Skip to main content
. 2021 Oct 14;13(20):5140. doi: 10.3390/cancers13205140

Table 3.

Performance of machine learning classifiers for predicting tumor budding status in test dataset.

Classifier AUC (95% CI) Accuracy (95% CI) Sensitivity Specificity PPV NPV
LR 0.742
(0.572–0.907)
0.769
(0.564–0.910)
0.857 0.737 0.546 0.933
RF 0.782
(0.528–0.884)
0.731
(0.522–0.884)
0.750 0.722 0.546 0.867
SVM 0.849
(0.740–1.000)
0.885
(0.699–0.976)
0.900 0.875 0.818 0.933
NN 0.891
(0.768–1.000)
0.731
(0.522–0.884)
0.667 0.786 0.727 0.733

AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; LR, logistic regression; RF, random forest; SVM, support vector machine; NN, neural network.