many of these probes with a focus on the engineering principles involved (Kamal 

Eddin and Wing Fen, 2020) Most are intended to serve as a lab-on-a-chip sensor component, 

including one where tyrosinase was immobilized on a quantum dot to achieve selective 

dopamine-induced fluorescent quenching (Arkan et al., 2019). Only a few nanoparticle 

probes have been tested in cells, such as in a recent report where graphene oxide was 

functionalized with tyrosine and iron and could detect dopamine in cell culture via 

fluorescence quenching (Jeon et al., 2019). Other nanoparticle probes have used surface 

plasmon resonance or Raman scattering to detect the presence of dopamine and other 

neurotransmitters (Choi et al., 2014; Pathak and Gupta, 2019; Yu et al., 2018).

Carbon nanotubes are promising for detecting specific neurotransmitter release; work 

originating in the Strano lab on near-IR catecholamine sensors (nIRCatS, Figure 2, sensor 

3) provides an elegant example (Beyene et al., 2019b). The nIRCatS consist of a single

walled carbon nanotube functionalized by single stranded DNA that experiences more than 

a ten-fold increase in fluorescence in the presence of dopamine. This change is specific for 

dopamine – GABA, glutamate and acetylcholine do not generate a change in fluorescence, 

while NE does but with a maximal response and affinity that is much lower than DA 

and therefore not problematic – in a sequence-dependent manner, with (GT)6 showing the 

greatest selectivity for dopamine (Kruss et al., 2014). The sequence can be changed to 

select for other neurotransmitters, such as serotonin (Jeong et al., 2019). The mechanism 

remains unsolved, but experiments have ruled out dopamine forming a covalent bond to the 

probe or reactive oxygen species playing a role. A redox mechanism or π-π interactions 

between the DNA bases and the catechol ring of dopamine remain plausible (Beyene et 

al., 2018). nIRCatS have been used to image dopamine in brain slice from wild-caught 

mice, demonstrating its use as an alternative to genetically introduced dopamine sensors and 

applicability across species (Beyene et al., 2019b).
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Genetically Targeted Protein Sensor Approaches—Genetically targeted fluorescent 

protein sensors in neurons have been in wide use since the first report of GCaMP by 

Nakai, Ohkura and Imoto in 2001 (Nakai et al., 2001). The GCaMP construct is a 

circularly permutated green fluorescent protein (cpGFP) fused to the calcium-binding motif 

of calmodulin on the C-terminal end, and its binding partner, myosin light chain RS20 

peptide, on the N-terminal end (Sun et al., 2013). When calcium is present, the resulting 

structural change in the calmodulin portion forces the GFP into a fluorescent conformation 

(Wang et al., 2008). The GCaMP family (there are now at least 10 generations in multiple 

colors) has become a workhorse for studying neuronal activity in culture, in slice, and 

in vivo, using either head-fixed microscopy or free-moving fiber photometry, wherein an 

optical fiber is implanted in the brain that can measure fluorescence (Girven and Sparta, 

2017). Dopamine release can be inferred by targeting GCaMP expression to SPNs, which 

upon exposure to dopamine, experience a change in intracellular calcium (Calipari et al., 

2016; Muir et al., 2018).

Cell-based neurotransmitter fluorescent engineered reporters, or CNiFERs (Figure 2, sensor 

5), utilized a different calcium protein-based sensor to detect dopamine release. Originally 

developed to detect acetylcholine, CNiFERs use HEK cells that express a Gq protein

coupled receptor and the FRET-based Ca2+ sensor TN-XXL (Nguyen et al., 2010). In 

the case of DA-CNiFERs, D2R is transfected in HEK cells that express a modified Gq/i5 

protein chimera, which is activated by Gi/o-coupled receptors but recruits the Gq signaling 

pathway. When dopamine is present, it binds to D2 receptors, activating Gq/i5 and therefore a 

PLC/IP3 cascade that results in the release of stored Ca2+ (Lacin et al., 2016). The increased 

cytoplasm calcium concentration induces a conformational shift in TN-XXL that results in 

an increase in the FRET ratio, ΔR/R. To use CNiFERs in vivo, the HEK cells must be 

implanted into the brain area of interest, and ΔR/R can be monitored using fiber photometry.

DopR-Tango (Figure 2, sensor 7), used in Drosophila, is a novel dopamine imaging 

approach which relies on β-arrestin recruitment that occurs after dopamine binds to D1Rs. 

