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The dynamics of granular materials are critical to many natural and
industrial processes; granular motion is often strikingly similar to
flow in conventional liquids. Food, pharmaceutical, and clean energy
processes utilize bubbling fluidized beds, systems in which gas is
flowed upward through granular particles, suspending the particles
in a liquid-like state through which gas voids or bubbles rise. Here,
we demonstrate that vibrating these systems at a resonant fre-
quency can transform the normally chaotic motion of these bubbles
into a dynamically structured configuration, creating reproducible,
controlled motion of particles and gas. The resonant frequency is
independent of particle properties and system size, and a simple
harmonic oscillator model captures this frequency. Discrete particle
simulations show that bubble structuring forms because of rapid,
local transitions between solid-like and fluid-like behavior in the
grains induced by vibration. Existing continuummodels for gas–solid
flows struggle to capture these fluid–solid transitions and thus can-
not predict the bubble structuring. We propose a constitutive rela-
tionship for solids stress that predicts fluid–solid transitions and
hence captures the experimental structured bubbling patterns. Sim-
ilar structuring has been observed by oscillating gas flow in bubbling
fluidized beds. We show that vibrating bubbling fluidized beds can
produce a more ordered structure, particularly as system size is in-
creased. The scalable structure and continuum model proposed here
provide the potential to address major issues with scale-up and op-
timal operation, which currently limit the use of bubbling fluidized
beds in existing and emerging technologies.
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Granular materials can behave like liquids when subject to
external forcing, as seen in lizards “swimming” through sand

(1), wavy instabilities forming under shear (2), Faraday waves in
granular layers (3, 4), Rayleigh–Taylor fingering (5, 6), and droplets
of grains forming in tapped plates (7) and hourglass streams (8).
Gaseous voids resembling bubbles in liquids can rise through grains
suspended in a fluid-like state by upward gas flow (9) or vertical
vibration (10). These gas voids are not conventional bubbles be-
cause there is no surface tension between the voids and surrounding
fluid-like grains, and gas can pass freely between voids and the in-
terstices between granular particles. Voids or bubbles are instead
formed in grains typically due to gas channeling through small
spaces between particles, which causes the spaces to grow into a
bubble and more gas to channel through the bubble. A bubble
typically grows until the drag force from gas channeling through the
bubble can no longer support the roof of particles above the bubble.
These bubbles are typically at least an order of magnitude larger in
size than the particles. Despite the differences in governing physics
compared to conventional bubbles, bubbles in suspended grains
coalesce and break up in a manner similar to conventional bubbles
and adopt shapes and rise velocities closely resembling those seen in
Newtonian liquids (11).
In engineering applications including pharmaceutical production

(12), polymer recycling (13), carbon capture (14), coal combustion
(15), and biomass gasification (16), granular particles are suspended
by upward gas flow, forming rising voids, which act to mix the
particles in devices known as “bubbling fluidized beds” (9). These

systems are often used to promote mixing and heat transport
among particles. The dynamics of bubbles in these fluidized beds
are mathematically chaotic (17–19), and thus bubble and particle
dynamics can change dramatically with changes in system size or
particle size in ways that are often unpredictable. As such, scale-
up, optimization, and operation of bubbling fluidized beds often
create engineering challenges, which then limit their adoption de-
spite their favorable properties in heat transport and mixing (20).
Prior studies have shown that oscillating gas flow rate can suppress
chaos (17) and create structuring (19) in bubbles in fluidized beds
with bubble sizes and separation distances and solids circulation
controllable based on gas flow oscillation conditions (21). Granular
beds fluidized by upward gas flow can also be vibrated, often to
reduce the effects of cohesive forces between particles (22), and
vibrating gas-fluidized beds has been shown to reduce the minimum
fluidization velocity (5, 23, 24) and suppress bubbling in some cases
(5, 23, 25). Currently, vibrated gas-fluidized beds are used ex-
tensively in industry (26, 27), largely to improve drying processes
and break up agglomerates of cohesive particles, and thus the use
of vibration to promote structuring has potential for industrial
applications.
Here, we demonstrate that vibrating bubbling fluidized beds

