Skip to main content
. 2021 Sep 26;11(10):1274. doi: 10.3390/brainsci11101274

Table 4.

Summary of the methods reviewed in this paper.

Author (Year) Database Data Preprocessing Machine Learning Model Results
Álvarez-Estévez et al. (2010) [84] SHHS Temporal aggregation rules Single hidden layer FFNN Sensitivity = 0.86, Specificity = 0.76
Behera et al. (2014) [86] SHHS Hjorth, etc. Single hidden layer FFNN Sensitivity = 0.933, Specificity = 0.914
Liang et al. (2015) [88] SHHS Band-pass filter, FFT, 22 features C-ELM AUC = 0.85,
ACC = 0.79
Macias Toro et al. (2018) [87] PhysioNet Average power, etc. Fully connected network AUPRC = 0.261
Olsen et al.(2018) [46] Local Dataset CWT Single hidden layer FFNN Precision = 0.72, Sensitivity = 0.63
Chazal et al. (2020) [85] PhysioNet 59 combining features from adjacent epochs FFNN Specificity = 70%

FFNN = feed forward neural networks; C-ELM = curious extreme learning machine.