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We investigate a nonrelativistic version of Georgi’s “unparticle
physics.” We define the unnucleus as a field in a nonrelativis-
tic conformal field theory. Such a field is characterized by a
mass and a conformal dimension. We then consider the formal
problem of scatterings to a final state consisting of a particle
and an unnucleus and show that the differential cross-section,
as a function of the recoil energy received by the particle,
has a power-law singularity near the maximal recoil energy,
where the power is determined by the conformal dimension of
the unnucleus. We argue that unlike the relativistic unparticle,
which remains a hypothetical object, the unnucleus is realized,
to a good approximation, in nuclear reactions involving emission
of a few neutrons, when the energy of the final-state neu-
trons in their center-of-mass frame lies in the range between
about 0.1 MeV and 5 MeV. Combining this observation with the
known universal properties of fermions at unitarity in a har-
monic trap, we predict a power-law behavior of an inclusive
cross-section in this kinematic regime. We verify our predictions
with previous effective field theory and model calculations of
the 6He(p, pα)2n, 3H(π−, γ)3n, and 3H(µ−, νµ)3n reactions and
discuss opportunities to measure unnuclei at radioactive beam
facilities.

few-body systems | conformal field theory | nuclear reactions |
ultracold atoms

The concept of symmetry plays a key role in modern physics
(1). On the one hand, many phenomena in elementary par-

ticle physics are governed by the symmetries of the unitary
Lie groups. On the other hand, statistical systems at a critical
point possess a symmetry not realized in particle physics—the
conformal symmetry. In a 2007 paper (2), Howard Georgi put
forward the proposal (called “unparticle physics”) that beyond
the Standard Model of elementary particle physics there is
a hidden conformal symmetry sector. This sector would con-
sist not of particles but of fields belonging to a conformal
field theory. In general, correlation functions of fields in con-
formal field theory do not have poles, but only cuts, so the
“unparticles” that correspond to these fields, if they exist, would
leave collider signals distinct from those of the normal par-
ticles. Georgi’s proposal has attracted considerable activity in
theoretical particle physics, but, despite intensive search, so
far the unparticle has failed to turn up at the Large Hadron
Collider (3–5).

In this paper, we consider a nonrelativistic analog of the unpar-
ticle, which we call the “unnucleus.” Formally, the unnucleus
corresponds to a field in a nonrelativistic conformal field theory
(6). In contrast to the relativistic unparticle, which is charac-
terized solely by its conformal dimension, the nonrelativistic
counterpart is characterized by two parameters—its mass M and
dimension ∆. We use the term “unnucleus” because, as we will
argue later, this object appears in a certain regime in nuclear
reactions involving several neutrons in the final state. Thus, in
contrast to the unparticle, the unnuclei already exist in nature,
although only as an approximation.

Our result can be summarized as follows. Consider a nuclear
reaction with a few final-state neutrons, besides one other
product which we call B , for example

A1 +A2→B +n +n + · · ·︸ ︷︷ ︸
N neutrons

. [1]

The number of final-state neutrons N can be 2, 3, 4, . . .. We reg-
ister only the energy of B , but not of the neutrons, measuring the
inclusive differential cross-section as the function of the energy
E of B and its direction Ω, d2σ/dEdΩ. In the center-of-mass
frame the rate does not depend on the direction of B , so what
is measured is dσ/dE . The energy spectrum of B is continuous
and has a cutoff at some maximal value E0. We predict that

dσ

dE
∼ (E0−E)ν [2]

with some exponent ν that depends on the number of final-state
neutrons, in the regime where

~2

ma2
�
(

1 +
MB

Nm

)
(E0−E)� ~2

mr2
0

, [3]

where m is the mass of the neutron, MB the mass of the nucleus
B , while a and r0 are the neutron–neutron scattering length and
effective range. If MB is not too large compared to Nm , this
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means E0−E is between 0.1 MeV and a few megaelectron volts.
The exponent ν is predicted to be

ν=


−1/2 N = 2,

1.77 N = 3,

2.5− 2.6 N = 4.

[4]

In general, ν is equal to the ground-state energy of a system of
N fermions at unitarity in a harmonic trap with unit frequency,
minus 5

2
.