Here, flies are genetically modified to express three constructs: a TEV-protease fused to 

β-arrestin, D1R linked to the LexA transcription factor via a TEV-protease cleavage site, and 

a Lex-A promotor-driven membrane-bound GFP reporter gene. When dopamine is present, 

it binds to the modified D1R, causing β-arrestin-TEV recruitment, which in turn breaks 

the TEV cleavage site linkage, releasing LexA and driving GFP expression (Inagaki et 

al., 2012). Forty-eight hours after inducing expression of these genes, GFP expression was 

observed in the β and γ lobes of the mushroom body, a fly brain region innervated by 

dopaminergic neurons. In flies that were administered SCH23390, a D1R antagonist, GFP 

expression was significantly reduced.

Over the last decade, the cpGFP-calmodulin strategy was adapted for the direct detection of 

neurotransmitter release. The first example of this strategy was iGluSnFR, which replaced 

the calmodulin domain of GCaMP with a glutamate-binding domain, and this approach has 

since been optimized for higher sensitivity and greater temporal resolution in addition to 

blue, cyan, green, yellow, and red variants (Marvin et al., 2013, 2018; Wu et al., 2018).
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More recently, the approach was adapted for dopamine. Two similar constructs have been 

introduced: the dLight sensors from the Tian lab and the GRABDA sensor from the Li 

lab (Figure 2, sensor 6). dLight consists of a dopamine receptor with cpGFP taken from 

a GCaMP6 sensor inserted into the third intracellular loop, so that the GFP fluorescence 

increases when dopamine is bound (Patriarchi et al., 2018). The first generation, dLight1.1, 

used D1R, while dLight1.2 used D4R. dLight1.1 has an EC50 value of 1.3 μM and 

experiences a change in fluorescence intensity upon activation (ΔF/F) of 182% in response 

to a single pulse stimulation in mouse slice. Fluorescence is blocked by the D1R antagonist 

SCH-23390. dLight1.1 and 1.2 have been used as fiber photometry sensors to study 

heroin addiction and sleep cycles (Corre et al., 2018; Dong et al., 2019). Another variant, 

dLight1.3, which contains an F129A mutation resulting in an improved ΔF/F of 660% but 

a higher EC50, was recently used to study effects of thirst on dopamine release (Augustine 

et al., 2019). It is unclear whether the different dLight1 variants have practical differences; 

one report combined results from 1.1 and 1.2 after finding no statistical difference (Mohebi 

et al., 2019).

GRABDA has a similar design but uses cpEGFP inserted into the third intracellular loop of 

the D2R (Sun et al., 2018). There are two GRABDA variants with EC50 values of 10 nM 

and 130 nM respectively. Both versions have a ΔF/F of 90% and can be blocked by the D2R 

antagonists haloperidol and eticlopride but not SCH-23390. The high affinity GRABDA is 

also responsive to NE, which may complicate attempts to use it in areas of the brain outside 

the striatum. GRABDA has been used to measure dopamine release in mice using cultured 

neurons, acute slice, and fiber photometry, and in fruit flies and zebrafish.

Both dLight and GRABDA are exciting developments that continue to evolve; recent studies 

have introduced a red fluorescent protein variant for each, as well as versions that can 

sense other neurotransmitters, allowing complex neurotransmitter interactions to be studied 

simultaneously (Jing et al., 2020; Nakamoto et al., 2020; Patriarchi et al., 2020; Sun 

et al., 2020). Most importantly, using these probes in behaving mice is at this point 

straightforward, as fiber photometry is already in wide use for GCaMP, thus providing a 

means for dopamine detection adaptable in labs already measuring calcium (Labouesse et 

al., 2020).

Voltage Sensing Probes—In contrast to measuring dopamine release by sensors within 

synaptic vesicles or the extracellular space, alternative approaches have inferred activity by 

measuring the voltage across the membrane, using voltage-sensing probes. The use of these 

small molecule dyes began in the early 1970’s in turtle retina (Baylor and Fuortes, 1970). 

This was followed by work in the 80’s, when Grinvald et al. used a merocyanine-rhodamine 

dye, WW401, which has a π-wire region of the molecule that spans the cell membrane and 

a more polar fluorescent headgroup (Grinvald et al., 1981). They initially developed these 

approaches in squid axons and tested them in cell culture and mouse hippocampal slice 

(Grinvald et al., 1982). Over the last few years, new rhodamine dyes have been developed, 

such as one from the Miller lab which can achieve −44% ΔF/F per 100 mV (Boggess et 

al., 2019; Kulkarni et al., 2018). A downside of this class of dyes is that they are not 

neurotransmitter-specific, and therefore to image dopamine activity, they require genetically 

expressing a fluorescent marker or co-labeling with a small molecule dye such as an FFN.
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The Voltage Dye Molecular Recognition (VoLDeMo, Figure 2, sensor 9) probe aimed to 

surmount this challenge by linking a voltage-sensitive dye to a cocaine-like DAT anchor. 

