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Abstract

Non-invasive evaluation of renal transplant function is essential to minimize and manage 

renal rejection. A computer-assisted diagnostic (CAD) system was developed to evaluate 

kidney function post-transplantation. The developed CAD system utilizes the amount of blood­

oxygenation extracted from 3D (2D + time) blood oxygen level-dependent magnetic resonance 

imaging (BOLD-MRI) to estimate renal function. BOLD-MRI scans were acquired at five 

different echo-times (2, 7, 12, 17, and 22) ms from 15 transplant patients. The developed CAD 

system first segments kidneys using the level-sets method followed by estimation of the amount 

of deoxyhemoglobin, also known as apparent relaxation rate (R2*). These R2* estimates were 

used as discriminatory features (global features (mean R2*) and local features (pixel-wise R2*)) 

to train and test state-of-the-art machine learning classifiers to differentiate between non-rejection 

(NR) and acute renal rejection. Using a leave-one-out cross-validation approach along with an 

artificial neural network (ANN) classifier, the CAD system demonstrated 93.3% accuracy, 100% 

sensitivity, and 90% specificity in distinguishing AR from non-rejection . These preliminary 

results demonstrate the efficacy of the CAD system to detect renal allograft status non-invasively.

Index Terms—

Renal Transplants; BOLD-MRI; mean R2*; pixel-wise R2*; machine learning

1. INTRODUCTION

Over 650,000 patients in the U.S. have end-stage renal disease and renal transplant offers the 

best outcome for these patients. Over 17,000 kidney transplants are performed annually 
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in the U.S. [1, 2]. However, 15%–27% of renal transplant patients have acute renal 

rejection (AR) within 5 years, which if not detected and treated promptly, causes renal 

damage and leads to allograft failure [1–4]. Given the paucity of donor organs, routine 

post-transplantation clinical evaluation of kidney function is critical to prevent allograft 

loss [5]. The current diagnostic technique recommended by the national kidney foundation 

(NKF) is to measure overall kidney function using glomerular filtration rate (GFR). GFR 

has low sensitivity and is a late marker for renal graft dysfunction (detectable after > 60% 

loss of renal function) [6]. In addition to nuclear imaging and ultrasonography, conclusive 

AR diagnosis requires renal biopsy. However, needle biopsy is used as a last resort due 

to invasiveness, high cost, time, concomitant risk factors (infection, bleeding, etc.), and 

is prone to over- or under-estimation of inflammation in the entire graft. Thus, there is a 

critical unmet need for a non-invasive technology that can provide accurate and rapid early 

diagnosis of renal transplant rejection.

Non-invasive evalutation of renal dysfunction using dynamic contrast-enhanced (DCE)- 

[7–15], diffusion-weighted (DW)- [16–24], and blood oxygen level-dependent (BOLD)­

magnetic resonance imaging (MRI) [16, 25–36] is an ongoing area of research. Using 

DCE-MRI, kidney kinetic parameters were evaluated by Zikic et al. [9] after correcting 

kidney motion by applying a template-matching registration, and normalized gradient field 

as the contrast-invariant similarity measure. However, their study was limited by manual 

segmentation of kidneys, and visual evaluation of perfusion parameters (plasma volume 

and tubular flow) by trained physicians. Wentland et al. [12] utilized MRI-based intra-renal 

perfusion measurement to detect allografts with acute tubular necrosis (ATN) or AR on a 

cohort of 24 patients with the diagnosis confirmed by biopsy. Cortical and medullary blood 

flow was demonstrated to be significantly reduced in AR. While DCE-MRI has been used to 

develop CAD systems to assess the status of renal transplants, DCE-MRIs require contrast 

agents (CAs) which may induce nephrogenic systemic fibrosis [14], in patients with GFR < 

30 ml/min. In contrast, MRI methodologies that do not require CAs (DW- and BOLD-MRIs) 

are increasingly used to evaluate allograft status.

Liu et al. [16] used DW-MRI along with manually selected cortical and medullary ROIs to 

early detect renal allograft dysfunction caused by AR and ATN. Their study demonstrated 

lower values of the measured apparent diffusion coefficients (ADCs) for the AR group 

compared to the control groups. Kaul et al. [20] evaluated the renal function with cortical 

and medullary ADC maps and reported a significant change in the medulla and cortex ADCs 

during AR. Although DW-MRI does not use CAs, it is limited by a low signal to noise ratio 

(SNR) especially at high gradient field strengths and duration [16, 23], which increases the 

difficulty of both segmentation and ADC estimation.

BOLD-MRI has the unique advantage of having a higher SNR while avoiding the use of 

CAs. Therefore, it has been recently used by researchers to study renal rejection [16, 25–27], 

using the amount of the deoxygenated hemoglobin in the kidney to quantify renal function. 

