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Abstract: Alzheimer’s disease (AD) represents the principal cause of dementia among the elderly.
Great efforts have been established to understand the physiopathology of AD. Changes in neurotrans-
mitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic,
and histaminergic changes have been reported. Interestingly, changes in the histaminergic system
have been related to cognitive impairment in AD patients. The principal pathological changes in
the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of
the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and
altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting
its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located
in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy
due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the
degradation of amyloid beta (Af) peptides. In this sense, the evaluation of the impact of HNMT
inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.

Keywords: Alzheimer’s disease; neurotransmitters; histamine; histamine N-methyltransferase-
HNMT; astrocytes

1. Introduction

Nowadays, Alzheimer’s disease (AD) represents a disorder with no permanent cure.
The main clinical manifestations are related to learning and memory disabilities and other
cognitive symptoms that impair independence and quality of life [1]. AD is the principal
cause of dementia among the elderly. Although several efforts have been made to under-
stand the physiopathology of AD, the exact causes are still not completely understood [2].
The study of AD has been focused on two principal histopathological hallmarks: amyloid
B (AP) plaque deposits and intracellular neurofibrillary tangles (NFTs) in the brain [3].
According to these, several compounds have been designed to avoid A production or
aggregation. However, results in clinical assays have not been promising [4]. In this sense,
the search for novel targets results in great interest. Recent studies have been shown
changes in several neurotransmitters. The principal neurotransmitter systems altered in
patients with AD are cholinergic and glutamatergic systems, which are especially affected
by neurodegeneration, which in turn, allowed for the development of acetylcholinesterase
(AChE) inhibitors and antagonists of N-methyl-D-aspartate (NMDA) receptors, the main
drugs employed to treat AD [5]. However, a great number of studies have described
changes in other neurotransmitters in the brains of AD patients, including the serotonin-
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ergic [6], the noradrenergic [7], and the histaminergic [8] systems which could be due to
global affectation of the brain while AD progresses.

Brain histaminergic system results are of particular interest as a potential target
to modify the cognitive symptoms of AD [8]. In this sense, enhancing histaminergic
neurotransmission in AD patients could result in beneficial effects such as improvement of
cognitive symptoms and neuroplasticity [9] increase in the degradation of extracellular A3
insoluble plaques [10], lowering A3 pathology [11] and increase neurogenesis [12].

In this sense, it has been demonstrated that the regulation of histamine concentration
in the extracellular space of the central nervous system (CNS) is regulated by histamine
N-methyltransferase (HNMT), located mainly in astrocytes, that degrades histamine to tele-
methylhistamine [13]. Thus, the employment of HNMT inhibitors to increase histamine
levels could represent a beneficial approach to enhance cognitive abilities in AD patients.

2. General Aspects of AD

AD is a neurodegenerative disorder that represents the major cause of dementia.
Clinically, AD is described by changes in cognitive functions and impairment in the ability
to achieve personal daily activities [14-16].

Traditionally, the study of AD has been focused on two major histopathological
findings: senile plaques composed principally by Ap aggregates and NFIs composed of
hyperphosphorylated tau protein [17].

2.1. AB as a Neurotoxic Specie

A is a 39-43 residue amyloidogenic peptide released after the cleavage of amyloid pre-
cursor protein (APP) [18]. APP is a glycoprotein processed by several proteases, following
two processes that compete for the same part of the protein [19]. In the most common path-
way, APP is cleaved sequentially by o-secretase and y-secretase. This pathway is known
as the non-amyloidogenic due to the prevention of Ap peptide release (Figure 1) [20].
However, APP is processed in AD by f3-secretase (BACE1) and y-secretase, following the
amyloidogenic pathway, which favors A3 peptide release (Figure 1). Once A is released,
it interacts with other monomers resulting in the formation of soluble oligomers (0Af3) and
insoluble fibrils (fAB) [19,20].
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Figure 1. A production following the amyloidogenic pathway. Once A is released it tends to
establish interaction with other monomers to form oligomeric (0A) and fibrillar species (fAf3), which
are highly neurotoxic.

Significant evidence has pointed oAf as the most neurotoxic form of Af [21]. oA
occurs early, before senile plaques in the AD brain [22,23].

Recently, it was demonstrated that oA could bind to several surface receptors present
in neurons and glial cells favoring synaptic disfunction such as NMDA receptor and
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GABAergic receptors, among others [24]. Additionally, oA binds to the a7nAChR with
high affinity [25]. The a7nAChR mediates Ap-induced tau phosphorylation via ERK and
JNK. In addition, AB can interact with phospholipids of the cell membrane and create
pores and thus neuronal damage [26].

In contrast, A represents the main component of senile plaques. In senile plaques,
fA deposits are surrounded by synaptic loss, activated microglia, and reactive astro-
cytes [27]. The development of an oxidative stress state which in turn results in neurotoxic-
ity, has been related to fA3. Furthermore, reactive oxygen species enhance Af3 levels and
accumulate, resulting in the potentiation of neuronal damage [28].