This dye construct was found to label dopamine axon terminals in the striatum specifically, 

and could sense changes in voltage in DAT-expressing HEK cells that were manipulated 

with patch-clamp electrophysiology, although change in signal was far lower than the dye 

alone, at −4.7% ΔF/F per 100 mV (Fiala et al., 2020).

Similar to dLight and GRABDA, an entire class of genetically encoded voltage indicators 

(referred to as GEVIs in the literature) have been developed to monitor changes in 

membrane voltage in a targeted way, including the highly optimized ASAP3, somArchon, 

and Voltron, reviewed recently by Xu et al. and Bando et al. (Bando et al., 2019; Xu 

et al., 2017). The latter is especially interesting because it utilizes a hybrid genetic/small 

molecule approach (Abdelfattah et al., 2019). The Voltron sensors (Figure 2, sensor 8) 

fuse the rhodopsin Ace2N with an intracellular halo-tag. The halo-tag can form covalent 

bonds with small molecule dyes that contain a bio-orthogonal alkyl-halide group – the 

authors used JaneliaFluor rhodamine-based dyes. When Ace2N experiences a depolarizing 

change in membrane potential, its native retinal fluorophore undergoes a reversible increase 

in absorbance, becoming a FRET acceptor for the nearby halo-tag bonded dye. Thus, a 

decrease in FRET signal is observed of about −23 % ΔF/F per 100 mV in cultured neurons. 

In the initial report, Voltron was imaged during in vivo experiments in mice, zebrafish, and 

the dopaminergic neurons of Drosophila. In a follow-up report, the authors were able to 

invert the signal to yield an increase in FRET intensity (Abdelfattah et al., 2020). Because 

they rely on FRET, these probes are impractical for two-photon microscopy (the non-linear 

optics makes FRET measurements quite challenging)(Tao et al., 2015), an obstacle to their 

use for in vivo imaging.

MRI and PET Approaches

The fluorescent imaging approaches discussed above provide powerful tools to study model 

organisms but are not practical for use in humans due to the depth of dopamine neurons 

within the brain and the limited biopenetrance of UV and visible light. In contrast, MRI, 

MRS, and PET offer modalities to image the deeper brain structures necessary to assess 

dopaminergic function in humans.

The direct detection of dopamine by MRS would be an ideal way to quantify dopamine 

storage and study its release. MRS is similar to MRI in that a subject is placed in a strong 

magnetic field and nuclei (typically protons) are excited with a radio frequency pulse (Passe 

et al., 1995). With MRS, additional information is generated in the form of a spectrum, 

where individual peaks termed chemical shifts and measured in radio frequency or parts 

per million (ppm) can be assigned to each nucleus (Öngür, 2013; Prost, 2008). The identity 

and relative concentrations of molecules can be deduced by the heights and ppm values of 

each peak in the spectrum. MRS is analogous to an organic chemist’s use of NMR to solve 

the structure of a molecule and has been used successfully for the measurement of several 

neurotransmitters including glutamate, glutamine, and GABA as well as other important 

small molecule metabolites such as creatine and phosphocreatine, N-acetylaspartic acid, 

lactate, choline, and myo-inositol (Bogner et al., 2017). Importantly, MRS signal is directly 
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proportional to the number of nuclei present in the voxel, and therefore metabolites found 

at lower concentrations or those that lack several nuclei in the same chemical environment 

(such as the trimethyl group of choline) are impossible to detect with current state-of-the-art 

instruments. Unfortunately, dopamine falls into both categories; thus, as with the fluorescent 

approaches, elegant solutions have been developed to detect dopamine and its associated 

networks using indirect methods.

Early attempts and fluorodopamine—Attempts to image dopamine indirectly by MRI 

were first published by Kenneth Kirk’s lab at the NIDDK and others at the NIMH in the 

1980s. Rather than observing protons, as is typical with MRI, they used 19F-MRS to detect 

fluorinated dopamine analogs in a false neurotransmitter-like approach. Imaging 19-fluorine 

(19F) offers several advantages: it has a spin ½ and a gyromagnetic ratio similar to a 

proton, it is 100% abundant in nature but completely absent from the brain, it experiences 

chemical shifts over the span of 100 ppm, and standard industry instruments can be used 

with limited additional equipment (Ruiz-Cabello et al., 2011; Waiczies et al., 2019). The 