The structure of this paper is as follows. In The Unnucleus we
introduce the notion of an unnucleus and review the properties
of the unnucleus propagator that follow from nonrelativistic con-
formal field theory. In Rate of Processes Involving an Unnucleus
we compute rates for reactions with an unnucleus in the final
state. We argue that multineutron final states can approximate
unnuclei in Multineutron Final States as Unnuclei. In Comparison
with Multineutron Spectra we compare our prediction with pre-
vious model calculations for several nuclear reactions. Finally,
Conclusion contains concluding remarks.

The Unnucleus
We will start our discussion at a rather formal level and transition
to real nuclear processes later.

The unnucleus is a nonrelativistic field with mass MU and
dimension ∆. There is a unitarity bound on ∆: ∆≥ 3

2
, where the

lower bound corresponds to a free field. (In our convention, the
dimensions of momentum and energy are 1 and 2, respectively.)
According to the general formalism, the two-point function of
a primary operator U in nonrelativistic conformal field theory is
completely fixed (up to an overall factor), so the propagator of
an unnucleus is (6)

GU (t , x) =−i〈TU(t , x)U†(0, 0)〉=C
θ(t)

(it)∆
exp

(
iMUx

2

2t

)
,

[5]
where C is a normalization factor. For ∆ = 3

2
(the dimension of

a free field), the unnucleus becomes a nucleus (a nonrelativistic
particle).

One example of the unnucleus is a collection of noninteracting
particles,

U =ψ1ψ2 . . . ψN . [6]
Assuming the masses of all fields ψi are equal, the mass and the
dimension of this operator are

MU =Nmψ, ∆ =
3

2
N . [7]

The propagator of U is then the N th power of the propagator of
a single particle.

For diagrammatic calculation we need the unnucleus propaga-
tor in momentum space. Taking the Fourier transform of Eq. 5
we get

GU (ω, p) =−C
(

2π

MU

)3/2

Γ

(
5

2
−∆

)(
p2

2MU
−ω

)∆− 5
2

. [8]

In Fourier space the imaginary part of the propagator of an
unnucleus is

ImGU (ω, p)∼

δ
(
ω− p2

2MU

)
, ∆ = 3

2
,(

ω− p2

2MU

)
∆− 5

2 θ
(
ω− p2

2MU

)
, ∆> 3

2
.

[9]

Only for free fields (∆ = 3
2

) the propagator has a pole; otherwise
it has a cut. For the composite operator in Eq. 6, ImGU is pro-
portional to the final-state phase space available when an initial

state carrying energy E and momentum p becomes N final par-
ticles. Similar to the relativistic case, an unnucleus of dimension
∆ can be thought of as N = 2

3
∆ (which is, in general, a fractional

number) particles. The imaginary part of the unnucleus propaga-
tor can be interpreted as the phase space volume of a fractional
number of particles.

Rate of Processes Involving an Unnucleus
To illustrate the physical consequences of the existence of an
unnucleus, consider the following reaction (see Fig. 1):

A1 +A2→B +U , [10]

where A1 and A2 are some initial particles, B is a particle, and U
is the unnucleus. For simplicity, we assume all particles involved
in the reaction are nonrelativistic, though our main conclusion
requires that only U is. While on-shell scattering amplitudes in
relativistic conformal theories are typically ill-defined because
of infrared divergences associated with massless particles, they
are well-defined in nonrelativistic theories even in the conformal
limit (7). Therefore, no special procedure is required to calculate
this process.

We work in the center-of-mass frame. The total kinetic energy
available to final products is

Ekin = (MA1 +MA2 −MB −MU )c2 +
p2
A1

MA1

+
p2
A2

MA2

. [11]

Unless U is a particle, the energy spectrum of B is continuous.
Let E and p be the energy of the particle B , E = p2/2MB . We
are interested in the differential cross-section dσ/dE . We can
think about a term in the effective Lagrangian

Lint = g U†B†A1A2 + h.c., [12]

where g is some coupling constant, such that the unnucleus is
produced at a point. For definiteness, we assume the unnucleus
to represent an interacting n-particle state with total mass MU
and total momentum −p. The Jacobi momenta and reduced
masses of the particles are denoted by qi and µi with i = 1, ..,
n − 1, respectively (see Fig. 2).