2.2. NFTs Correlate with Cognitive Impairment

NFTs represents the kind of intracellular aggregates which are widely found in the
hippocampus, the entorhinal cortex, and the basal forebrain, these being brain zones partic-
ularly affected by neurodegeneration [29,30]. NFTs are composed of hyperphosphorylated
and abnormally folded tau protein, thus, lacking its function to stabilize microtubules in
the axon [31]. Interestingly, NFTs have been positively correlated with cognitive impair-
ment [32], probably due to synaptic impairment in AD brains. Synaptic damage induced by
NFTs results from both impaired axonal transport and impaired synaptic transmission in
dendritic spines [33]. Interestingly, it has been postulated that NFTs could be a consequence
of AP increase [34].

3. Dysregulation of the Neurotransmission Systems Involved in AD

Several studies of post-mortem AD brains have shown changes in monoamine trans-
mitter systems including serotonin [6], noradrenalin [7], histamine [8], and ACh [35] which
tend to show early and severe damage. Low monoamine levels have been found, which
precede the loss of its producing neurons [36]. For this reason, significant efforts have
been made to determine the relationship between neurotransmitters dysfunction and AD
pathogenesis [37].

3.1. Cholinergic System

The nucleus basalis of Meynert (NBM) represents the primary source of cholinergic
innervation in the CNS. Cholinergic neurons produce acetylcholine (ACh) in synaptic
terminations by choline acetyltransferase (CAT), which employs acetyl coenzyme A and
choline. ACh exerts its effects by binding to muscarinic (M1 to M5) and nicotinic receptors.
Termination of acetylcholine action occurs when ACh is degraded by acetylcholinesterase
(AChE) into choline and acetate [38].

Post-mortem studies allowed for correlating the impairment of cortical cholinergic
innervation with the presence of NFTs in the NBM [39]. Additionally, the low activity of
CAT has been associated with a high number of senile plaques in the post-mortem brains
of AD patients [40]. Lowering the cholinergic system produces an increase of both Af3
deposition and NFTs which contribute to cognitive impairment [41]. Consequently, the
importance of pathological changes in the cholinergic system of AD patients is reinforced
by the fact that the principal strategy in the treatment of AD patients is the increase of
availability of ACh by AChE inhibitors (donepezil, rivastigmine, and galantamine) [42].

3.2. Glutamate and NMDA Receptors

Glutamate is the principal excitatory neurotransmitter in CNS. Glutamate receptors are
mainly ligand-gated ionotropic receptors and play fundamental roles in synaptic plasticity,
learning, and memory [43]. One subgroup of glutamate receptors are N-methyl-D-aspartate
(NMDA) receptors. NMDA receptors are essential for neuronal survival by activating the
neuronal survival pathway [44].

In the brains of AD patients, the principal alteration associated to glutamate signaling
is the chronic hyperactivation of NMDA receptors which results in excessive Ca?* entry to
the postsynaptic neuron [45]. Thus, the pathological increase in signaling related to Ca®*
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impairs synaptic function, leading to neuronal cell death. Interestingly, neuronal damage is
correlated with clinical deterioration in cognition/memory seen in AD patients. Thus, the
findings allow for the design and evaluation of the unique NMDAR antagonist employed
to treat AD and memantine [46].

3.3. Serotonergic System

According to their mechanism of action, serotonin exerts its effects by binding to
16 types of serotonin receptors, which belongs to seven sub-families, 5-HT1 to 5-HT7 [47].

Several studies have correlated cognitive deficits, impairments in learning, and mem-
ory decline with 5-HT and its receptors [48]. In the brains of AD patients, an increase of
5-HT1A receptor density has been observed, which positively correlates with cognitive
impairment [49]. Similar, 5-HT?2 receptor has been closely related to cognitive dysfunction.
In this way, Blin et al. reported a critical reduction in the 5-HT2 receptor binding in the
cerebral cortex of AD patients compared to healthy controls [50], suggesting a correlation
between neocortical 5-HT2A expression and cognitive decline in AD patients.

3.4. Noradrenergic System

Norepinephrine (NE) is released by the locus coeruleus (LC) in the CNS and regulates
many number of cellular processes by interacting with its receptors. Degeneration of LC by
the increase of NFTs represents the principal pathological change in the adrenergic system
in AD patients [51]. The noradrenergic innervation that reaches the cerebral vasculature
optimizes the delivery of oxygen which, when it deteriorates, decreases the oxygen supply
capacity that can also contribute to the pathogenesis of AD [52].

Deposits of hyperphosphorylated tau in the hippocampus and noradrenergic axonal
degeneration in the brains of AD patients is related to cognitive impairment, which is
explained by the importance of NE in long-term potentiation and synaptic plasticity [53].

3.5. Histaminergic System

Histaminergic neuron bodies are located in the tuberomammillary nucleus (TMN) in
the posterior hypothalamic region between the mammillary body and the optic chiasm.
TMN nucleus receives significant input from the limbic areas and projects diffusely to large
parts of the central nervous system [54-56]. Histidine decarboxylase (HDC) is the enzyme
responsible to synthesize histamine from L-histidine [57]. Histamine exerts its effects by
histamine receptors 1, 2, 3, and 4 (HR1 to HR4, all of which are G protein-coupled) [58].