Kirk lab synthesized and characterized 2-, 5-, and 6-fluorodopamine and tested the latter 

in intact guinea pig neural sacks. They observed chemical shifts at 36.5 ppm (relative to 

hexafluorobenzene), 37.2 ppm, 36.2 ppm, and 44 ppm, corresponding to 6F-dopamine, 6F

dihydroxyphenylacetic acid (DOPAC, a dopamine metabolite), 6F-NE (NE is metabolized 

from DA by dopamine-beta-hydroxylase, DβH), and 6F-dihydroxymandelic acid, a NE 

metabolite (Eisenhofer et al., 1989; Goldberg et al., 1980). Notably, the 6F-dopamine peak 

had a linewidth twice that of 6F-DOPAC, suggesting it was observed in a much less mobile 

environment such as within a synaptic vesicle. When the neural sacs were pre-incubated 

in in reserpine and pargyline, VMAT2 and monoamine oxidase inhibitors respectively, the 

6F-dopamine peak had a linewidth and height similar to 6F-DOPAC peak observed in the 

untreated sacs.

Despite initial promise, because NE and DOPAC were the predominant peaks in these 

experiments, and due to dopamine’s inability to cross the blood brain barrier (BBB) as 

well as the lack of sensitivity of the MRIs at the time, this work was abandoned in 

favor of PET imaging of [18F]-fluorodopamine (Chiueh et al., 1983). 18-fluorine (18F) is 

a positron-emitting isotope of fluorine that must be synthetically derived and incorporated 

into probes immediately prior to imaging. [18F]-fluorodopamine presented an especially 

difficult synthesis requiring 18F-18F gas, until very recently when Vavere et al. published a 

new route (Vāvere et al., 2018).

[18F]-Dopamine has similar challenges due to a poor penetration across the BBB, but has 

proven useful in imaging neuroblastoma tumors in which the BBB is damaged, as well as for 

pheochromocytomas in the adrenal gland (Ilias et al., 2003; Vāvere et al., 2018). Yanagisawa 

et al. revived the 19F-MRI effort in 2017, publishing a study that imaged eight different 

fluorinated compounds, and found some success with 19F-L-DOPA using 19F-MRS on 

PC-12 cell culture (an immortalized adrenal gland cell line that expresses TH and VMAT1) 

and ex vivo whole brain imaging, but no in vivo studies have been reported (Yanagisawa et 

al., 2017).
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Stemming from this history, the field has been mostly dedicated to developing PET 

sensors that indirectly measure dopamine capacity by specifically binding to the enzymes, 

transporters, and receptors for which dopamine is a ligand. Kanthan et al. have written an 

outstanding perspective and history of the chemistry of these molecules (Kanthan et al., 

2017). Here, we focus on the functionality of these PET ligands (Figure 3), organized by 

target, and discuss recent examples of innovative uses.

Dopamine Receptor Ligands—The most widely used PET ligand for imaging 

dopamine release is [11C]-raclopride, a D2R antagonist and antipsychotic drug (Ehrin 

et al., 1985; Farde et al., 1986). Raclopride quantifies dopamine release by acquiring 

images of the striatum before and immediately after amphetamine administration (Ross and 

Jackson, 1989). The first image provides a baseline level of D2R binding. The amphetamine 

causes high levels of dopamine release and inhibits reuptake (Sulzer et al., 2005), and the 

extracellular dopamine competes with raclopride at the D2R ligand-binding site. The second 

scan quantifies how much raclopride remains bound to the D2Rs and therefore indirectly 

measures how much dopamine was released. Subjects with greater dopamine release 

capacity exhibit a larger decrease in [11C]-raclopride signal following the amphetamine 

challenge. This technique has been used for studying multiple disorders and behaviors, 

most prominently schizophrenia, wherein elevated dopamine release has been observed 

compared to control subjects (Abi-Dargham, 2020; Laruelle et al., 1996). In addition to 

amphetamine, other stimuli have been explored. Lippert et al. report using milkshakes in 

place of amphetamine and imaged dopamine release on a sub-second timescale (Lippert et 

al., 2019). Cox et al. measured dopamine release by merely exposing habitual cocaine users 

to cues they associate with taking cocaine (Cox et al., 2017).

A different technique can be used where the second scan is acquired much later after the 

amphetamine challenge, as a way of measuring D2R internalization following a stimulus 

(Skinbjerg et al., 2010). Here, a second bolus of raclopride is administered before the 

post-amphetamine image is taken. With this approach, a decrease in signal is not related to 

the amount of dopamine that was released, but to the level of receptor internalization that 

occurred.