(Fig. 1) at a resonant frequency creates a periodic triangular
structuring of bubbles, which persists across different particle
properties and system sizes, providing the potential to address
major issues in current bubbling fluidized beds. The resonant
frequency can be captured by a harmonic oscillator model, and the
length scale for this model can be predicted analytically. Discrete
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particle modeling shows that structure emerges due to rapid yet
controlled transitions between fluid-like and solid-like behavior in
the particle system. We propose a continuum stress model that
can predict structuring by capturing fluid–solid transition behav-
ior, addressing a major issue (21, 28) in current continuum models
of granular flow.
The ability of vibration to transform normally chaotic bubble

dynamics into structured arrays of rising bubbles that repeat in
form periodically is shown in Fig. 2 andMovie S1. Under conditions
without vibration, bubbles of a wide range of shapes and sizes rise,
coalesce, and split (Fig. 2A). When the system is vibrated, shown
schematically in Figs. 1 and 2C, bubbles of uniform size form and
rise in a regularly spaced triangular arrangement without coalescing
or splitting (Fig. 2B). A new row of bubbles forms with each
vibration cycle. Bubbles originate at horizontal positions centered
in-between the positions of bubbles in the row above them, such
that the structure in the bubble array repeats itself every two vi-
bration cycles (Fig. 2B). The structuring persists as bed height is
increased (Fig. 2D); however, structure is somewhat diminished
higher in the system in taller beds. This feature of bubble structure
persisting, albeit in a somewhat diminished manner, to taller sys-
tem heights is also observed in fluidized beds with oscillating gas
flow (21). Since bubble dynamics strongly influence particle and
gas motion (11), structuring the bubbling effectively structures
particle and gas conveyance and mixing in these systems.
Structured bubbling is optimized at a specific vibration frequency

and amplitude as well as a specific ratio of inlet gas velocity (U) to
that needed to suspend the particles (Umf), and these conditions for
flow structuring are independent of particle properties (Fig. 3). The
extent of bubble structuring can be quantified by comparing images
of the bubble structure separated by two vibration cycles for each
image collected over the duration of the experiment. Here, we
quantify this structure using Pearson’s correlation coefficient (29),

r =∑N
i=1(G’

i −G’)(Gi −G)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N

i=1(G’
i−G’)2∑N

i=1(Gi−G)2
√

, which

has a value r = 1 for exact periodic repetition of structure and
r = 0 for no periodic repetition of structure. In this equation, N is
the number of pixels in the image, i is the pixel index,Gi andG’

iare
the intensity at pixel i in the current frame and in the frame after

two vibration periods, respectively, and G and G’ are the average
ofGi andG’

i over the entire system in space at the time of interest,
respectively. Upon varying vibration frequency (f) while keeping
vibration amplitude (A) and U/Umf constant, the correlation
coefficient achieved a maximum at frequency of 5 Hz (Fig. 3A).
Similarly, when f and U/Umf were held constant and A was varied,
a maximum correlation coefficient was achieved at an amplitude
of 4.5 mm (Fig. 3B). Maximal bubble structuring was achieved at
U/Umf = 1.4 when vibration conditions were kept constant (Fig. 3C).
For all of these cases, the vibration and gas flow conditions needed
to achieve maximal structure did not change when particle di-
ameter and density were varied. In addition to producing the most
repeatable structure, these optimal flow and vibration conditions
produced the smallest variations in bubble diameter (SI Appendix,
Fig. S1). These conditions also optimize structure and produce
approximately the same amount of quantitative structure and
bubble properties when the system width is doubled (SI Appendix,
Fig. S2 and Table S1).
The vibration frequency that produces maximal structure de-

creases with increasing bed height at low bed heights before be-
coming independent of bed heights above a critical bed height, h1,c
(Fig. 4A). The frequency that produces the maximal structure can
be predicted analytically based on a harmonic oscillator derived
from a balance between drag and gravitational force on particles.
We ultimately identify the critical length scale, h1,c, for this model
and relate it to two measured properties, bubble diameter (Db)
and solids volume fraction («s), which do not vary significantly with
changing particle properties.
Prior studies (30, 31) have shown that small harmonic oscilla-