The regulation of histamine levels in the synaptic space occurs predominantly by the
action of HNMT that degrades histamine to t-methylhistamine [13]. The histaminergic
system involves cognitive functions related to regulating the sleep-wake cycle, sensory
and motor functions, energy and endocrine homeostasis, cognition, attention, learning,
and memory [53]. All of these modalities are severely affected in AD. In addition, several
changes have been reported in the brains of AD patients (Figure 2) [59].

Although there are contradictory findings related to the histaminergic system and
AD, decreased histamine levels have been detected in several brain areas of AD patients
such as the hippocampus and the temporal cortex [60]. Oh et al. 2019, demonstrated a
62% reduction in TMN neurons, explaining the low levels of histamine in the brains of AD
patients [61]. TMN degeneration has been associated with neurofibrillary damage. Thus,
explaining the cognitive impairment in AD patients [62].

In addition, in a study conducted to measure t-methylhistamine in cerebrospinal fluid,
as a marker of histaminergic system activity, shown lower levels of t-methylhistamine were
found in CSF of AD patients compared to control subjects [63].

It has been shown that the general levels of HDC mRNA in the TMN remained
practically unchanged in patients with AD regardless of gender, except for a decrease in
HDC mRNA in the medial part of the TMN [64]. Additional to low histamine levels in
the brains of AD patients, an increased expression of H3R and HNMT in females was
observed [64].
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Figure 2. Principal changes in the histaminergic system in the brain of AD patients. AD patients

show many alterations related to the histaminergic system such as low brain histamine levels, low
HIR expression in both the frontal and temporal cortex, and degeneration induced by neurofibrillary
tangles in TMN, the main source of histamine in the brain.

Additionally, another study showed a decrease in ligand binding to HIR in AD
patients compared to normal subjects, especially in frontal and temporal regions, where
they found decreased expression of HIR, evidenced by positron emission tomography [65].
Interestingly, HIR knockout mice exhibit a high degree of alterations in learning and
memory, thus impairing working memory [66].

HIR density in the frontal and temporal regions of AD patients has been documented
to be decreased compared to healthy subjects of the same age. It is suggested that this
could also be associated with changes in histamine levels and H1R expression, sensitivity,
and/or HIR transduction [67].

Recently, neurogenesis in hippocampal formation was reported to be altered in HI1R-
knockout mice. Significantly, they showed a reduction in newborn neurons, but there
was no change related to the differentiation of progenitor neurons into neuronal and
glial lineages [12]. Likewise, increased levels of dopamine and lower production of its
dihydro phenylacetic acid metabolite were recorded in the amygdala of H1R-deficient mice.
This could be explained by the greater immunoreactivity of tyrosine hydroxylase (greater
synthesis of catecholamines epinephrine, NE, and dopamine) in the anterior basolateral,
ventral basolateral, and cortical nuclei of the amygdala [8]. Furthermore, due to the
decrease in histamine synthesis in HDC-deficient mice, it was showed differential effects in
ACh levels. In contrast, ACh levels increase in the frontal cortex, ACh levels lower in the
neostriatum [68].

A relation between cognitive impairment in AD patients and decreased histaminergic
activity has been established based on the activation of septohippocampal GABAergic
neurons elicited by histamine through both direct and indirect (cholinergic) mechanisms,
which are related to cognition and memory [69].

It is worth mentioning that there are few studies on the role played by histamine
HA4R receptors in AD. H4R activation has been related to the regulation of inflammatory
responses and migration of microglial cells. In contrast, H4R activation can lower microglial
activation after their exposition to lipopolysaccharide [70].

Given the significant changes in the histaminergic system in the brains of AD and the
beneficial effects exhibited by increasing histamine levels by H3R receptors, the search for
novel mechanisms to increase brain levels of histamine are needed.
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4. Histamine in the Brain
4.1. Histaminergic System in the CNS

Histaminergic neurons have a large soma 20-30 pm in diameter, with two to three
large, subdivided dendrites that overlap the dendrites of other histaminergic neurons. They
have a large cytoplasm with a large nucleus, a prominent dark nucleolus, a well-developed
Golgi apparatus, and abundant mitochondria. Varicose axons arise primarily from a thick
dendrite and not the neuron soma [71,72].

The afferents of the TMN come from different regions such as the cortex and preoptic
area of the hypothalamus (glutamatergic fibers and GABAergic fibers), basal forebrain,
middle septum, diagonal band of Broca, NBM and innominate substance (cholinergic
fibers), and the locus coeruleus (noradrenergic fibers) [73-76]. The TMN sends axonal
projections to different brain areas through two ascending pathways and one descending
pathway. The first ascending pathway travels from the ventral surface of the median
eminence to the hypothalamus, the diagonal band, the septal area, and the olfactory bulb,
hippocampus, and cortex. The second arises from the dorsal region of the TMN, reaches
the third ventricle to the thalamus, the basal ganglia, hippocampus, amygdala, and cortex.
The descending pathway runs from the medial longitudinal bundle to the brainstem and
spinal cord. There appears to be no topological correlation between the bodies of the TMN
neurons and the projection of the axons. Histaminergic fibers have been observed to cross
extensively, and several neurons branch to more than one initial pathway [53,57].