For regions where dopamine release is sparse, higher-affinity D2R PET ligands have been 

developed. These include [18F]-fallypride, [11C]-FLB-457, and [11C]-MNPA, the latter of 

which is actually selective for the high-affinity D2R isoform (Farde et al., 1997; Hernaus 

and Mehta, 2016; Seneca et al., 2008). The first two have been used to image D2Rs in the 

cortex: Aalto et al. used [11C]-FLB457 to measure extrastriatal dopamine release in response 

to amphetamine, while Ceccarini et al. measured task-induced striatal and cortical dopamine 

release with [18F]-fallypride (Aalto et al., 2009; Ceccarini et al., 2012).

Similar approaches have been attempted using D1R ligands. An early attempt used an 

isotope of a common D1R antagonist, [11C]-SCH23390, but the ligand was not replaced 

by dopamine as is raclopride (Chou et al., 1999). [11C]-N-methyl-NNC01–0259 is better 

at labeling D1Rs, but also fails to measure dopamine release (Finnema et al., 2013). D3R 

ligands, such as [11C]-PHNO, are useful for imaging the NAc where that receptor is more 

prevalent. Examples include a study of impulse control disorder in PD patients – those with 
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symptoms had 20% lower [11C]-PHNO signal than those without – as well as the effect of 

the atypical antipsychotic cariprazine in schizophrenia patients (Girgis et al., 2016; Payer et 

al., 2015).

AADC, VMAT2, and DAT ligands—Whereas the PET ligands discussed above have 

focused on postsynaptic targets, a great deal of work has also gone into imaging presynaptic 

processes by targeting AADC, VMAT2, and DAT. Indeed, a recent review by Kaasinen and 

Vahlberg contains a meta-analysis of 142 such studies in PD (Kaasinen and Vahlberg, 2017).

[18F]-L-DOPA is converted to [18F]-dopamine by AADC as the rate-limiting step, prior to 

transport into synaptic vesicles. Therefore, lower PET signal with [18F]-DOPA is due to 

lower AADC concentrations and indicates a decreased capacity for dopamine synthesis. For 

example, [18F]-L-DOPA was administered to chronic cannabis users and AADC activity was 

inversely correlated to a measure of apathy (Bloomfield et al., 2014). [18F]-L-DOPA was 

also used to track the efficacy of stem cell grafts in PD patients over the course of a year, and 

indicated an increase in dopamine synthesis capacity over time (Ma et al., 2010).

A major disadvantage to [18F]-L-DOPA, and PET, is that the [18F]-DOPA signal is 

indistinguishable from its metabolic products, including [18F]-dopamine, [18F]-DOPAC, and 

[18F]-norepinephrine. Therefore, PET signal in the cortex and cerebellum is prevalent due 

to these metabolites, and signal from the striatum can be difficult to interpret. For this 

reason, [11C]-Me-mTyr, an AADC ligand which is not metabolized into NE, was recently 

developed. In monkeys, this probe shows lower cortical and cerebellar signal than [18F]-L

DOPA (Kanazawa et al., 2015; Tsukada et al., 2016).

PET ligands that target DAT have been used to assess the health of dopaminergic axons in 

the striatum, often to assess the progression of PD. A lower signal is inferred to be the result 

of less DAT on the axonal membrane, which is a sign of neurodegeneration. Tropanes serve 

as a common scaffold for the PET ligands such as [11C]-cocaine or [11C]-PE2I. The latter 

was used to study DAT levels in α-synuclein knockout mice, showing an increased signal in 

the caudate putamen of these mice compared to wild-type (Levigoureux et al., 2019).

DAT is also a common target for single-photon emission computed tomography (SPECT, 

a less technically demanding technique similar to PET but with lower resolution) ligands, 

including [123I]-β-CIT, [18F]- and [123I]-FP-CIT, as well as [11C]-CFT. The N-fluoropropyl

tropanes are the most common DAT ligands: [18F]-FP-CIT, for example, was used to 

compare PD patients with and without hyposmia, a common early symptom of PD (Oh 

et al., 2018), and [123I]-FP-CIT (marketed as DaTSCAN) was approved by the FDA for 

clinical use in 2011 (Park, 2012). DaTSCAN was recently utilized in a case study assessing 

the impact of SARS-CoV-2 on a PD patient (Méndez-Guerrero et al., 2020).

VMAT2-targeting PET ligands are mostly tetrabenazine derivatives, including [11C]

dihydrotetrabenazine and [18F]-AV-133, which is a fluoro-tripropyl analog. Both tracers 

have been used to study β-cell masses in pancreatic cancer, as well as tracking the effects 

of 6-hydroxydopamine in rats over time (Veluthakal and Harris, 2010; Walker et al., 2013; 
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Wang et al., 2010). The latter has also been used with the MPTP mouse model (Toomey et 

al., 2012) and in PD patients (Okamura et al., 2010).

