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Supplemental oxygen administration is frequently used in premature infants and adults with pulmonary insufficiency. NADPH
quinone oxidoreductase (NQO1) protects cells from oxidative injury by decreasing reactive oxygen species (ROS). In this
investigation, we tested the hypothesis that overexpression of NQO1 in BEAS-2B cells will mitigate cell injury and oxidative
DNA damage caused by hyperoxia and that A-1221C single nucleotide polymorphism (SNP) in the NQO1 promoter would
display altered susceptibility to hyperoxia-mediated toxicity. Using stable transfected BEAS-2B cells, we demonstrated that
hyperoxia decreased cell viability in control cells (Ctr), but this effect was differentially mitigated in cells overexpressing NQO1
under the regulation of the CMV viral promoter, the wild-type NQO1 promoter (NQO1-NQO1), or the NQO1 promoter
carrying the SNP. Interestingly, hyperoxia decreased the formation of bulky oxidative DNA adducts or 8-hydroxy-2′
-deoxyguanosine (8-OHdG) in Ctr cells. qPCR studies showed that mRNA levels of CYP1A1 and NQO1 were inversely related
to DNA adduct formation, suggesting the protective role of these enzymes against oxidative DNA injury. In SiRNA
experiments entailing the NQO1-NQO1 promoter, hyperoxia caused decreased cell viability, and this effect was potentiated in
cells treated with CYP1A1 siRNA. We also found that hyperoxia caused a marked induction of DNA repair genes DDB2 and
XPC in Ctr cells, supporting the idea that hyperoxia in part caused attenuation of bulky oxidative DNA lesions by enhancing
nucleotide excision repair (NER) pathways. In summary, our data support a protective role for human NQO1 against oxygen-
mediated toxicity and oxidative DNA lesions in human pulmonary cells, and protection against toxicity was partially lost in
SNP cells. Moreover, we also demonstrate a novel protective role for CYP1A1 in the attenuation of oxidative cells and DNA
injury. Future studies on the mechanisms of attenuation of oxidative injury by NQO1 should help in developing novel
approaches for the prevention/treatment of ARDS in humans.

1. Introduction

Supplemental oxygen is an integral part of medical manage-
ment of pediatric and adult patients with pulmonary insuffi-
ciency [1–3]. In premature infants and adults, exposure to

hyperoxia contributes to the development of bronchopul-
monary dysplasia (BPD) [4, 5], and in adults, it could exacer-
bate acute respiratory distress syndrome (ARDS) [6–8].
ARDS is a life-threatening illness that affects up to 10% of
patients in intensive care units worldwide [9] and could
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develop following pneumonia, nonpulmonary sepsis, trauma,
or aspiration [9]. Despite significant medical advances, mor-
tality due to ARDS is high (35-46%) [8, 9], and recent studies
have shown that ARDS is one of the major causes of death due
to the COVID-19 infection [10]. The molecular mechanisms
of oxygen-mediated lung injury are not completely under-
stood, but reactive oxygen species (ROS) likely play an impor-
tant role [11]. Hyperoxia (>95% FiO2) for 72 hours in rodents
results in lung inflammation and injury, eventually leading to
cell death [4, 12]. ROS generated in hyperoxic conditions lead
to profound cell damage through direct DNA damage, lipid
peroxidation, protein oxidation, and alteration of transcrip-
tion factors [4, 12]. Recent studies from our laboratory have
shown a protective effect of cytochrome P450 (CYP) 1A
enzymes against hyperoxic lung injury in vivo [13–20].

NADPH quinone oxidoreductase 1 (NQO1) is a phase II
enzyme whose activity in the cell is to catalyze the two-
electron reduction of quinone compounds, which prevents
the generation of ROS and, thus, protects cells from oxida-
tive damage [21]. Das et al. showed that mice deficient in
the genes for Nqo1 and Nqo2 are more susceptible to lung
injury than wild-type mice [22]. A number of single nucleo-
tide polymorphisms (SNPs) have been reported for NQO1
[23–28]. Although associations between genetic variants in
NQO1 and ALI/ARDS have been reported [22–28], little is
known regarding the mechanisms by which these genetic
variants contribute to ARDS.