As it can be seen in Figure 3, histamine is synthesized by HDC from L-histidine [58].
HDC is expressed both in the cell body, axonal, and terminal neuronal varicosities. One of
the limiting factors in the synthesis is the bioavailability of the substrate [77].
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Figure 3. Schematic illustration of histamine synthesis, degradation, and types of histamine receptors.

Histamine is synthesized by histidine decarboxylase (HDC) in neurons from the tuberomammillary
nucleus (TMN). Histamine could interact with histamine receptors 1 to 4 (H1R, H2R, H3R, and H4R).
Importantly, H3R are located presynaptically and regulates histamine release. The effect of histamine
is ended by recapture in astrocytes mainly by organic cation transporter 2 (OCT2) and subsequent
degradation by histamine N-methyltransferase (HNMT) which is located in the cytosol.

It has been shown that histamine, as with other monoamines, is transported from the
cytoplasm of presynaptic nerves, through an electrochemical proton gradient generated by
vacuolar H* adenosine triphosphatase, to secretory vesicles in neurons by the vesicular
monoamine transporter 2 (VMAT-2) [78]. Histamine is released in the soma and especially
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in the axonal varicosities of neurons after the arrival of action potentials [79,80]. Both the
synthesis and the release of monoamine are regulated by the feedback of the activation of
histamine H3 (H3R) autoreceptors [81].

4.2. Histamine Receptors

Histamine exerts its actions by its binding with four different G protein-coupled
receptors (GPCRs) (H1R, H2R, H3R, and H4R) [82]. Each receptor has its characteristics
and activates signaling pathways (Figure 4).
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Figure 4. Signaling pathways triggered by histamine receptor activation. Activation of the HIR-H4R
receptors, figures (a—d). The HIR receptor is widely expressed in the hippocampus, cholinergic and
aminergic brain stem nuclei, thalamus, and cortex. H2R is located in the basal ganglia, amygdala,
hippocampus, and brain cortex. High H3R densities have been demonstrated in the anterior cerebral
cortex, hippocampus, amygdala, striatum, olfactory tubercle, cerebellum, substantia nigra, and brain
stem. Finally, expression of H4R mRNA has been reported in the amygdala, cerebellum, corpus
callosum, frontal cortex, hippocampus, and thalamus.

4.2.1. HIR Regulate Neuronal Excitability, Cell Survival, and Modulation of
Inflammatory Response

HI1R is widely expressed in the CNS and peripheral nervous system (PNS) with
considerable variations between species [83,84]. High HIR densities are expressed in the
hippocampus, cholinergic and aminergic brain stem nuclei, thalamus, and cortex, areas
involved in neuroendocrine processes, behavior, and food intake [85]. HIR is highly
expressed in both neurons and astrocytes [86]. In astrocytes, HIR expression can be
positively and selectively regulated by histamine [87].

H1R receptor binds to Gaq/11 proteins [88]. Its activation triggers phospholipase C
(PLC) signaling (Figure 4a), which produces 1,2-diacylglycerol (DAG) and inositol-1,4,5
-triphosphate (IP3), leading to the activation of protein kinase C (PKC) and consequently to
the catalysis of phosphorylation of Serine-Threonine residues (Ser/Thr) of several media-
tors, resulting in the release of calcium ions (CaZ*) of intracellular stores, causing an increase
in the concentration of this ion and the activation of the Na*/Ca%* exchanger [89,90].

HIR activation excites brain stem neurons [91], septum [91], thalamus [92], amygdala,
hippocampus [93], and olfactory bulb [94]. However, receptor activation can also inhibit
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the firing of hippocampal pyramidal neurons by activating K* channels by increasing the
concentration of intracellular calcium [Ca?*]i [94]. In astrocytes, H1R activation inhibits
the release of pro-inflammatory factors such as tumor necrosis factor-alpha (TNF-«) and
interleukin-1f3 (IL-1f3) molecules, which are important for cell survival and suppression of
the inflammatory response [87].

4.2.2. H2R Regulates Neuronal Plasticity and Neuronal Excitability

H2R is widely expressed in CNS and PNS. In CNS, high H2R receptor densities are
located in the basal ganglia, amygdala, hippocampus, and cortex [95]. Furthermore, its
high expression in neurons [96] and astrocytes has been demonstrated [87]. Histamine
deficiency downregulates H2R expression, but not HIR in HDC knockout mice [97]. The
receptor is mainly coupled to the Gas protein (Figure 4b). Its activation stimulates adeny-
lyl cyclase (AC), thus increasing the concentration of cyclic adenosine monophosphate
(cAMP) [98], which in turn activates the protein kinase A (PKA) and the transcription
of cAMP response binding element (CREB), important regulatory molecules in neuronal
plasticity and function [56]. Ca?*-activated potassium (K*) (KCa) channel block, dependent
on PKA phosphorylation, promotes neuronal excitability [99].