MRI Contrast Agents—Historically, the imaging field moved from MRI to PET ligands 

because the technology surrounding PET advanced at a faster rate. With major advances 

in computing and the arrival of stronger magnets – 14T magnets are now used for small 

animal experiments, while 9T magnets are beginning to be used with humans – MRI and 

MRS present major opportunities for creative solutions for imaging dopamine. Two recent 

approaches suggest what is possible.

One utilizes the paramagnetic iron atom found in the heme group of BM3h, a member 

of the bacterial cytochrome P450-BM3 family. Shapiro et al. used directed evolution on 

the enzyme BM3h, which normally metabolizes arachidonic acid, to create analogues that 

selectively bind to dopamine with Kd values in the micromolar range (Shapiro et al., 

2010). In the absence of ligand, water molecules exchange in the empty coordination site, 

promoting T1 relaxation. When dopamine is present, it binds to this site, blocking water, 

therefore decreasing T1 relaxation. The authors tested two BM3h variants, BM3h-8C8 and 

BM3h-9D7, to quantify dopamine release from PC-12 cells. They then directly injected 

8C8 into anesthetized rat striatum via cannula, along with either high or low K+ buffer. 

The rats underwent continuous T1-weighted MRI scans during this time, and a significant 

change in signal intensity with high K+ was found in voxels surrounding the cannula. The 

other variant, 9D7, was tested in the NAc in response to electrical stimulation of the medial 

forebrain bundle (Lee et al., 2014). The 9D7 variant was then imaged simultaneously with 

blood-oxygen-level-dependent (BOLD) fMRI to compare dopamine release to system-wide 

brain activity following electric stimulation of the lateral hypothalamus, which projects to 

the VTA (Li and Jasanoff, 2020). While the BM3h dopamine sensors have only been tested 

by direct infusion into the brain, because they are proteins, one can imagine system-wide 

dopamine imaging via genetic engineering.

The second technique uses neuromelanin (NM), the dark pigment for which the SNc and 

locus coeruleus receive their names, as an MRI contrast agent. NM is the product of the 

iron-dependent oxidation of dopamine that builds up within autophagic lysosomes over the 

course of a neuron’s lifespan, and it is only cleared by microglia after cell death occurs 

(Fasano et al., 2006; Monzani et al., 2019). Notably, NM contains high concentrations of 

iron chelated by oxidized catechol derivatives and is therefore paramagnetic. The effect is a 

shortened T1 relaxation time (Tosk et al., 1992; Trujillo et al., 2017). In NM-sensitive MRI 

protocols, high concentrations of NM appear as higher signal intensity. In healthy patients, 

the NM signal in the SNc grows more intense with age, but in PD patients, whose dopamine 

neurons are cleared by microglia as neurodegeneration progresses, the signal decreases over 

the course of the disease (Sulzer et al., 2018; Zecca et al., 2002). This effect has been shown 

to occur the locus coeruleus (Sasaki et al., 2006), and the signal intensity has been correlated 

with DatSCAN PET imaging, although there is some controversy, as Saari et al. reported no 

correlation between DatSCAN levels and post-mortem NM levels (Saari et al., 2017).

Cassidy and colleagues advanced the technique, showing that NM-MRI signal is indeed 

correlated to dopamine release capacity (Cassidy et al., 2019). They first demonstrated a 
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relationship between the NM-MRI contrast-to-noise ratio in the SNc and the change in 

[11C]-raclopride PET intensity in the striatum following a dose of amphetamine. They then 

compared cerebral activity using fMRI to NM-MRI signal and found that individuals with 

higher NM-MRI signals had a higher rate of cerebral brain flow. Finally, they compared 

individuals with a history of psychosis, and found that they were more likely to have 

higher NM-MRI signals, suggesting that the technique could be a useful biomarker for both 

PD and psychotic disorders such as schizophrenia. A follow-up to that study applied the 

technique to participants with cocaine use disorder and found an increased signal compared 

to participants with no cocaine use (Cassidy et al., 2020). That the technique does not rely 

on any exogenous small molecules or genetic manipulation also makes it promising for 

wide use in patients, especially over long timespans, and possibly in children, although their 

signals are far lower.

Conclusion

The last twenty years have witnessed a boom in the methods available to assess 

dopaminergic function and health. These methods each have advantages as well as 

limitations. Fluorescent techniques provide synaptic-level observations and are applicable 

to a wide range of model cell lines and organisms but are not adaptable to humans. PET 

techniques offer high sensitivity but lack temporal-spatial resolution and require ligands 

with short half-lives. MRI techniques can distinguish ligands from their metabolites but 

are relatively new, less sensitive than PET or fluorescence, and not yet fully optimized 

for clinical use. Many techniques are undergoing a broad array of innovations and show 

great promise for the future. As new approaches continue to emerge, direct comparison 

studies will be important, so that results from these different techniques can be understood 

in context, and so that the field can eventually coalesce around some common protocols. 