tions in pressure drop occur in shallow layers of particles fluidized
by gas flow, and these pressure oscillations are concurrent with
small oscillations in bed height. Verloop and Heertjes (31) showed
that based on the balance of drag and gravitational forces in a
fluidized bed and the dependencies of these forces on «s and layer
height, h, small changes in layer height lead to restoring forces
proportional to change in layer height. Damping is negligible due
to the low density and viscosity of the gas, and thus the system can
be modeled as an undamped harmonic oscillator with resonant
frequency:

f pr = 1
2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g
h
(1 + «s)
(1 − «s)

√
. [1]

Verloop and Heertjes found that these harmonic compressions and
expansions resulted in porosity waves rising through the system. If
the layer height is tall enough, a new wave can form before the prior
wave passes through the system; as such, the particles no longer
oscillate in phase and the layer breaks up, causing multiple waves of
multiple frequencies to form in the system. Such waves ultimately
manifest in the bubbles of various sizes forming and moving
chaotically through fluidized beds.
Vibration at a resonant frequency can be viewed as an external

force driving the harmonic oscillator to prevent porosity waves of
different frequencies forming and thus suppress chaotic bubbling.
We find that Eq. 1 predicts the sharp decrease in vibration fre-
quency, which produces maximal structure with increasing bed
height at low bed heights (Fig. 4A), but cannot predict the height-
independent behavior above h1,c. Our experiments show that this
critical height is equal to the bed height at which one row of
bubbles starts to form before the previous row of bubbles fully
passes through the system. h1,c is thus analogous the critical height
for layer breakup in the Verloop and Heertjes (31) model, except
in this case the void waves are now externally forced to form
uniformly at the vibration frequency. Since we find that bubbles
rise at a constant velocity, h1,c is equal to λV −Db, where λV is the
vertical spacing between bubbles and Db is the bubble diameter
(Fig. 2C). Now, we can view the regions of particles vertically

Fig. 1. Schematic of the experimental setup.
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in-between rows of bubbles as the fluidized layers of grains described
by Verloop and Heertjes (31). As such, we can modify the resonant
frequency predicted by the harmonic oscillator to the following:

f pr = 1
2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g
h1

(1 + «s)
(1 − «s)

√
. [2]

Here, h1 is the height of contiguous particles above the base of
the bed when a new row of bubbles is forming:

h1 = { h if only one row of bubbles is present at a time
λV −Db if multiple rows of bubbles are present at a time .

[3]

Eq. 2 matches experimental results across a range of bed heights
above and below h1,c (Fig. 4A). Furthermore, the resonant fre-
quency, fr,c, for bed heights above h1,c is well matched by the
equivalent prediction from Eq. 2, f pr,c, across a range of particle
properties (Table 1). Harmonic oscillator models have been able
to capture resonant phenomena in short fluidized beds structured
by oscillating gas flow rate (32), and in our own experiments with
oscillating gas flow, we have noticed that resonant frequency also
levels off above a critical height. Therefore, the modification in
Eq. 2 is an attempt to capture the leveling off of resonant fre-
quency in taller beds with external driving forces.
The critical bed height, h1,c, can be predicted analytically using

only two measured properties Db and «s, which do not change
significantly with varying particle properties. We find experimen-
tally that bubble diameter, Db, and rise velocity, ub, do not change
as bubbles rise through the bed. Furthermore, bubble rise velocity
is predicted well (Table 1) by a semiempirical relationship:

up
b = C1

̅̅̅̅̅̅̅̅
gDb

√
. [4]

The semiempirical model (33) in Eq. 4 starts with a relationship
to gravity and bubble diameter that comes from theory for bubble

rise in conventional liquids (34). The constant C1 = 0.71 comes
from prior experiments in conventional bubbling fluidized beds
(33). One row of bubbles forms per vibration period, and thus
the vertical separation distance between bubbles is λV = ub=fr.
As seen schematically in Fig. 2C, the height of contiguous particles
between rows of bubbles and thus the height of the layer of par-
ticles below the first row of bubbles when the next row of bubbles
forms is h1,c = λV −Db. Thus, combining equations, we can pre-
dict the critical bed height above which the resonant frequency
becomes constant as follows:

hp1,c = up
b/f pr −Db. [5]