4.2.3. H3R Regulate Neuronal Excitability, Neurotransmitter Release, and Cognition

H3R was identified by Arrang et al. in 1983, and the human H3R was cloned by
Lovenberg et al. in 1999 [100]. Unlike the H1R and H2R receptors, the H3R has isoforms
originated by alternative splicing of messenger ribonucleic acid (mRNA), each with dif-
ferent pharmacological properties and distribution in the CNS. The most abundant in
the brain is the 445 amino acid isoforms (H3R445) [56]. In humans, 20 isoforms have
been reported, and six of them have shown functionality when expressed heterologous
(hH3R453, hH3R445, hH3R431, hH3R415, hH3R373, hH3R365) [45].

High H3R densities have been observed in the anterior cerebral cortex, hippocam-
pus, amygdala, cerebellum, and substantia nigra [60,101]. Furthermore, their presence
in both neurons and astrocytes have been identified [87]. H3R is expressed as an autore-
ceptor in soma, dendrites, and axons of TMN neurons and its activation reduces cellular
excitability and regulates the release and synthesis of histamine [102,103]. Activation
of H3R as a presynaptic heteroreceptor regulates the release of other neurotransmitters,
including biogenic amines [104,105], GABA [106], glutamate [107,108], and neuropep-
tides [109]. The receptor binds to Gai/o proteins, which triggers different intracellular
signaling pathways (Figure 4c). Through the Gai/o subunit, it inhibits AC and the ac-
cumulation of cAMP [110,111], which in turn avoids the activation of the CREB, which
is related to cognitive functions inhibits the Na* /H* exchanger [112], activates the PLC
pathway and increases [Ca2+]i from intracellular deposits via inositol- 1,4,5-triphosphate
(IP3) (PLC/IP3/[Ca®*]i) [113]. Through the By subunits, it inhibits the N and P/Q
type voltage-gated Ca2+ channels, activates the G-protein-activated input rectifier K*
channels (GIRK) [114], activates the phosphorylation of mitogen-activated protein kinase
(MAPKs) [115,116] —related to memory improvement in the rat activates phosphatidyli-
nositol 3-kinase (PI3K) which afterward activates protein kinase B that phosphorylates and
inhibits glycogen synthase kinase-33 (GSK33), one of the main brain tau kinases [117], and
activates phospholipase A2 (PLA2) that induces the release of arachidonic acid (AA) [118].

Unlike the neuronal receptor, there is currently no evidence that related to Astrocytic
H3R, constitutive cyclic AMP signaling activity is functionally coupled to Gi/o-dependent
inhibition of adenylate cyclase and modulation of the PKC signaling cascade, MAP kinase,
and PI3K/AKT [119].

4.2.4. H4R Modulate the Inflammatory Response

The H4 receptor is found in cerebral blood vessels and microglia, but its expression
in neurons is not yet well established [120]. In addition, no expression was observed in
mammalian primary astrocytes [87].
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The H4R was identified and cloned by different research groups [121-123]. It shares
similarities with H3R in 40% of its structure, in its coupling to Gai/o proteins (Figure 4d),
resulting in decreased cAMP production by AC, increased Ca2+ mobilization, activation
of extracellular signal-regulated kinase (ERK) 1/2 and Akt, and cytoskeletal changes
promoting cell survival [121,124]. It is abundantly expressed in bone marrow, cells, and
peripheral tissue. In CNS, the immunological detection of H4R does not always correspond
to the expression of mRNA so its expression has not yet been clearly described. In humans,
H4R mRNA expression has been reported in the amygdala, cerebellum, spinal cord, frontal
cortex, hippocampus, and thalamus [125,126].

4.3. Astrocytes Are Involved in Histamine Elimination

Astrocytes are most abundant of the glial cells. The main functions of astrocytes
include: the elimination of toxic substances, protection from oxidative damage, maintain
ionic homeostasis, energy metabolism, elimination of neurotransmitters, neurotrophic
activity, and the immune response, thus fulfilling essential protective and restorative
functions. After an injury or pathological process which affects the brain, astrocytes
undergo morphological changes to increase their metabolic activity [127]. In addition,
astrocytes have been shown to support the formation and integrity of the endothelial
barrier function known as the blood-brain barrier (BBB) [128].

The role of astrocytic cells in histamine degradation has been described previously [13,56].
As it can be seen in Figure 3, human astrocytes transport histamine dominantly through
organics cations transporter 2 and 3 (OCT2, OCT3) and plasma membrane monoamine
transporter (PMAT) [129]. Next, histamine is transported into the cytosol and metabo-
lized by HNMT responsible for methylation of the imidazole ring to t-methylhistamine.
Therefore, the fluctuation of histamine and t-methylhistamine levels can provide accurate
information on histamine turnover and the activity of histaminergic neurons, latter the
t-methylhistamine is which is later converted to t-methyl-imidazole acetic acid through
monoamine oxidase B (MAO-B) [130]. Histamine degradation by HNMT represents the
unique known pathway for the termination of histaminergic neurotransmission in the hu-
man CNS [131]. Indeed, HNMT knockout mice showed increased brain levels of histamine,
highlighting the contribution of HNMT to histamine inactivation [132].