It is also likely that soon, the limiting factor for imaging dopamine will no longer be the 

chemical biology required to detect it, but rather the technology necessary to detect and 

analyze signals. We expect that as computing and detector technology continue to advance, 

our ability to image dopamine storage and release will increase dramatically.

While the imaging modalities are vastly different, these approaches effectively target the 

same protein infrastructure involved in dopamine synthesis, storage, release, and reception. 

As technology continues to improve, direct detection of dopamine may eventually be 

possible. Until then, creative uses of chemistry and biology for indirect detection provide a 

broad range of opportunities.
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Highlights

• New imaging techniques critical to understanding dopamine disorders are 

reviewed

• The last 20 years have seen many new molecules developed to image 

dopamine

• Fluorescence, MRI, and PET approaches all show promise
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Figure 1. Dopamine Pathways.
The biosynthetic, metabolic, and redox pathways of dopamine
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Figure 2. Fluorescent Approaches
A schematic of the different fluorescent techniques used to image dopamine in the brain and 

the corresponding chemical structures of the small molecule dyes referenced throughout this 

review
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Figure 3. PET Approaches.
A schematic of the PET ligands used to image dopamine systems in the brain with their 

corresponding chemical structures; note that red-colored atoms represent their positron

emitting isotopes, i.e. 11C, 18F, and 123I respectively.
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Table 1:

Summary of Dopamine Sensing Modalities

Modality Description

Spatial 
Resolution / 
Level of 
Analysis

Temporal 
Resolution Advantages Limitations

Microdialysis

A small dialysis probe is 
surgically implanted into 
the brain and analytes are 
collected over time

mm-cm / brain 
regions (e.g. 
dorsal lateral 
striatum)

seconds - 
minutes

HPLC separation allows 
complete analysis of small 
molecules within dialysate; 
can be used in an awake, 
behaving, free moving 
animal

Poor spatiotemporal 
resolution

FSCV

A redox electrode is 
inserted into slice or 
surgically implanted and the 
concentration of dopamine is 
electrochemically measured

mm / brain 
region; specific 
circuits if 
coupled with 
electro- or 
optogenetic 
stimulation

milliseconds
High temporal resolution; 
can be used in acute brain 
slice or behaving animals

Poor spatial resolution; 
difficult to implement 
in vivo

Fluorescent 
Microscopy

Small molecule- or protein
based sensors are used 
to indirectly monitor or 
measure dopamine release in 
slice or culture

μm - mm / 
synapses (e.g. 
release sites, cell 
bodies and 
projections)

milliseconds - 
seconds

High spatiotemporal 
resolution; diverse set 
of fluorescent dyes and 
protein sensors

Low biopenetrance and 
small wavelengths can 
be phototoxic; limited 
use in vivo

2P 
Microscopy

Fluorescent sensors are 
imaged using two-photon 
excitation, typically at twice 
the wavelength

μm - mm / 
synapses

milliseconds - 
seconds

Longer wavelengths used 
in 2P allow higher 
biopenetrance and less 
phototoxicity; in vivo 
imaging is possible

Expensive and 
complicated 
to implement; 
biopenetrance is still 
limited to 10s – 100s of 
μm; incompatible with 
FRET sensors

Fiber 
Photometry

A fiberglass fluorescence 
probe is surgically implanted 
into the brain; changes in 
fluorescence intensity of 
genetic probes are measured 
over time

mm / brain 
region; specific 
circuits

milliseconds - 
seconds

Protein sensors can be 
used in vivo in behaving 
animals; widely adaptable 
in labs already measuring 
GCaMP

Limited spatial 
resolution

PET

Positron-emitting ligands can 
target specific receptors 
in order to monitor 
dopaminergic activity

mm / brain 
region minutes

High sensitivity (i.e. small 
amount of ligand needed) 
with a diverse set of 
ligands; can be used in 
humans and coupled with 
behavior

Ligands are expensive, 
difficult to synthesize, 
and can have 
short half-lives; 
poor spatiotemporal 
resolution, impossible 
to resolve ligand signal 
from its metabolite 
signal

MRI

Magnetic resonance is 
used to image endogenous 
dopamine metabolites 
or exogenous MR-active 
ligands

sub-mm - mm milliseconds - 
seconds

Potentially non-invasive, 
can be used in humans 
and coupled with behavior; 
ligands can be used 
to increase spatiotemporal 
resolution or highlight 
specific structures

Information is largely 
structural and not 
functional

MRS

Magnetic resonance is 
used to generate spectra 
that can identify specific 
metabolites and their relative 
concentrations

mm-cm seconds - 
minutes

Can identify and resolve 
multiple molecules and 
their relative concentrations 
within the same voxel, 
including ligands from 
their respective metabolites

Highly specialized 
technique, lower 
spatiotemporal 
resolution than MRI 
and PET; certain 
nuclides (13C, 15N, 
and 31P) can have very 
long scan times
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Table 2.