Combining Eqs. 2, 4, and 5, we can achieve an equation for h1,c,
which is only dependent on two measured properties, Db and «s:

hp1,c = C2Db, [6]

C2 = C2
1 + C1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C2

1 − 4C2
3

√
2C2

3
− 1, [7]

C3 = 1
2π

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + «s)
(1 − «s)

√
. [8]

Based on the measured value of «s = 0.63, the value of C2 is ∼2
from Eq. 7. The predicted value of hp1,c (Eq. 6) matches experi-
mental measurements well across a range of particle properties
(Table 1).
In all, the analytical modeling conducted here demonstrates

an ability to predict the resonant vibration frequency for produc-
ing maximum bubble structure as well as the bed height above
which this frequency is independent of bed height. Importantly,
this model, verified by experiments, captures that this frequency
and critical bed height do not change significantly with changing
system size or particle diameter or density. Since particle packing

Fig. 2. Vibration-induced structured bubbling: Optical images of bubbling patterns under different flow conditions: (A) Bubbling with no system vibration
and (B) bubbling with system vibration with an initial bed height of 10 cm. C shows schematically how gas flow and vibration are used, as well as the relevant
length scales in the system. D shows optical images of bubbling with system vibration with different initial bed heights. The particles used are glass beads with
ρp = 2,500 kg/m3 and dp = 212–300 μm. The time interval between two consecutive images in B is 0.1 s, half of the vibration period. From Left to Right, the initial
bed height in D is 2.5, 5, 10, 15, 20, and 30 cm. The vibration frequency is 5 Hz and the vibration amplitude is 4.5 mm for B and D. U/Umf is 1.42 for A, B, and D.
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fraction can be easily measured and does not change significantly
with changing system size or particle diameter or density, the bubble
diameter is the only significant empirical input to the analytical
model. Our experiments further show that bubble diameter does not
change significantly with system size or particle diameter or density.
As such, the combination of experimental results of bubble size,
critical bed height, and optimal vibration frequency not changing
significantly with system size or particle properties and analytical
modeling that captures the scientific underpinning of this structuring

creates design rules for industrial practitioners to structure flow
and optimize their systems.
Vibrating fluidized beds at a resonant frequency provides

structure that is scalable as system size is increased (Fig. 4 B and
C, and SI Appendix, Table S1). When system width is increased,
the spacing between bubbles in the vertical and horizontal di-
rections is unchanged (Fig. 4C and SI Appendix, Table S1). The
correlation coefficient decreases with increasing bed height
(Fig. 4B) due to degradation of structuring caused by bubble

Fig. 3. Vibration and flow conditions needed to produce structured bubbling: Correlation coefficient versus (A) vibration frequency, (B) vibration amplitude,
and (C) U/Umf. Each panel of images varies a property while keeping other properties constant: (A) Constant properties: vibration amplitude = 4.5 mm,
U/Umf = 1.4. (B) Constant properties: vibration frequency = 5 Hz, U/Umf = 1.4. (C) Constant properties: vibration frequency = 5 Hz, vibration amplitude = 4.5
mm. The initial bed height is 10 cm in A–C. The right-pointing triangles in C denote experiments without system vibration.