HNMT is polymorphic due to genetic changes. The HNMT gene, located in chromo-
some 2q22.1, shows diverse single nucleotide polymorphism (SNPs), and one of these,
located in exon 4 C314T, causes the amino acid substitution Thr105Ile [133]. This variant
acquires importance due to the lowering of enzymatic HNMT activity [134]. Further ge-
netic studies showed the relation of C314T substitution to other neurological disorders
such as schizophrenia [135], attention deficit hyperactivity disorder (ADHD) [136], and
migraine [137] but not AD [138].

In contrast, a polymorphism at nucleotide 939 in the human HNMT increases both
HNMT protein expression and activity. This polymorphism was associate with myasthenia
gravis and ADHD [138,139].

Given the relevance of histamine in brain functions, it is worth examining the changes
in HNMT expression in neurological disorders. According to these, post-mortem studies
showed an increase in HNMT mRNA expression in the prefrontal cortex of female AD
patients [64]. Although recent findings suggest a possible relation between HNMT activity
and neurological disorders, the impact of changes in HNMT activity in disease onset and
progression is yet to be identified.

5. Increase Histamine Levels in the Brain as an Opportunity to Develop Novel
Treatments for AD Patients

Increasing histamine levels in the CNS can be achieved through two strategies: by
H3 receptor antagonist/inverse agonist and by HNMT inhibitors.
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5.1. H3R Inverse Agonist/Antagonist

Lowering the presynaptic H3R activation by its antagonist/inverse agonist allows
for increasing the histamine level by blocking the release mechanism ‘s negative feedback.
Some research groups have focused to develop H3R modulators to alleviate disease-related
behavioral patterns in AD patients. In this sense, although not all studies have shown
favorable results, some H3R antagonists are important to highlight. In a clinical study, the
employment of H3R antagonist (GSK239512) demonstrated improvements in cognitive
function in AD patients with mild to moderate clinical manifestations [140].

Experimental studies corroborated that H3R antagonists/inverse agonist molecules
such as JNJ-10181457, Thioperamide, Clobenpropit, JNJ-5207852, among others, and can
restore cognitive functions in a wide variety of murine amnesia models [8]. Provensi et al.
showed that both donepezil and ABT-239 (H3R antagonist) enhance cognitive activities in
mice with intact brain histamine systems [141], highlighting the importance of enhancing
the histaminergic system in AD patients. However, the reverse transcription-polymerase
chain reaction (RT-PCR) analysis has enabled identifying 20 hH3R isoforms, with differ-
ences in the amino and carboxyl-termini length, and sequence deletions resulting in a high
variability [142]. The complexity of H3R biology makes it difficult for the pharmacolog-
ical evaluation of H3R antagonist/inverse agonist. Thus, more approaches to increase
histamine levels in the brain are needed.

5.2. Inhibition of HNMT

Under physiological conditions, normal neurotransmitters levels are maintained by its
clearance, which can be achieved by diffusion, transporters, and /or degrading enzymes.
Transporters or enzymes are usually located in surrounding neurons or astrocytes [143].
The modification of neurotransmitter clearance systems in the brain allowed for the devel-
opment of various drugs such as AChE inhibitors, tricyclic antidepressants, and serotonin
re-uptake inhibitors to treat brain diseases [144]. This evidence highlights that histamine
degrading mechanisms could be a therapeutic approach for developing novel drugs that
improve brain functions.

As previously described and shown in Figure 3, HNMT represents the exclusive
enzyme that inactivates histamine in the brain. Although HNMT has been localized
in synaptosomes, it is reported that HNMT located in astrocytes is 70% more active,
highlighting the importance of astrocytes in histamine removal and inactivation [145,146].
In this sense, inhibitors of HNMT have been developed, generally, designed as histamine
receptors antagonist or to other proposes. As it can be seen in Table 1, the structure of
HNMT inhibitors differs widely in structure and pharmacologic profile [147].

Table 1. Pharmacological characteristics of HNMT inhibitors.

Inhibitor 1C50 Effects on Histamine Brain Levels Reference

Cl
Metoprine administered at 10 mg/kg (orally) can

increase histamine levels, being the highest 5 h after
100 nM administration and correlates with peak drug levels in [144]
| the brain. Histamine levels are still elevated more than
)\ 7 2-fold 4 h after administration of the drug.

Cl

Metoprine 2

OH
HNQQN\/ Antimalarian agent, potent HNMT inhibitor by in vitro
400 nM studies. However, amodiquine did not change the [148]
endogenous histamine level in the rat brain.

Amodiaquine “ N
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Table 1. Cont.
Inhibitor IC50 Effects on Histamine Brain Levels Reference
N
“NJW ~7 160 nM Quinacrine, a drug that inhibits HNMT in vitro, has [149]
N O~ little or no effect on the levels in vivo of histamine.
a 7
Quinacrine N
NH Cl
: Etoprine inhibits dihydrofolate reductase. Etoprine can
NZ cl 760 nM cross the BBB; however, its effect on histamine brain [150]
)\ | level has not been explored.
. NTON
Etoprine
NH Dimaprit, an H2R antagonist, is a potent HNMT
LN N SN 8§ uM inhibitor. Dimatiprit increases histamine brain levels [151]
? | after intracerebroventricularly administration in rats.
Dimaprit
)Nli{ 1.85 uM Due to the low permeability of the BBB SKF91488, [152]
SKF91488 AN NH, M research for this compound has been limited.