Prior reports have demonstrated that the A/C single
nucleotide polymorphism (SNP) at -1221 of the NQO1 pro-
moter resulted in attenuation of in vitro transcription of
luciferase reporter expression following exposure to hyper-
oxic conditions [29]. Individuals in a cohort of trauma
patients who were genotyped for the A-1221C SNP were
found to have a significantly decreased incidence of acute
lung injury (ALI), implying a protective role for A-1221C
in ARDS patients [29].

The overall objective of this investigation was to study
the role of human NQO1 and A-1221C SNP in hyperoxia-
mediated cellular injury and oxidative DNA damage. Specif-
ically, we tested the hypothesis that overexpression of NQO1
in BEAS-2B cells will mitigate cell injury and oxidative DNA
damage caused by hyperoxia and that the presence of A-
1221C SNP in the NQO1 promoter would display altered
susceptibility to hyperoxia-mediated toxicity.

2. Materials and Methods

2.1. Cell Culture. BEAS-2B adenovirus 12-SV40-trans-
formed, normal human bronchial epithelial cells (ATCC)
were maintained in RPMI 1640 medium supplemented with
10% FBS and penicillin-streptomycin at 37°C in room air
containing 5% CO2. The hyperoxia condition used was
80% O2 plus 5% CO2.

2.2. Construction of Plasmids. A 2.4 kb of human NQO1 pro-
moter was obtained from the genomic DNA of BEAS-2B
cells by the LA Taq PCR Kit (Takara) using primer pair
GGCTTCTCAGACCACTCCTG and ACTAGGCTCTC
GGTGAGCTG and subcloned into the pGL4.13 luciferase

expression plasmid (Promega) between the SacI and XhoI
sites. A-1221C mutation (rs689455) at the NQO1 promoter
region of the pGL4-NQO1 plasmid was introduced by site-
directed mutagenesis PCR using primer pair AGGTCGGGA
GTTGGAAAC and CAGGTGATCCTACCGCCT. These
two plasmids were named pGL4-NQO1 and pGL4-SNPNQO1.

To obtain the NQO1 expression plasmid pCD-NQO1,
total RNA was extracted from BEAS-2B cells and subjected
to reverse transcription using the SuperScript III First-
Strand Synthesis System (Invitrogen). The open reading
frame and the 3′-UTR of human NQO1 were obtained as
one piece by the subsequent PCR (Takara) using primer pair
CAGCTCACCGAGAGCCTAGT and AAAAACCACCA
GTGCCAGTC and then subcloned between the NheI and
XhoI sites of the pcDNA3.1(+) mammalian expression plas-
mid (Invitrogen). It was named pCMV-NQO1. The CMV
promoter in pCD-NQO1 was replaced by the 2.4 kb wild-
type or SNP-human NQO1 promoter, which was excised
from pGL4-NQO1 and pGL4-SNPNQO1. The two new plas-
mids were named pNQO1-NQO1 and pSNPNQO1 (or
pSNP). The correct sequence of each plasmid was verified
by DNA sequencing.

2.3. Stable Expression of NQO1 in BEAS-2B Cells. pcDNA3.1,
pCMV-NQO1, pNQO1-NQO1, or pSNP was transfected into
BEAS-2B cells using SuperFect (Qiagen) and maintained in
100μg/ml Geneticin (Invitrogen). Clones were screened by
immunofluorescence staining with the A180 NQO1 anti-
body (Santa Cruz Biotechnology) and verified by qPCR.
These 4 stable transfected BEAS-2B cell lines were named
Ctr-, CMV-NQO1-, NQO1-NQO1-, and SNP-BEAS-2B cells,
respectively.