Fig. 4. Effects of scale-up on structured bubbling: (A) Resonant frequency for structure formation via vibration versus initial bed height, showing h1,c, the
critical bed height above which the resonant frequency becomes constant. (B) Correlation coefficient versus initial bed height for vibration, gas flow oscil-
lation, the combination of vibration and gas flow oscillation, and free bubbling. (C) Horizontal and vertical separation distances (λH and λV) between bubbles
for vibrated gas-fluidized beds with different widths. The fluidized particles in A and B are glass beads with ρp = 2,500 kg/m3 and dp = 150–212 μm. The
fluidized particles in C are glass beads with ρp = 2,500 kg/m3 and dp = 212–300 μm. The initial bed height is 10 cm in C. The vibration frequency and amplitude
are 5 Hz and 4.5 mm, respectively, for A–C. The U/Umf is 1.44 in A and in the vibration and free bubbling cases in B. U/Umf = 1.92 + 1.25 sin(2π5t) in the gas flow
oscillation and combination cases in B. U/Umf = 1.42 in C.
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coalescence higher in the bed (Fig. 2D). However, the structuring
in the case of a vibrated fluidized bed is approximately an order of
magnitude higher than that of a conventional fluidized bed at all
bed heights, and it is significantly higher than that of a fluidized
bed with oscillating gas flow rate at taller bed heights (Fig. 4B).
Results for combined gas oscillation and system vibration show
that, especially at higher bed heights, vibration dominates over gas
flow oscillation in producing structure, and thus the combined gas
flow oscillation and system vibration produces correlation coeffi-
cients similar to those for vibration alone. The better scaling of
structure in vibrated beds is attributed to system vibration persisting
more through the entire height of the bed, while gas oscillation
effects are more dissipated higher in the bed due to percolating gas
motion through bubbles and interstices between particles.
Discrete particle simulations predict the experimental triangular

structure in resonantly vibrated fluidized beds, and demonstrate
that this structure arises due to rapid, local transitions between
fluid-like and solid-like behavior in the particles (Fig. 5, SI Ap-
pendix, Fig. S3, and Movie S1). Computer simulations (35) that
model the motion of each individual particle using the discrete
element method (36) and gas motion using computational fluid
dynamics with gas–solid interaction modeled using a drag law (37)
were used to simulate a vibrated fluidized bed with the same
particle properties used experimentally. Due to the downward
velocity of particles surrounding bubbles, the solids volume frac-
tion is greater at the base of the system below bubbles than at the
base of the system in-between bubbles (Fig. 5, second column). As
the next row of bubbles is about to form, strong particle contact
forces are seen at the base of the bed just below bubbles as well as
in-between the bubbles (Fig. 5A, third column). However, due to
particle concentration and convection patterns (Fig. 5, second
column), contact forces are smaller between bubbles than directly
below the bubbles as the next row of bubbles starts to form (Fig. 5B,
third column). Thus, particles are in a densely packed, solid-like
state below bubbles and in a less densely packed, fluid-like state
between bubbles as the next row of bubbles forms. As a result, the
bubbles form at the most favorable positions, locations halfway
horizontally in-between the positions of bubbles in the row above,
leading to the formation of the triangular structure. This local
solidification persists surrounding bubbles as they rise (SI Ap-
pendix, Fig. S3 and Movie S1), indicating how structure can
propagate high in the bed without coalescence of bubbles. Prior
discrete particle simulations have also indicated that local solidi-
fication of particles leads to similar bubble structuring in fluidized
beds with oscillating gas flow (38). The importance of this local
solidification in causing structure formation and persistence is
further evidenced by experiments we have conducted with viscous,
Newtonian fluids in which combined vibration and gas flow could
not produce structured bubbling (SI Appendix, Fig. S4).
The insights of this study have a number of important parallels

to those from studies considering oscillating gas flow rate, together
with key physical understanding. A recent review paper summarizes
prior work using oscillating gas flow to induce structured bub-
bling patterns (21). In contrast to this recent thinking (21), here
we show that vibration can induce structured bubbling patterns,

and that vibration-induced patterning (Fig. 4B) persists through
higher system heights than when oscillating gas flow is used, dem-
onstrating scalability. The importance of “natural frequencies” for
governing structured versus unstructured bubbling regimes has
been noted in an oscillating gas flow study (32). Here, we show
that for vibration-induced structuring, the frequency predicted by
a harmonic oscillator model is in fact a resonant frequency for
maximizing structure (Fig. 3A), and this resonant frequency is
independent of bed height above a critical bed height, which we
can capture analytically (Table 1). Discrete particle simulations have
reproduced triangular structured bubbling patterns in oscillating gas
flow and shown that structure forms due to local solidification of
particles below bubbles (38), as we have shown here for vibration
(Fig. 5). Importantly, prior reviews (21, 28) have noted the inability
for continuum models to predict the triangular structured bubbling
pattern and that this inability stems from the rheological models
being incapable of accurately predicting fluid–solid transitions in
grains, a wide-reaching modeling need and effort in predicting
granular flows. In the remainder of this paper, we describe our
development of a continuum model, which can predict structured
bubbling a priori by capturing fluid–solid transitions in grains as a
final important insight with the potential to impact a variety of
future work.
Fully continuum simulations (37) of gas–solid flows treat particles