Although several compounds have demonstrated HNMT inhibition, its effects in
increase histamine level its activity is not directly correlated with its ability to increase
histamine brain levels due to poor blood-brain penetration such as amodiaquine [148], and
quinacrine [149], or has not been explored such as etoprine [150].

In this sense, increased of histamine levels by metoprine after oral administration
(10 mg/kg) have been corroborated. Indeed, histamine levels achieved by metroprine have
been found to be elevated more than two-fold 4 h after administration of the drug [149].
The biological effects of increasing histamine levels in the brain have been known by
employing metoprine, such as antinociception, suppression of energy intake, improvement
of cognitive function, antiepileptic effect, and attenuation of methamphetamine-induced
behavioral abnormalities [144].

In addition, dimaprit, a histamine H2-agonist, represents a potent HNMT inhibitor.
Effects related to the increase of brain levels of histamine have been corroborated, however,
only after intracerebroventricularly administration in rats [151].

Interestingly, by employing in vitro studies with human embryonic kidney and re-
combinant human brain HNMT, it has been demonstrated that tacrine exhibits HNMT
inhibitory activity [153].

Due to the increase in the knowledge of the beneficial effects of the brain by histamine,
several groups have developed great efforts to search for novel HNMT inhibitors. A
computational study performed by Nurhan et al. found that among a series of phytocom-
pounds obtained from N. sativa and C. xanthorrhiza, a total of eight metabolites (longifolene,
(+)-beta-atlantone, humulene epoxide, (—)-beta-curcumene, (E)-caryophyllene, germa-
crone, (R)-(—)-xanthorrhizol, and (—)-beta-caryophyllene epoxide} showed great affinity
to HNMT, thus highlighting the importance pf continuing their evaluation employing
experimental studies [154].

In addition, Ichinose et al. evaluated a series of helicene derivatives as HNMT in-
hibitors. Interestingly, methyl (P)-1,12-dimethyl-6-iodo-5-(trifluoromethanesulfonyloxy)ben
zo[c]phenanthrene-8-carboxylate shown activity as HNMT inhibitor at uM order by em-
ploying in vitro studies [155].

Consequently, the design and development of novel potent and selective HNMT with
high BBB permeability are expected to provide new therapeutic approaches as co-therapy
for AD patients.
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In this sense, computational studies employing molecular crystal structures of HNMT
complexed to diverse inhibitors (amodiaquine, metoprine, quinacrine) demonstrate that
these compounds bind to their active site. Analysis at the molecular level allows concluding
that Phe9, Tyr15, and Phel9 residues located at the N-terminus are essentials to inhibitor
binding. Interestingly, the N-terminus exhibit many numbers of conformational changes,
thus allowing the binding of inhibitors with diverse chemical structures being principally
hydrophobic and rigid groups [156].

5.3. Beneficial Effects of Increased Histamine Levels in the Brains of AD Patients

As it was stated previously, AD patients show a great number of alterations related to
the histaminergic system such as neurofibrillary degeneration of TMN, low brain histamine
levels, low HIR expression in both the frontal and temporal cortex, in addition to [53,54].
Due to the beneficial effects of histamine, the development of compounds that increase his-
tamine levels results in particular interest as novel therapeutics to treat AD [157]. However,
it is essential to highlight that most of the experience of the beneficial effects of increasing
histamine levels have been obtained from the employment of H3R antagonist/inverse
agonist [158].

5.3.1. Effects on Cognitive Functions and Neuroplasticity

The histamine effects in cognitive performance have been widely demonstrated. Al-
though H1R antagonist has shown a decrease in neuroinflammation, it has also been shown
to impair cognitive performance. This fact has been reinforced with the findings that H1R
knockout mice show dementia-like manifestations significantly associated with decreased
neurogenesis [159].

The beneficial effects of thioperamide, an H3R antagonist, in APP/PS1 Tg mice, have
been corroborated. Wang et al. found that thioperamide administration improves cognitive
function, lowers neuronal damage, and reduces A3 pathology in APP/PS1 transgenic (Tg)
mice. According to their results, the beneficial effect has been achieved by increasing Af3
clearance by favoring autophagy and lysosomal processing [160].

In addition, the histaminergic system controls learning and memory by modifying
the ACh release. Bonini et al. reported that intra-hippocampal administration of his-
tamine after non-reinforced retrieval enabled the consolidation of step-down inhibitory
avoidance extinction. Interestingly, this facilitation was reproduced by the HNMT in-
hibitor SKF91488 [153]. Administration of H3-antagonists/inverse agonists in the ba-
solateral amygdala, increase the release of histamine and consequently increases ACh
release [161,162], thus highlighting the connection between histaminergic and cholinergic
neurotransmission for consolidation of fear memories. This finding has been consistent
with recent studies which show increased cholinergic tone and muscarinic neuromodula-
tion in the maintenance of visual working memory [163].

