Table 4.
Author (Year) | Database | Data Preprocessing | Machine Learning Model | Results |
---|---|---|---|---|
Álvarez-Estévez et al. (2010) [84] | SHHS | Temporal aggregation rules | Single hidden layer FFNN | Sensitivity = 0.86, Specificity = 0.76 |
Behera et al. (2014) [86] | SHHS | Hjorth, etc. | Single hidden layer FFNN | Sensitivity = 0.933, Specificity = 0.914 |
Liang et al. (2015) [88] | SHHS | Band-pass filter, FFT, 22 features | C-ELM | AUC = 0.85, ACC = 0.79 |
Macias Toro et al. (2018) [87] | PhysioNet | Average power, etc. | Fully connected network | AUPRC = 0.261 |
Olsen et al.(2018) [46] | Local Dataset | CWT | Single hidden layer FFNN | Precision = 0.72, Sensitivity = 0.63 |
Chazal et al. (2020) [85] | PhysioNet | 59 combining features from adjacent epochs | FFNN | Specificity = 70% |
FFNN = feed forward neural networks; C-ELM = curious extreme learning machine.