2.4. NQO1 Assay. This method was adapted from Tsvetkov
et al. in 2005 [30]. Cells were lysed in 25mM Tris,
pH7.5/1mM EDTA/0.1mM dithiothreitol (DTT). Cell
lysate (30-50μg) was mixed in 200μl of reaction buffer
(25mM Tris-HCl (pH7.5), 0.01% Tween 20, 0.7mg/ml
BSA (pH7.4), 40μM menadione, 5μM flavin adenine dinu-
cleotide (FAD), and 200μM nicotinamide adenine dinucleo-
tide (NADH)) in a 96-well plate. Absorbance at 340nm
(A340nm) was measured repeatedly during the decay of
NADH. Statistical difference between each group was calcu-
lated with Tukey’s multiple comparison test in repeated
measures ANOVA using GraphPad Prism 5.

2.5. qPCR. Total RNA was extracted from the cell lysates
using the Qiagen RNeasy Kit. The mRNA level was quanti-
fied with the BioRad iScript Reverse Transcription Supermix
and the iQ SYBR Green Supermix RT-qPCR method, while
the primers for CYP1B1 and the reference gene OAZ1were
obtained following the method of Dinu et al. in 2016 [31].
Primers for AHR, CYP1A1, and NQO1 were obtained fol-
lowing the method of Shivanna et al. in 2011 [32]. Other
primers included the following: NME1, tcattgcgatcaaaccagat
and caacgtagtgttccttgaga; PCNA, aggcactcaaggacctcatca and
gagtccatgctctgcaggttt; ERCC1, ggcgacgtaattcccgacta and
agttcttccccaggctctgc; OGG1, gatgttgttgttggaggaa and aagaggt
ggctcagaaat; XPC, taaatagcaaatctcctttcc and acacctactacctc
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tcaa; PARP1, cacttgctgcttgttgaa and gaacgacctgatctggaa;
DDB2, gcattctgagattccaaagc and tgtagcctggatgtgtct; XAB2,
cccccaaaatatgccaagacct and tgctcgtccgacagcacctc; and NEIL2,
gcactcaggactgaaccga and ctgtctgctatacactgctgga.

2.6. Cell Viability Assays. Cell viability was determined by
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide) Proliferation Assay Kit from ATCC and the
live protease assay using the ApoTox-Glo Triplex Assay
Kit from Promega, according to the manufacturers’ instruc-
tions and the method of Dinu et al. in 2016 [31].

2.7. ApoTox-Glo Triplex Assay. Cytotoxicity and cell viability
of cells in 96-well black-walled plates were determined using
the ApoTox-Glo Triplex Assay (Promega) according to the
manufacturers’ instructions and the method of Dinu et al.
in 2016 [31]. Cell viability (live cell protease activity) and
dead cell level (dead cell protease activity) were determined
by fluorescence absorption at 505nm and 520 nm, respec-
tively. Caspase 3/7 assays were determined by biolumines-
cence as reported earlier [31].

2.8. Knockdown of CYP1A1 in Ctr and NQO1-NQO1 Cells.
Ctr and NQO1-NQO1 cells were transfected with human
CYP1A1 siRNA (Thermo Fisher Scientific #4392420, Assay
ID s3800) or negative control siRNA (Thermo Fisher
Scientific #4390843) using the Lipofectamine RNAiMAX
Transfection Reagent (Invitrogen) according to the manu-
facturers’ instructions. The cells were subjected to hyperoxia
treatment 24h after the transfection.

2.9. Detection of Oxidative DNA Lesions by the 32P-
Postlabeling Assay. BEAS-2B human cells were grown in cul-
ture and transfected with pcDNA3.1, pCMV-NQO1,
pNQO1-NQO1, or pSNP. Cells were exposed to 80% oxygen
or room air for 48 hours. DNA was extracted from the cells
and subjected to enzymatic digestion and enrichment of the
oxidative products (pNp-cAP) from the DNA digest. Dinu-
cleotide adducts were labeled with [32P]-orthophosphate
from [γ-32]-ATP mediated by polynucleotide kinase and
then separated by two-dimensional thin-layer chromatog-
raphy per the previously described method [16, 33–36].
The labeled nucleotides were chromatographed on
polyethyleneimine-impregnated cellulose thin-layer chro-
matography (TLC) plates and imaged by the InstantIma-
ger (Packard Instruments, Merien, Connecticut). Levels of
total 8,5-cyclo-20-deoxyadenosine (cA) oxidative DNA
adducts as well as the individual dinucleotides adenine cA
(AcA), guanine cA (GcA), cytosine (GcA), and thymine cA
(TcA) were analyzed as reported previously [25, 35]. 32P-
labeled DNA adducts were quantified by InstantImager [35,
36]. The oxidative dinucleotide adducts of cells on TLC maps
were identified by comparing with those from genomic DNA
obtained from endotracheal aspirate of an ARDS patient who
was subjected to supplemental oxygen and mechanical venti-
lation. The ARDS patient sample was obtained from Ben
Taub General Hospital, Houston, TX, as part of an ongoing
IRB-approved study at Baylor College of Medicine.