as a fluid, and thus are significantly more computationally efficient
than discrete particle simulations, but require complex rheological
models to formulate the solids stress. Prior studies (39–41) have
attempted to use fully continuum simulations to predict structured
bubbling with alternating bubble rows seen experimentally in systems
with oscillating gas flow. However, these prior works have not suc-
cessfully reproduced the highly regular patterns observed in experi-
ments and discrete particle simulations. Here, we propose a frictional
solids stress model, which enables fully continuum models to predict
the triangular structured bubbling pattern a priori.
Herein, we use fully continuummodels to simulate the structured

bubbling patterns produced by vibration. Two predominantly used
frictional solids stress models, the Schaeffer model (42) and the
Srivastava and Sundaresan model (43), were first tested. The
Schaeffer model couples the frictional solids pressure formulation
of Syamlal et al. (42) and the frictional solids viscosity formulation
of Schaeffer (44). The Srivastava and Sundaresan model (43) uses
the frictional solids pressure at the critical state of Johnson and
Jackson (45) and modifies the Schaeffer viscosity formulation (44)
to take into account the effect of strain rate fluctuations. The
Schaeffer model (42) cannot predict the structured bubbling pat-
tern (Fig. 6A) across a wide range of vibration and superficial gas
velocity conditions. The Srivastava and Sundaresan model (43)
can produce structured bubbling with alternating rows (Fig. 6B);
however, the gas flow conditions needed to achieve structuring as
well as the size and separation between bubbles are different from
those observed experimentally. The model proposed here predicts
a priori the alternating bubble row structure with greater accuracy in
bubble size and separation distance, while also utilizing the gas flow
conditions used experimentally (Fig. 6C, SI Appendix, Fig. S5, and
Movie S1). In further simulations, we found that the proposed

Table 1. Comparison between experiments and theoretical models for the bubble rise velocity, resonant frequency, and h1,c, the bed
height above which resonant frequency becomes constant with increasing bed height

Particle type Particle size, μm Particle density, kg/m3 Db, mm ub, m/s up
b, m/s fr,c, Hz fpr,c, Hz h1,c, mm hp

1,c, mm

Glass beads 150–212 2,500 17 ± 3 0.29 ± 0.04 0.29 5 5.05 43 ± 3 35
Glass beads 212–300 2,500 20 ± 3 0.31 ± 0.04 0.31 5 4.98 44 ± 4 41
Glass beads 400–600 2,500 20 ± 5 0.30 ± 0.06 0.31 5 5.17 41 ± 4 41
Ceramic beads 400–600 4,100 22 ± 5 0.32 ± 0.05 0.33 5 5.05 43 ± 3 45
Ceramic beads 400–600 6,000 23 ± 4 0.33 ± 0.05 0.34 5 4.88 46 ± 4 47

The symbols with and without * indicate the values obtained by theoretical models and experiments, respectively. up
b is determined using Eq. 4, fpr,c is

determined using Eq. 2, and hp
1,c is determined using Eq. 6.
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model predicts structured bubbling induced by oscillating gas flow
accurately, while the other models tested cannot predict structured
bubbling induced by oscillating gas flow with the same level of
accuracy as the proposed model (SI Appendix, Fig. S6).
The frictional solids stress model proposed here considers a

shear-induced dilation law developed independently from struc-
tured bubbling experiments or simulations. Prior discrete particle
simulation studies without gas flow have proposed a dilation law to
capture how a granular assembly dilates under shear (46–48). These
studies have shown that, starting from the solids volume fraction at
maximum packing, «s,max, the solids concentration, «s, decreases
linearly with increasing the inertial number I:

«s = «s,max − («s,max − «s,minf )I, [9]

where «s,minf is the lowest solids concentration at which frictional
contacts affect particle-phase stress. The inertial number I is
defined by the following:

I = _γdp̅̅̅̅̅̅̅̅̅̅
p/ρp√ , [10]

where _γ is the shear rate, p is the solids pressure, dp is particle
diameter, and ρp is the particle density.
The solids pressure at a critical state in which the granular

assembly deforms without volume change,pc (49), is needed to

determine frictional solids pressure and solids viscosity. We treat
the pressure in the inertial number as pc because both pressures
occur at high volume fractions when particles are transitioning
between fluid- and solid-like behavior. By combining Eqs. 9 and
10, we propose a critical state solids pressure formulation:

pc = ((«s,max − «s,minf ) _γdp)2ρp(«s,max − «s)2 . [11]

As shown in SI Appendix, we apply a transition factor to ensure
continuity in pc across solids volume fraction, we add the solids
pressure of the Schaeffer (42) model at «s,max to prevent over-
packing of particles, and we combine this formulation of pc with
the equations of Srivastava and Sundaresan (43) to model fric-
tional solids pressure and solids viscosity.
Discrete particle simulations (Fig. 6D) and continuum models

using the Srivastava and Sundaresan stress model (43) (Fig. 6E)
and the proposed stress model (Fig. 6F) all predict high particle-
phase pressure below bubbles, indicating local solidification. This
local solidification is key to the formation of the triangular
pattern (Fig. 5) as well as its propagation higher in the bed (SI
Appendix, Fig. S3) because the solidification prevents bubbles
from moving sideways and bubbles from accelerating to coa-
lesce with bubbles above them. Similar behavior has been ob-
served previously in discrete particle simulations with oscillating
gas flow (28, 38).

Fig. 5. Discrete particle simulation results of the structured bubbling with vibration at two different time instances (A and B), showing fluid–solid transitions
in particles at the base of the system. First column: Snapshots of discrete particles, marking in red the region used for the zoomed-in view in the second and
third columns. Second column: Zoomed-in local solids volume fraction with arrows indicating particle velocity. Third column: Zoomed-in particle contact force
normalized by particle weight. The time interval between A and B is 0.02 s, 1/10th of the vibration period. The simulated particles have properties ρp =
2,500 kg/m3 and dp = 238 μm. The vibration frequency and amplitude are 5 Hz and 8 mm, respectively. The U/Umf is 1.39.
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Different continuum models have different curves for the fric-
tional solids pressure versus solids volume fraction (Fig. 6G). We
attribute the failure of the Schaeffer model (42) to capture the
alternating structured bubbling pattern to the fact that this model
only accounts for frictional solids stress above «s,max. Thus, this
model cannot capture solidifying particle behavior in the inter-
mediate particle packing regime («s,minf < «s < «s,max) typically
observed surrounding bubbles in a fluidized bed. In contrast, the
proposed model and that of Srivastava and Sundaresan (43) show
a gradually increasing frictional particle stress in this intermediate
regime with increasing solids volume fraction, allowing particles to
exhibit local solidification below bubbles while having fluid-like
behavior above and to the sides of bubbles. We attribute the
better quantitative accuracy of the proposed model to that of the
Srivastava and Sundaresan (43) model to the subtle differences in
the curves in Fig. 6G arising from the specific formulation of the
proposed constitutive model. In separate simulations, we shifted
the curves of the Srivastava and Sundaresan (43) and Schaeffer
(42) models by adjusting the values of «s,minf and «s,max to have
significant frictional solids stress begin at a solids volume fraction
of 0.6 to more closely match the curve of the proposed model.
However, even in these cases, these two prior models could not
match the accuracy of the proposed model for producing struc-
tured bubbling, further indicating that the accuracy of the pro-
posed model comes from the particular details of its formulation.
Thus, vibrating granular systems with upward gas flow at a