Summary of fluorescent dopamine sensors

Name Category
Functionality / 
excitation wavelength Target Advantages Limitations

Dopamine 
(self) 2P microscopy/540 nm direct detection of 

dopamine
low biopenetrance, 
sensitivity

Acridine 
orange small molecule fluorescence 

microscopy/460 nm

acidic 
compartments 
(synaptic vesicles)

pH sensitive; can detect 
release

only reported in cell 
culture; not specific to 
dopamine

FM1–43 small molecule fluorescence 
microscopy/472 nm

cell membrane 
(synaptic vesicles, 
post-stimulation)

labels recycling vesicle 
pool

not neurotransmitter 
specific

FM4–64 small molecule fluorescence 
microscopy/515 nm

cell membrane 
(synaptic vesicles, 
post-stimulation)

red, can be used in 
conjunction with blue and 
green sensors

not neurotransmitter 
specific

NeuO small molecule fluorescence 
microscopy/468 nm live neurons

can be used in vivo; 
reported in mice and 
zebrafish

not neurotransmitter 
specific

FFN511 small molecule
fluorescence 
microscopy/406 nm; 
2P/760 nm

DAT and VMAT2 selective for dopamine 
axons

less specific than later 
FFNs; most FFNs are 
limited to practical use ex 
vivo

FFN102 small molecule
fluorescence 
microscopy/406 nm; 
2P/760 nm

DAT and VMAT2 pH sensitive; can detect 
release

not as bright when stored 
in vesicles

FFN200 small molecule
fluorescence 
microscopy/406 nm; 
2P/760 nm

VMAT2 DAT independent, can 
detect silent synapses

longer incubation period 
and wash than other 
FFNs

FFN270 small molecule
fluorescence 
microscopy/406 nm; 
2P/760 nm

NET, DAT, and 
VMAT2

pH sensitive; can detect 
release; has been used in 
vivo

more potent at NET than 
DAT

FFN206 small molecule
fluorescence 
microscopy/406 nm; 
2P/760 nm

DAT, VMAT1, and 
VMAT2

useful for high- throughput 
studies, and fly imaging less effective in mice

APP+ small molecule
fluorescence 
microscopy/416 nm; 
2P/800 nm

DAT, NET, SERT good monoamine sensor/
high-throughput studies

not DA specific; labels 
mitochondria

NS521 small molecule fluorescence 
microscopy/488 nm monoamines survives fixation not DA specific

ES517 small molecule fluorescence 
microscopy/488 nm monoamines adds pH sensitivity to 

NS521, can image release not DA specific

nIRCat nanoparticle
fluorescence 
microscopy/785 nm; 2P/
1600 nm

dopamine, 
norepinephrine

near-IR sensor allows 
high biopenetrance; DNA 
sequence is tunable

not widely available; 
requires intracranial 
injection

CNiFER HEK cell/
protein sensor

fluorescence microscopy 
and fiber 
photometry/436 nm 
(FRET)

dopamine does not require genetic 
manipulation

requires exogenous cell 
implant

DopR-Tango genetic protein 
sensor Postmortem analysis D1R activation good spatial resolution for 

post-synaptic analysis
requires 48 h 
postexcitation analysis

Name Category Functionality/excitation 
wavelength Target Advantages Limitations

dlight/
GRABDA

genetic protein 
sensor

fluorescence microscopy 
and fiber 
photometry/488 nm

Dopamine

Easy to introduce 
into mice and 
analyze dopamine release 
during behavior; newer 
generations come in red

newer approach, less 
characterized
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Name Category
Functionality / 
excitation wavelength Target Advantages Limitations

VoLDeMo
targeted 
voltage-sensing 
dye

2P microscopy/920 nm DAT; changes in 
voltage

can sense changes in 
voltage in DAT-expressing 
membranes (axons)

targeted probes have 
less dynamic range 
than untargeted voltage
sensing dyes

Voltron

genetic voltage- 
sensing protein 
+ small 
molecule

fluorescence microscopy 
(FRET)/variable changes in voltage

allows for fine 
experimental control based 
on which halo-tag dye is 
used

FRET approach is 
not amenable to 2P 
microscopy
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