2.10. Detection of 8-Hydroxy-2′-Deoxyguanosine (8-OHdG)
by LC-MS/MS. Total DNA was isolated from cells using pro-
teinase K digestion followed by phenol/chloroform extrac-
tion and ethanol precipitation. After undergoing a series of
digestion with micrococcal endonuclease, spleen phosphodi-
esterase, nuclease P1, and calf intestinal phosphatase, 0.2μg
DNA in 50μl of a 1 : 1 methanol/water mixture was sub-
jected to LC-MS/MS analysis [37, 38].

2.11. Statistical Analyses. All data were analyzed by compar-
ing mean ± SE of at least 3 independent experiments. Mean
values among different groups were compared using Stu-
dent’s t-test, unless specified, and P < 0:05 was considered
significant.

3. Results

3.1. Effect of Hyperoxia on NQO1, CYP1A1, CYP1B1, and
AHR Gene Expression in Control and NQO1 Overexpressing
Cells. Stable cell lines transfected with pcDNA3.1 (Ctr),
pCMV-NQO1 (CMV-NQO1), pNQO1NQO1 (NQO1-NQO1),
and pSNPNQO1 (SNP) were cultured under room air (RA) or
80% oxygen (O2) for 48h. qPCR, using OAZ1 as the reference
gene, indicated that NQO1 mRNA level was significantly
induced by hyperoxia in Ctr cells (Figure 1(a)). In cells stably
transfected with NQO1-containing cDNA plasmids, hyper-
oxia augmented the NQO1 expression by 77%, 118%, and
66% in CMV-NQO1, NQO1-NQO1, and SNP cells, respec-
tively, compared to room air conditions (Figure 1(a)). NQO1
mRNA level was significantly higher in each of the NQO1
overexpressed cells compared to Ctr cells even in room air
(Figure 1(a)), with SNP cells showing greater NQO1 expres-
sion compared to NQO1-NQO1 cells. The extent of NQO1
induction from baseline levels in SNP cells by hyperoxia
appeared to be less than that of NQO1-NQO1 cells
(Figure 1(a)).

At protein level, NQO1 overexpression was detected by
the NQO1 assay (Figure 2(a)). NADH decay was measured
by A340nm in 50μg lysate protein from Ctr cells as well as
CMV-NQO1, NQO1-NQO1, and SNP cells in the presence
of menadione (substrate) and FAD (coenzyme), a reaction
catalyzed by the NQO1 enzyme in the lysate. The decay of
NADH appeared to be significantly faster in CMV-NQO1,
NQO1-NQO1, and SNP cells when comparing with Ctr cells,
which was represented by slightly but statistically significant
higher Kdecay value and shorter half-life (Figure 2(a)). This
result indicated that CMV-NQO1, NQO1-NQO1, and SNP
cells expressed higher NQO1 activities than Ctr cells.

The NQO1 assay also showed that hyperoxia (80% O2,
48 h) significantly induced the NQO1 enzyme in CMV-
NQO1, NQO1-NQO1, and SNP cells when comparing with
Ctr cells (Figures 2(b)–2(e)). Western blot analyses detected
NQO1 protein in each of the constructs (Supplemental
Figure 1), and hyperoxia induced NQO1 expression in
each of the cells, albeit the basal expression of NQO1 was
not different among the constructs.