The differential cross-section can then be written as

dσ∼ g2 |GU (Ekin−E , p)|2 d3p
n−1∏
i=1

d3qi

× δ

(
Ekin−E − p2

2MU
−

n−1∑
i=1

q2
i

2µi

)
, [13]

Fig. 1. A nuclear reaction with an unnucleus U (represented by the shaded
region) in the final state.
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Fig. 2. Kinematics for the production of an unnucleus U (indicated
by shaded region) representing an interacting n-particle state in the
reaction of Eq. 10.

where the incoming flux factor and factors of 2π have been
suppressed. We rewrite d3p∼ dΩp

√
EdE and perform the triv-

ial integration over dΩp . Further integrating over the Jacobi
momenta of the final state particles

∏n−1
i=1 d3qi and using the

optical theorem, we obtain

dσ∼ g2
√
E ImGU (Ekin−E , p) dE . [14]

Thus, the differential cross-section for a general production
amplitudeM can be written as

dσ

dE
∼ |M|2

√
E ImGU (Ekin−E , p). [15]

In principleM can contain dependence on the momenta of the
incoming and outgoing particles. The statement of Eq. 15 is that
the cross-section can be factorized into two parts, one (encoded
byM) corresponding to the primary process A1 +A2→B +U ,
the other (encoded by ImGU ) corresponding to the final-state
interaction between the constituents of U . Such a factorization
requires that the energy scale of the primary scattering process
is much larger than that of the interaction between the neutrons
and is the essence of the Watson–Migdal approach to final-state
interaction (8, 9).

According to Eq. 9,

ImGU (Ekin−E , p)∼
(
Ekin−E − p2

2MU

)∆− 5
2

=

[
Ekin−

(
1 +

MB

MU

)
E

]∆− 5
2

. [16]

Denote the maximal value of the recoil energy received by the
particle B as

E0 =

(
1 +

MB

MU

)−1

Ekin. [17]

In the regime E0−E�E0, ignoring the energy dependence of
all other factors, we can write

dσ

dE
∼ (E0−E)∆− 5

2 . [18]

Thus, a characteristic feature of processes involving an unnucleus
is the power-law dependence of the differential cross-section on
the recoil energy near the end point.

Multineutron Final States as Unnuclei
So far the search for relativistic unparticles has been unsuccessful
(3–5). In nuclear physics, however, there are natural approxi-
mate unnuclei due to the fortuitous occurrence of fine tuning in

several nuclear systems. In particular, neutrons have a large s-
wave scattering length: a ≈−19 fm, compared to the effective
range r0≈ 2.8 fm. A system of neutrons can be considered as an
unnucleus if the relative momentum between any two neutrons
in the system is between ~/a and ~/r0. If this is the case, they
are described by a well-known nonrelativistic conformal field
theory—the theory of fermions at unitarity.

Thus, the real-world realizations of the reaction pictured in
Fig. 1 are reactions with a few neutrons in the final state. A
typical reaction with three final-state neutrons is schematically
depicted in Fig. 3. The differential cross-section dσ/dE consid-
ered above is now an inclusive cross-section, where the momenta
of the neutrons are left unmeasured. Reactions of this type are
abundant in nuclear physics. Some examples are

3H + 3H→ 4He + 2n, [19]
7Li + 7Li→ 11C + 3n, [20]

4He + 8He→ 8Be + 4n. [21]

The final-state neutrons can be considered as forming an unnu-
cleus when the kinetic energy of the system of neutrons in its
center-of-mass frame (neutron kinetic energy) is between ε0 =
~2/ma2∼ 0.1 MeV and ~2/mr2

0 ∼ 5 MeV. Only in this kinematic
regime, our prediction, Eq. 18, for dσ/dE applies. Physically,
in this regime the neutrons travel together and keep interacting
with each other until the distance between them becomes larger
than a . If the total kinetic energy of the final scattering products
Ekin is much larger than ~2/mr2

0 , then the power-law behavior of
the differential cross-section, Eq. 18, is expected in a region near,
but not too close to, the maximal recoil energy.

According to the general formalism (6) the dimension of an
operator is equal to the energy of the corresponding state in the
harmonic potential with unit oscillator frequency. This leads to a
nontrivial connection between the few-body physics of fermions
at unitarity and the physics of nuclear reactions. Namely, the
spectrum of fermions at unitarity in a harmonic trap determines
the behavior of the processes involving emission of neutrons in a
certain kinematic regime.