resonant frequency can create structured arrays of bubble-like
voids rising through the particles, suppressing the mathematical
chaos in bubble dynamics observed when the system is not vibrated.
Since bubble motion is directly tied to overall gas and particle
motion, structuring bubbling effectively structures particle mixing
and gas–solid contact. The resonant frequency can be captured
by a harmonic oscillator model, and discrete particle simulation
demonstrates that structure forms due to rapid, local transitions
between solid-like and fluid-like behavior in the grains. These
fluid–solid transitions are difficult to capture in continuummodels,
making the structures formed a testbed for challenging continuum
models. We show that existing continuum gas–solid flow models
cannot fully capture the bubbling structures observed experimen-
tally, yet our proposed constitutive relationship for frictional solids
stress can predict the alternating bubble structure. The bubble
structure formed remains largely unchanged across changing sys-
tem sizes and particle properties, with more robust structure than

that created by oscillating gas flow rate, opening opportunities to
address key issues in bubbling fluidized beds needed in industry.

Materials and Methods
Fluidized beds were constructed using polymethyl methacrylate (PMMA)
sheets with a sintered bronze plate with an average pore size of 15 μm
(HENGKO Technology) used to create a uniform gas flow through the distrib-
utor at the base of the fluidized bed. The beds were vibrated (Fig. 1) using an
electrodynamical shaker (Labworks; ET-140). Particles were fluidized using fully
humidified air; the tops of the fluidized beds were open to the air at atmo-
spheric pressure. Gas flow was controlled using a mass flow controller (Alicat;
MCP-50 slpm or MCP-250 slpm), and the mass flow controller was used to os-
cillate gas flow rate for experiments involving oscillating gas flow rate. Spher-
ical particles were used with the density and size specifications given in the
figures as quoted by the manufacturer; glass beads (Ceroglass) had a density of
2,500 kg/m3, while ceramic beads (Ceroglass) were used for the higher density
particles. The solids volume fraction was measured by filling the system with
particles of known density (ρp) and measured total weight (w) to a known total
volume (V) and calculating the solids volume fraction as «s = w=(Vρp). Mini-
mum fluidization velocities were determined by slowly decreasing the gas ve-
locity with no vibration from a bubbling state until no bubbles or particle
motion were observed. Optical images were obtained using a high-speed
camera (AOS Technologies AG; PROMON U750 monochrome camera). Digital
image analysis was conducted using MATLAB to quantify correlation coeffi-
cient, bubble diameter, separation distance between bubbles, and bubble rise
velocity. Bubble diameter was determined by binarizing images into particulate
and bubble regions, evaluating the area of bubbles and determining the di-
ameter of a circle with the same area. Horizontal and vertical distance between
bubbles were determined, respectively, as the horizontal distance between the
center of two horizontally neighboring bubbles formed in the same row and as
the vertical distance between the center of two vertically neighboring bubbles,
respectively. Bubble rise velocity was determined as the slope of a linear re-
gression through the plot of the vertical center position of a bubble versus time.

Discrete particle gas–solid flow simulations were conducted using CFDEM
coupling software (50). Images of particle velocity and volume fraction of
these simulations were rendered using MATLAB. Images of force chains from
these simulations were rendered using ParaView. Continuum gas–solid
simulations were conducted using MFiX software (51). The proposed con-
stitutive model was built into MFiX as a user-defined function. Images of
these simulations were rendered using MATLAB.

Data Availability. All study data are included in the article and/or supporting
information.
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Fig. 6. Continuum modeling of structured bubbling: (A–C) Snapshots of local solids volume fraction predicted by continuum simulations using different constitutive
models: (A) Schaeffer model (42), (B) Srivastava and Sundaresanmodel (43), and (C) the proposedmodel. (D) Solids pressure produced in discrete particle simulations of
structured bubbling. (E and F) Solids pressure produced in continuum simulations of structured bubbling using (E) Srivastava and Sundaresan model (43) and (F) the
proposed model. (G) Plot of frictional solids pressure versus solids volume fraction for different constitutive models in continuum simulations for flow conditions
observed in structured bubbling. The simulated solids phase has properties ρp = 2,500 kg/m3 and dp = 238 μm. The vibration frequency and amplitude are 5 Hz and
4.5 mm, respectively. U/Umf = 1.37 for the Schaeffer model (42) and the proposed model, and U/Umf = 1.25 for the Srivastava and Sundaresan model (43).
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