At mRNA level, hyperoxia elicited marked induction of
CYP1A1 (~10-fold) in Ctr cells and CMV-NQO1 cells (~5-
fold) (Figure 1(b)). Hyperoxia also caused induction of
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CYP1A1 in NQO1-NQO1 and SNP cells (Figure 1(b)), with
the extent of induction being greater in the SNP cells (~20-
fold). Hyperoxia induced CYP1B1 gene expression in SNP
cells but not in the other cell lines (Figure 1(c)). CYP1B1
expression in room air in the CMV-NQO1 and NQO1-
NQO1 was lower than Ctr cells. On the other hand, CYP1B1
expression in SNP cells was higher than that of NQO1-
NQO1 in both room air and hyperoxic conditions
(Figure 1(c)). The expression of AHR gene was not altered
by hyperoxia in any of the cells (Figure 1(d)).

3.2. Overexpression of NQO1 Altered Hyperoxic Cytotoxicity.
Hyperoxia significantly decreased cell viability. The A590nm
of the Ctr cells decreased by 41% in the MTT assay
(Figure 3(a)). Overexpression of NQO1 resulted in improve-
ment in cell viability (16-33%) in the 3 NQO1-overexpressed
cell lines. The live cell protease assay (Figure 3(b)) exhibited
a comparable result, in which hyperoxia decreased cell via-
bility, and it was rescued in part by overexpression of
NQO1, with CMV-NQO1 cells showing an increase in cell
viability after hyperoxia. The dead cell protease activities
represented the number of dead cells in the wells. In
NQO1-NQO1 (and CMV-NQO1) cells, cell death was 45-
50% lower compared to room air controls, and as in
NQO1-NQO1 cells, cell death in hyperoxic cells was lower
than that in the Ctr group (Figure 3(c)). Cell death was also
decreased in SNP cells by hyperoxia, but the number of dead

cells were higher in SNP cells exposed to hyperoxia compared
to those ofNQO1-NQO1 (Figure 3(c)). Interestingly, there was
an increase of caspase 3/7 activities in the live cells
(Figure 3(d)) overexpressing NQO1. This result suggested that
overexpression of NQO1 might redirect the hyperoxia-
stressed cells into an apoptotic pathway rather than necrotic
death. This redirection was decreased in cells harboring the
A-1221C SNP on the NQO1 promoter because SNP cells
appeared to not be different from Ctr cells (Figure 3(d)). In
all these experiments, an equal number of cells were plated
from all cell lines.

3.3. Effect of Hyperoxia on Oxidative DNA Adduct
Formation. Previous studies have shown that hyperoxia
increases oxidative DNA adduct formation [34]. Levels of
total 8,5-cyclo-2-deoxyadenosine (cA) oxidative DNA
adducts as well as the individual dinucleotides adenine cA
(AcA) and guanine cA (GcA) were determined by Veith
et al. in 2018 [34] and by Zhou and Moorthy in 2015 [35]
(Figure 3(a)). The DNA in Figure 4(a) was obtained from
an endotracheal aspirate sample from an ARDS patient as
described under Materials and Methods. The cA adducts
are formed by hydroxyl radical attack on 2′-deoxyadeno-
sine, which then binds covalently with the adjacent
nucleotide [33, 35]. The location of these adducts on the
thin-layer chromatography (TLC) plates was based on
cochromatography and rechromatography using structurally
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Figure 1: Overexpression of NQO1 in NQO1-stable transfected cells. BEAS-2B cells stably transfected with pcDNA3.1 (Ctr), pCD-NQO1
(CMV-NQO1), pWT-NQONQO1 (NQO1-NQO1), and pmut-NQONQO1 (SNP) were incubated under room air (RA) or 80% O2 (O2)
conditions for 48 h and subjected to qPCR using total RNA extracted from these cells. Gene expression of NQO1 (a), CYP1A1 (b),
CYP1B1 (c), and AHR (d) were determined. ∗Statistically significant difference between room air and hyperoxia. †Statistically significant
difference with Ctr. ‡Statistically significant difference between the NQO1-NQO1 and SNP-NQO1 promoter (n = 3; P < 0:05).
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characterized adducts [36]. Total pulmonary adducts were
quantified in Figure 4(b), which included the aggregate
values of the AcA, CcA, GcA, and TcA adducts. The individ-
ual dinucleotide adducts were also analyzed as well. Our
main finding was that in all cells, the formation of the