For emission of two neutrons, the ground state of two uni-
tary fermions in a harmonic trap (with opposite spins) is known
exactly, and corresponds to the “dimer” operator of confor-
mal dimension ∆ = 2. The differential cross-section thus grows
toward the endpoint

dσ

dE
∼ 1√

E0−E
. [22]

This growth stops very close to the endpoint when the neu-
tron kinetic energy is of order ε0, after which, the two

Fig. 3. A nuclear reaction with three neutrons in the final state.
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Fig. 4. Center-of-mass energy spectrum of two neutrons in the reaction 6He(p, pα)2n at high energies. Halo EFT calculations from Göbel et al. (19)
with/without final state interaction of the neutrons are given by the upper red/lower green dotted lines (Left). FaCE calculations with final state interaction
are given by the dotted line (Right). Different fits are explained in the key and in the main text.

neutrons become effectively noninteracting, and the unnu-
cleus now becomes an operator in free field theory n↓n↑ with
dimension ∆ = 3, and the differential cross-section decreases as√
E0−E . This nonmonotonic behavior of dσ/dE is well known

(8, 9). In fact, the whole behavior of the differential cross-section
in the cross-over region can be read off from the propagator of
the dimer field in effective field theory,

Gd(ω, 0)∼ 1
1
a

+ i
√
mω
⇒ ImGd(ω, 0)∼

√
ω

ε0 +ω
, [23]

so
dσ

dE
∼

√
E0−E

E0−E +
(

1 + MB
MU

)
−1ε0

. [24]

which reaches a maximum at E0−E = (1 +MB/MU )−1ε0.
For the problem of three final-state neutrons, we know that

the ground state of three fermions at unitarity in a harmonic trap
is a state with S = 1

2
, L= 1 and energy ∆≈ 4.27272 in units of

the trap frequency (10, 11). Thus, the differential cross-section
behaves as

dσ

dE
∼ (E0−E)1.77272. [25]

The first excited state of three neutrons in the trap is a S = 1
2

,
L= 0 state with ∆≈ 4.66622, corresponding to a contribution
(E0−E)2.1662. This is suppressed compared to the contribution
from the ground state, but, due to the relatively small difference
between the exponents, may need to be taken into account to
describe real data.

At very small E0−E there is a cross-over from Eq. 25 to
the free-neutron behavior, controlled by the dimension of the
operator nn∇n in free field theory (with one derivative because
of the Pauli exclusion principle): (E0−E)3. This behavior can
also be obtained by multiplying the three-particle phase space
(E0−E)2 and a suppression factor E0−E coming from the
fermionic statistics of the neutrons.

For four final-state neutrons, different approaches have
given the ground-state energy of four trapped unitary fermions
between 5.0 and 5.1 oscillator frequencies (12–18), which means

dσ

dE
∼ (E0−E)α, α≈ 2.5− 2.6. [26]

The excited state of the four-fermion system has ∆≈ 6.6 (18)
and thus is much more separated from the ground state com-
pared to the three-fermion case. The behavior crosses over to
the free-particle behavior (E0−E)5.5 at very low E0−E .

We will not consider larger numbers of final-state neutrons,
except to point out that differential cross-section will fall off with
larger and larger exponent as E→E0 with increasing number of
neutrons.

Comparison with Multineutron Spectra
Ideally, one should compare our predictions with experimental
measurements. However, since at present there are no suffi-
ciently precise experimental spectra in the endpoint region to
identify a multineutron unnucleus we compare our predictions
to realistic theoretical calculations. For convenience, we consider
the neutron energy distribution in their center of mass instead of
the energy distribution of the recoil particle. This makes it pos-
sible to consider reactions with more than one particle besides
the neutrons in the final state and also makes the relevant energy
scales more transparent. We expect that a comparison to low-
energy multineutron spectra from experiments at radioactive
beam facilities will become possible in the near future. In par-
ticular, precise low-energy two- and four-neutron spectra will be
measured at the Rare Isotope Beam Facility at RIKEN in the
reactions 6He(p, pα)2n and 8He(p, pα)4n in inverse kinematics
with all final state particles being detected.∗