The amount of deoxyhemoglobin is quantified by apparent relaxation rate (R2*), which is 

calculated using the reciprocal of T2*, where T2* is amount of oxygenated hemoglobin 

[37].
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It has been reported that the R2* in medulla is higher in both healthy transplants and 

native kidneys compared to AR [16, 25–27], while cortical R2* values were reported to be 

similar [16, 27]. These BOLD-MRI studies have several limitations including (1) manual 

delineation of the kidney using a 2D ROI, which makes this delineation subjective, (2) only 

performed statistical analyses to investigate the significant differences between different 

groups, and (3) non of these studies developed a fully automated CAD system for the early 

detection of AR renal transplants.

To overcome these limitations, we develop a fully automated CAD system, Fig. 1, to make 

an early and accurate diagnosis of acute rejection renal transplants, with the ability to: (i) 
delineate the kidney at different echo-times; (ii) extract global features and local features 

from the segmented kidney at different echo-times; and (iii) implement a classification 

model using the global and local features to assess the renal transplant status. To the best of 

our knowledge, this is the first CAD system of its kind to distinguish AR from non-rejection 

(NR) renal transplants from BOLD-MRI using both global (mean R2*) and local (pixel-wise 

R2*) features using state-of-the-art machine learning techniques.

2. METHODS

An accurate and robust CAD system to evaluate renal allograft status was developed. 

The CAD system consisted of the following key steps: (i) automatic delineation of the 

kidney from the surrounding abdominal tissues from BOLD-MR images (segmentation); 

(ii) extraction of both global (i.e. mean R2*) and local features (i.e. the pixel-wise values 

of R2*) from the segmented kidneys at different echo-times; and (iii) categorization of 

the renal transplant into one of two categories (i.e. NR vs. AR) by utilizing these global 

and local features using a state-of-the art machine learning classifier (e.g., artificial neural 

networks (ANNs)). Details of the proposed CAD system, (see Fig. 1), are discussed below.

2.1. Kidney Segmentation

A nonrigid registration based on using 2D B-splines approach [38] was first applied 

to handle renal allograft’s motion and to reduce BOLD-MRI inter-patient anatomical 

variability to improve segmentation accuracy. A 2D BOLD-MRI renal segmentation method 

based on using level-sets was applied [39]. To enhance segmentation accuracy, a guiding 

force integrating regional statistics derived from the kidney and background regions was 

employed. Regional appearance, shape, and spatial BOLD-MRI features were combined 

using a joint Markov-Gibbs random field (MGRF) image model [40]. Additional details of 

the segmentation approach can be found in [39, 41].

2.2. BOLD-MRI Markers

Renal function is evaluated by quantifying the amount of deoxygenated hemoglobin in 

the kidney. BOLD measures T2*, which is the amount of oxygenated hemoglobin [37] in 

the kidney. R2* (deoxygenated hemoglobin) is the reciprocal of T2* and will be used as 

our BOLD marker. After segmentation, the global features (i.e. mean R2* over the entire 

kidney) and the local features (i.e. pixel-wise R2*) are estimated at four different echo-times 

(7, 12, 17, 22) ms. These R2* values are used as BOLD-MR image-markers for renal 
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transplant status assessment, while the BOLD-MRI data acquired at echo-time = 2 ms 

was used as the baseline. The pixel-wise T2* maps can be calculated using the following 

equation [36] as:

T2 *p = t0 − t
ln SIt:p − SIt0:p

(1)

while the amount of deoxyhemoglobin (apparent relaxation rate (R2*)) is the reciprocal of 

T2* and can be calculated using the following equation:

R2 *p = 1
T2 *p

(2)

p: a pixel at a location with its 2D coordinates (x, y).

SIt: the signal intensity of the pixel (p) of the segmented BOLD-MR image obtained 

at the echo-time (t ms).

SIt0: the signal intensity of the pixel (p) of the segmented BOLD-MR image obtained 

at the baseline echo-time (t0 = 2 ms).

2.3. Global and Local Diagnosis of The Kidney Tissue

After obtaining the global (i.e. mean R2*) and local features (i.e. pixel-wise R2*), two 

stages of classification were employed using ANNs to obtain the final diagnosis. The first 

stage uses the global features, shown in Fig. 2, extracted from all subjects, along with a 

leave-one-out cross validation (LOOCV) approach to train and validate an ANN classifier, 

shown in Fig. 3, with two hidden layers (the first layer with 10 nodes and the second layer 

with 5 nodes) to obtain a global diagnosis for the entire kidney.

The classification model obtained from the first stage was then tested using local features 

(see Fig. 4) to obtain a pixel-wise probabilistic map representing the probability of each 

pixel being NR or AR, for a local diagnosis, as shown in Fig. 3.

