Skip to main content
. 2021 Oct 12;11(10):1875. doi: 10.3390/diagnostics11101875

Table 1.

3D-CNN Architecture for extraction of deep learning features.

Layers Parameter Setting
Conv 3D-1 size = 5 × 5 × 5; stride = 1; zero-padded
Relu-1 Alpha = 0.2
Max Pool 3D-1 size = 4 × 4 × 4; stride = 4; zero-padded
Conv 3D-2 size = 5 × 5 × 5; stride = 1; zero-padded
Relu-2 Alpha = 0.2
Max Pool 3D-2 size = 4 × 4 × 4; stride = 4; zero-padded
Fully connected-1
Flat-1
Relu-3 Alpha = 0.2
Dropout-1 p = 0.5
Fully connected-2
SoftMax