DNA adducts AcA, CcA, GcA, and TcA was mostly
decreased in the hyperoxia groups. The hyperoxia-
mediated decrease in total adduct levels was significant in
Ctr cells and CMV-NQO1 cells but not significant in
NQO1-NQO1 or SNP cells (Figure 4(b)).
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Figure 2: NADH decay curve indicated enhanced NQO1 enzyme activity in cells stably transfected with NQO1 cDNA (a), or by hyperoxia
(b–e). (a) 50 μg lysate from each of the stably transfected BEAS-2B cell lines Ctr, NQO1-NQO1, and SNP was subjected to the NQO1 assay.
(b–e) Four cell lines were incubated under room air (RA) or 80% O2 (O2) conditions for 48 h. 30 μg lysate was subjected to the NQO1 assay.
One way ANOVA indicated statistically significant difference between specified curves. Kdecay value and half-life were the curve fitting
results using the “one phase decay” model in GraphPad Prism 5. ∗Statistically significant difference with Ctr cells (a) or between RA and
O2 (b–e) (n = 3; P < 0:05).
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3.4. Inverse Correlation between Oxidative DNA Adducts and
CYP1A1/NQO1 Expression. In order to determine if a mech-
anistic relationship exists between oxidative DNA adducts
and gene expression of CYP1A1 or NQO1, we conducted a
regression analyses between levels of each of the cyclopur-
ines (AcA, GcA, TcA, and CcA) and total adducts, and that
of CYP1A1 (Figure 5(a)) or NQO1 (Figure 5(b)). The data
were compared among these parameters after combining
the data obtained from at least 3 individual experiments in
all the 4 cell lines, which were either maintained in room
air or exposed to hyperoxia (Figure 5). The results showed
that each of the cyclopurine dinucleotides and total adducts
inversely correlated with CYP1A (Figure 5(a)) or NQO1
(Figure 5(b)) gene expression.

3.5. Effect of Hyperoxia on 8-OHdG Levels. In order to deter-
mine if the oxidative DNA adduct data correlated with 8-
OHdG levels, we measured 8-OHdG levels under similar
experimental conditions by LC-MS/MS in the total DNA
extracted from Ctr, NQO1-NQO1, and SNP cells. The 8-
OHdG level in the genomic DNA from Ctr cells was signifi-
cantly (34.2%) decreased by hyperoxia, and this decrease was
not observed inNQO1-NQO1 cells or the SNP cells (Figure 6).

3.6. Role of CYP1A1 in the Modulation of Cell Toxicity and 8-
OHdG. In order to determine if inhibiting CYP1A1 would
modulate the cell toxicity and oxidative DNA damage
responses by hyperoxia, we determined cell viability
(Figure 7(a)) and levels of 8-OHdG (Figure 7(b)) in Ctr
and NQO1-NQO1 cells that had been treated with control
or CYP1A1 siRNA. CYP1A1 mRNA knockdown by CYP1A1
siRNA was verified by qPCR (Supplemental Figure 2). As
shown in Figure 7(a), hyperoxia decreased cell viability in
cells treated with control or CYP1A1 siRNA. In NQO1-
NQO1 cells, the decrease in cell viability by hyperoxia was
higher in those that were treated with CYP1A1 siRNA
(Figure 7(a)) compared to those treated with control
siRNA, suggesting that CYP1A1 might protect the cell
from hyperoxia in an NQO1-dependent manner.