In ref. 19, a novel method to measure the neutron-neutron
scattering length using the 6He(p, pα)2n in inverse kinematics
at high energies was proposed. It uses the final state interac-
tion of the neutrons after the sudden knockout of the α particle
in 6He. The authors showed that the scattering length can be
extracted from the spectrum of the neutrons at very low relative
energies. Here we use the two-neutron spectra calculated in ref.
19 to search for the two-neutron unnucleus. Once the data from
the experiment∗ are available, the analysis can be repeated using

*For details see: T. Aumann et al., Proposal No. NP2012-SAMURAI55R1, Determination of
the nn scattering length from a high-resolution measurement of the nn relative-energy
spectrum produced in the 6He(p, pα)2n, t(p, 2p)2n, and d(7Li, 7Be)2n reactions (2020)
and S. Paschalis et al., Proposal NP1406-SAMURAI19R1, Investigation of the 4n system
at SAMURAI by measuring p, pα quasifree scattering at large momentum transfer in
complete kinematics (2014).
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the measured spectrum. In Fig. 4, we analyze the calculations
of ref. 19 with respect to signatures of the two-neutron unpar-
ticle. In that paper, calculations within two effective three-body
approaches for the wave function of the initial 6He nucleus are
carried out: 1) a leading order Halo effective field theory (Halo
EFT) calculation which includes nn s-wave interactions, nα
p-wave interactions, and a short-range nnα three-body force
(20) (Fig. 4, Left) and 2) a model calculation using the three-
body code FaCE (21) which has nα interactions in the s-, p-
and d -wave and a longer ranged three-body force (Fig. 4, Right).
The two-neutron distribution from Halo EFT (upper red dotted
line) is well-described by the unnucleus behavior, 1/

√
E , above

0.5 MeV as indicated by the solid line. In fact, even the full
energy distribution up to 3 MeV can reasonably well be described
by the dimer propagator, Eq. 23 (dash-dotted line), by just fitting
the prefactor to the data below 0.5 MeV. If the propagator is fit
to the whole energy range, a better description at higher energies
can be achieved at the expense of a somewhat worse descrip-
tion of the peak. The deviations are due to the initial 6He wave
function, which also enters into the description of the reaction.
This can be seen by the lower green dotted curve which gives the
energy distribution without the nn final state interaction. This
distribution is well-described by the free-neutron behavior

√
E

up to about 0.5 MeV. At this energy scale, it seems that struc-
ture effects from the 6He wave function become important and
the neutron distribution starts to differ from the free case. This is
consistent with the intrinsic scale generated by the two-neutron
separation energy of 6He, which is of order 1 MeV. A similar
behavior is observed in the FaCE calculation in the Fig. 4, Right
(dotted curve). However, in this case the description of the FaCE
calculation for energies beyond 0.5 MeV can be improved by
also including the p-wave contribution which falls off as 1/E3/2

(dash-dash-dotted line). We expect this to be due to the more
complicated structure of the 6He wave function in FaCE.

Next, we turn to the case of a three-neutron final state. A pre-
cise photon spectrum near the kinematical endpoint for radiative
capture of stopped pions on tritium was measured by Miller et
al. (22). While unnucleus behavior is consistent with the spec-
trum of Miller et al., we cannot unambiguously extract the power
behavior from these data. Therefore, we turn to the theoret-
ical calculation of Golak et al. (23). They have carried out
a realistic model calculation of the capture rate for the reac-
tion 3H(π−, γ)3n using the AV18 two-nucleon potential and
a Urbana IX three-body force. Their results are shown in Fig.
5, Left for the full calculation (circles) and the plane wave
impulse approximation (squares). We have converted the calcu-
lated photon spectra to three-neutron spectra for convenience.

As expected, the free neutron behavior, E3 (dashed line), can
describe the full calculation (circles) only at the lowest energies.
However, the plane wave impulse approximation (squares) can
be described up to about 2.5 MeV. The full calculation including
final state interaction displays clear unnucleus behavior, E1.77

(solid line) for energies also up to about 2.5 MeV, where it starts
to deviate from the prediction. This is somewhat smaller than
the value 5 MeV expected from the effective range. We suspect
that this is due to the wave function of the triton, which has finite
extent, making the reaction a less than ideal “point source” of
the neutrons and causing the factorization formula, Eq. 15, to
break down earlier than expected. The description cannot be sig-
nificantly improved by including the next state which behaves
as E2.17 (dash-dotted line). Analogous behavior is exhibited by
the theoretical spectra for the reaction 3H(µ−, νµ)3n calculated
by Golak et al. (24) using the same interaction model (see Fig.
5, Right). In this reaction, the energy scale of the primary scat-
tering process is slightly smaller such that the corrections to
factorization are larger.