However, in clinical trials, H3R cognitive function improvement in AD patients
are not fully corroborated. For example, ABT-288, a selective H3R antagonist/inverse
agonist showed an increase in histamine and ACh release in vitro, its efficacy in AD is still
debatable [161].

The increase of histamine levels by inhibition of astrocytic HNMT such as metoprine
has been corroborated. Indeed, the beneficial effects in cognitive performance by meto-
prine have been demonstrated in a mouse model of amnesia induced by scopolamine.
Interestingly this beneficial effect was reverted by a blockade of HIR [162].

Indeed, it has been demonstrated that histamine plays an important role in the consol-
idation of recognition memory, which has been considered to be a critical component of
human declarative memory [164], highlighting the importance of developing novel HNMT
inhibitors to increase histamine levels.
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5.3.2. Increase in the Degradation of Extracellular A Insoluble Plaques

As previously mentioned, the increase of A3 aggregates have been related to neuronal
damage. Experiments performed by Fu et al. 2007 showed that histamine is able to prevent
neurotoxicity induced by Af in rat phaeochromocytoma (PC12) cell culture. Interestingly,
this effect was reversed by H2R and H3R antagonists but not by H1R antagonists [165].
In addition, activation of HIR in astrocytes by histamine results in increased activity and
expression of Matrix metalloproteinase-9 (MMP-9), resulting in the cleave of 0Af into less
toxic monomeric species [10]. Indeed, drugs employed to treat AD could exert their effects
in part by reinforcing histaminergic neurotransmission. Tacrine, an inhibitor of AChE,
which increases ACh neurotransmission, also inhibits the HNMT, consequently increasing
histamine levels in the hippocampus [166].

In addition, it has been shown in vivo that a single administration of memantine,
an NMDA antagonist employed to treat mild to severe AD, increases histamine neuron
activity and potency of histamine neurotransmission [167].

5.3.3. Increasing Neuronal Survival and Neurogenesis

Astrocytes not only interact with histamine by promoting its clearance by HNMT.
Histamine could exert its neuroprotective effect by reducing astrocyte cytokine production
and increasing the release of GDNF and Neurotrophin-3 (NT-3) by activating HIR, H2R,
and H3R in this cell type [85,167]. Moreover, the release of GDNF by astrocytes due to
stimulation by histamine can promote neuronal survival and the maintenance of synaptic
homeostasis [168]. In addition, NT-3 promotes neuronal survival and plasticity, important
processes to CNS homeostasis [169].

Few studies have focused on elucidating the molecular mechanisms by which his-
tamine stimulates neurogenesis. Cell proliferation is followed by cell differentiation in
neurogenesis [165]. Histamine increases neuron proliferation via rosperol and neurogeninl.
Additionally, histamine increases the expression of fibroblast growth factor receptor 1 after
the activation of H1R [170]. Proliferation induced by histamine has been related to H2R,
while the H1R has been related to the differentiation of neural stem cells [171].

5.4. Increasing Histamine Levels Could Be Helpful in Neurodegenerative Diseases

HNMT inhibitors represent an important target to develop novel therapeutic agents
for AD patients. Additionally, the pivotal participation of HNMT on histamine degradation
in the CNS highlights its therapeutic employment against brain diseases.

In addition, the pharmacological employment of HNMT inhibitors is not restrained to
AD, since an impairment of the histaminergic system has been attributed as a causative
role in other neurological disorders such as narcolepsy [172], Tourette’s syndrome [173],
and depression [174]. Accordingly, the evaluation of HNMT inhibitors in the pathologies
mentioned above appears to have therapeutic potential.

5.5. Potential Adverse Effects by Increasing Histamine Levels

The peripheral inhibition of HNMT could increase of tissue histamine levels, thus,
probably increasing the risk to present allergic rhinitis, urticaria, and gastric ulcers. Interest-
ingly, C314T (Thr105Ile) polymorphisms of the HNMT, which results in low activity, have
not been related to allergic asthma and rhinitis [175] or effects in the skin and stomach [176].
Thus, it was expected that adverse effects related to HNMT could be minimal. For this
reason, it is of particular interest to develop novel potent HNMT inhibitors to evaluate AD
in animal models.

6. Conclusions and Future Directions

AD represents a multifactorial neurodegenerative disorder in which a series of neu-
rotransmitter dysfunctions have been reported. Among these, several alterations in the
histaminergic system have been reported. Neurofibrillary degeneration of TMN and in-
crease of both H3R and HNMT activity represent the main alterations in the histaminergic
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system of AD patients, which in turn induce low histamine levels. Thus, the increase of
histamine levels appears to be an attractive approach to restore, in part, cognitive functions
in AD.

In this sense, HNMT inhibitors could favor beneficial histamine effects in AD brains
such as cognitive functions, neuroplasticity, and the degradation of A peptide. In addition,
due to the low expected adverse effects of HNMT inhibitors, and its potential beneficial
effects in other neurological disorders its of particular interest to develop and evaluate
more effective HNMT inhibitors with high BBB penetration in animal models of AD, thus
highlighting its relevance.
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