3. EXPERIMENTAL RESULTS

A total of 24 patients who underwent kidney transplantation from Jan 2018 to Dec 2018, 

were enrolled in this study after obtaining patient consent and IRB approval. Nine patients 

were excluded due to incomplete patient participation and/or technical problems, metallic 

prostheses, artificial valves, or claustrophobia. Scans and biopsies were obtained from the 

remaining 15 patients (M=10, F=5, age = 27 ± 13.6 years, age range = 12–54 years). 

Patients were divided into two groups - NR group (10 patients) and AR group (5 patients). 

Most of the NR patients only underwent BOLD-MRI scans and a clinical biopsy was not 

indicated. Renal biopsy, histology, and BOLD-MRI was obtained in the AR group. Coronal 

BOLD-MRIs were acquired before any biopsy procedure. BOLD-MRI scans were obtained 

using a 3T scanner (Philips Medical System, Netherlands) using a body coil and a gradient 

single-shot spin-echo echoplanar sequence; repetition time: 140 ms, echo-time: 2 ms, Flip 

angle: 25 degree, Bandwidth: 150 kHz, slice size: 384×384, number of signals acquired: 1, 
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field of view: 14.4 cm, thickness: 6.0 mm. The largest coronal cross-section was obtained at 

five different echo-times (2, 7, 12, 17, and 22) ms, so that each subject has five images.

In order to validate the accuracy of the proposed renal classification technique, the 

developed acute renal rejection CAD system was tested using the 15 BOLD-MRI data 

sets using different classifiers. The matrix of global features of size 15 × 4 of mean R2* 

values at 7, 12, 17, and 22 ms were used with a LOOCV approach to train and test 8 

different classifiers provided by MATLAB 2017 classification learner Tool Box (random 

forest (RF), linear discriminant analysis (LDA), logistic regression (logR), quadratic SVM 

(SVMQuad), cubic SVM (SVMCub), radial basis function SVM ((SVMRBF ), ensemble 

bagged trees (EBT), and ANNs). The accuracy, sensitivity, and specificity of these classifiers 

are presented in Table 1. The ANN classifier provided the best diagnostic performance in 

terms of accuracy, sensitivity, and specificity. Results in Table 1 demonstrate the feasibility 

of the constructed global features (i.e. mean R2* values) to diagnose AR.

The local features (i.e. the pixel-wise R2* maps) were used to test the ANN classification 

model resulting in a pixel-wise probabilistic map for each kidney. The local features analysis 

outputs the probability of each pixel in the kidney to be AR or NR. These probabilistic 

maps were then color-coded to assist in the visualization of the local kidney function by the 

clinicians, Fig. 5. The local features analysis will also enable tracking of the progression of 

AR or improvement with treatment during follow up. The data in Fig. 5 reveals the expected 

relation of the the pixel-wise R2* maps for NR and AR status.

To evaluate the performance of the developed CAD system, we constructed receiver 

operating characteristics (ROC) [42] for ANN and the compared classifiers. The ANN 

based-classifier demonstrated the highest area under the curve (AUC) and nearly approached 

unity, as shown in Table 1. These preliminary results demonstrate the feasibility of the 

proposed CAD system for early stage, non-invasive AR diagnosis.

4. CONCLUSIONS

A non-invasive CAD system for early diagnosis of AR using BOLD-MRI provided high 

classification accuracy, sensitivity, and specificity. The CAD system incorporates global and 

local features to better characterize renal function and evaluate AR. The CAD system will 

be optimized by training and validating on a larger patient cohort. Furthermore, genomic 

markers and histopathology image markers will be integrated into the CAD system to further 

enhance the accuracy of AR classification and to potentially determine the cause of AR.
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Fig. 1: 
The developed CAD system for early assessment of acute renal rejection post­

transplantation. The input blood oxygen level-dependent (BOLD) MRI data acquired at four 

different echo-times (2, 7, 12, 22) ms is first segmented. Then the global (i.e. mean R2*) and 

the local (i.e. the pixel-wise R2*) are constructed. Both global and local features are then fed 

to an artificial neural network to obtain the final global and local diagnosis.
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Fig. 2: 
Illustrative figure showing the process of constructing the global features by calculating the 

mean R2* values from the segmented kidney at four different echo-times (2, 7, 12, 17) ms.
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Fig. 3: 
Illustartion of the schematic of the used artificial neural network (ANN) and the 

classification process starting from feeding the ANN with the global and local features 

till getting the final output probabilities of being a non-rejection or an acute rejection renal 

transplant.
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Fig. 4: 
Illustrative figure showing the process of constructing the local features by calculating the 

pixel-wise R2* values from the segmented kidney at four different echo-times (2, 7, 12, 17) 

ms.
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Fig. 5: 
Pixel-wise color-coded probabilistic maps obtained from the local feature analysis. Where 

the upper row shows three different examples for non-rejection (NR) renal transplants and 

the lower row shows three others acute rejection (AR) renal transplants. Note that the red 

color indicate the probability of being NR, while the blue color indicates the probability of 

being an AR.
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