A four-neutron spectrum was recently measured by Kisamori
et al. in the reaction 4He(8He,8Be)4n (25), but the number of
events is too low to extract evidence of unnucleus behavior. It
may, however, be possible to observe unnucleus behavior in the
four-neutron spectrum of a new experiment using the reaction
8He(p, pα)4n , which has higher statistics and is currently being
analyzed.

Conclusion
We have suggested that nuclear processes involving a few neu-
trons in the final state may be well described, in a certain
kinematic regime, as the production of an unnucleus, defined
as an object corresponding to a field in a nonrelativistic confor-
mal field theory. Using this observation, we predict power-law
behaviors of the differential cross-section in a certain range of
the neutron kinetic energy, or equivalently, of the recoil energy
of the particle that emits the neutrons, with the value of the
exponent determined by the universal physics of fermions at
unitarity.

The power-law behavior breaks down when the relative
momentum between the neutrons is less than ~/a , crossing over
to the regime of free neutrons. The transition between the two
regimes is well known in the case of two-neutron final state.
For final states containing more than two neutrons, this cross-
over can be, in principle, studied within the effective field theory
approach.

The problem can be formalized as the calculation of the imag-
inary part of the two-point Green’s function of an operator U
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in the nonrelativistic conformal field theory of unitary fermions,
deformed by a relevant deformation corresponding to a finite
scattering length a . The theory therefore flows from an ultravio-
let fixed point of fermions at unitarity to an infrared free-fermion
fixed point. We expect that in such a theory

ImGU (ω, 0) = θ(ω)ω∆− 5
2FU

(
ω

ε0

)
, [27]

where FU (ω/ε0) are universal functions, one for each primary
operator U , which are expected to have the following asymptotic
behavior:

FU (x )→

{
c1 x� 1,

c2x
∆free−∆ x� 1,

[28]

where c1 and c2 are constant, and ∆free is the dimension of the
operator that U becomes in the free-fermion infrared fixed point.
For example, for the dimer operator we have Fd(x ) = x/(x + 1).
The functions FU (x ) are properties of a well-defined renormal-
ization group flow. Once they have been calculated, the behavior
of the differential cross-section of the process in Eq. 10 in the
cross-over region is then

dσ

dE
∼ (E0−E)∆− 5

2 FU

[(
1 +

MB

MU

)
E0−E

ε0

]
. [29]

There may be contributions from more than one operator U to a
given process.

It may be important to investigate the correction to the power
law coming from effects beyond the large scattering length, e.g.,
the effective range or the three-body force. This too, hope-
fully, could be accomplished using techniques of effective field
theory.

Nuclear reactions involving three and four neutrons in the final
states have been investigated in the searches for bound trineu-
tron and tetraneutrons or narrow resonances (see, e.g., refs.
25–27). Our prediction is made under the assumption that there
is no narrow resonance with energy comparable to or less than
the kinetic energy of the neutrons in the frame of their center of

mass. We have analyzed the two- and three-neutron spectra
of realistic calculations for the reactions 6He(p, pα)2n (19),
3H(π−, γ)3n (23), and 3H(µ−, νµ)3n (24). These spectra show
clear evidence of unnucleus behavior. An analysis of experimen-
tal two- and four-neutron spectra for unnucleus behavior will
become possible in the near future.†

Other types of unnuclei may be interesting to consider. The
scattering length between two α nuclei is also large, so one
can consider processes where two or three α particles are
knocked out from a nucleus. The unnucleus formed by three
α particles is where the Efimov effect takes place (28–30). The
dimension of the unnucleus operator is complex: ∆ = 5

2
± is0

with s0≈ 1.006, so the differential cross-section should have
a weak log-periodic dependence on (E0−E), crossing very
near the endpoint to (E0−E)2. However, the presence of the
long-range Coulomb repulsion complicates these systems (31).
Unnuclear physics may also play a role in the three-nucleon sys-
tem where different regions with approximate scale invariance
exist (32).

Finally, cold atoms with fine-tuned interaction may provide
another avenue for the investigation of the universal aspects of
the unnuclear physics considered in this paper (33).
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