In order to study the role of CYP1A1 on oxidative DNA
damage, we measured 8-OHdG levels in Ctr and NQO1 cells
that were treated with control or CYP1A1 siRNA. As shown
in Figure 7(b), there were no significant changes in 8-OHdG
levels in Ctr cells that were treated with CYP1A1 siRNA.
However, in NQO1-NQO1 cells, 8-OHdG was slightly
increased by hyperoxia by about 7% and by 12% in cells that
were treated with CYP1A1 siRNA compared to those that
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Figure 3: NQO1 overexpression protected cells from hyperoxic toxicity. BEAS-2B cells stably transfected with pcDNA3.1 (Ctr), pCMV-
NQO1 (CMV-NQO1), pWT-NQONQO1 (NQO1-NQO1), and pSNP-NQONQO1 (SNP) were incubated under room air (RA) or 80% O2 (O2)
condition for 48 h and the MTT cell viability assay (a), the live cell protease activity assay (b), the dead cell protease activity assay (c),
and the caspase 3/7 activity assay (d) were determined using the Promega ApoTox-Glo Triplex Assay. ∗Statistically significant differences
between the RA and O2 groups. †Statistically significant difference with Ctr. ‡Statistically significant difference between the WT- and
SNP-NQO1 promoter (n = 3; P < 0:05). Hyperoxia decreased cell viability, which was attenuated by overexpression of NQO1 (a and b).
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were treated with control siRNA (Figure 7(b)), although the
results were not statistically significant.

3.7. Modulation of DNA Repair Genes by Hyperoxia. We
determined the effect of hyperoxia on a number of DNA
repair genes to test the hypothesis that hyperoxia would
induce DNA repair enzymes, which could play a protective
role against oxygen toxicity. We also wanted to determine
if DNA repair genes could in part explain the decrease in
oxidative DNA damage caused by hyperoxia and also if
NQO1 overexpression would modulate DNA repair mecha-
nisms. Exposure to hyperoxic conditions significantly
increased the expression of damage-specific DNA binding
protein 2 (DDB2) and xeroderma pigmentosum, comple-
mentation group C (XPC) (Figures 8(a) and 8(f)) in Ctr,

CMV-NQO1, NQO1-NQO1, and SNP-transfected cells. In
hyperoxic cells, significantly less XPC expression was
detected in cells transfected with NQO1-NQO1 promoter
constructs compared to control cells, whereas hyperoxic cells
transfected with SNP-containing promoter constructs had
levels of XPC expression that were not significantly different
from control-transfected cells (Figure 8(f)). Nei-like DNA
glycosylase 2 (NEIL2) expression (Figure 8(b)) did not show
any increase with hyperoxia; however, the expression was
decreased under normoxic conditions in CMV-NQO1 and
NQO1-NQO1 cells compared to Ctr cells.

Poly(ADP-ribose polymerase 1 (PARP1) expression was
increased in CMV-NQO1 and NQO1-NQO1 cells upon
exposure to hyperoxia (Figure 8(c)). In cells with SNP,
PARP1 expression was higher than NQO1-NQO1 cells
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Figure 4: Hyperoxia decreased DNA adduct formation in 32P-postlabeling experiments, and high cellular levels of NQO1 and CYP1A1
might attenuate such effect. (a) A typical result of a 32P-postlabeling experiment showing chromatographic images labeled with AcA,
GcA, CcA, and TcA. (b) Quantitation of the 32P-postlabeling experiment. Three stably transfected BEAS-2B cell lines Ctr, CMV-NQO1,
NQO1-NQO1, and SNP (see Figure 2) were incubated under RA or O2 for 48 h, followed by DNA extraction and 32P-postlabeling
experiments (n = 3; ∗P < 0:05; ∗∗P < 0:01; #P = 0:05).
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under normoxia (Figure 8(c)). Hyperoxia caused induction
of proliferating cell nuclear antigen (PCNA) under hyperoxic
conditions in Ctr and CMV-NQO1 but not in NQO1-
NQO1 or SNP-containing cells (Figure 8(d)). Under hyper-
oxia, the expression of PCNA was lower in CMV-NQO1,
NQO1-NQO1, and SNP-containing cells compared to Ctr

cells. Additionally, there were significantly increased levels
of XPA binding protein 2 (XAB2) mRNA levels in
hyperoxia-exposed CMV-NQO1, NQO1-NQO1, and SNP
cells with levels being relatively higher in the latter compared
to NQO1-NQO1 cells (Figure 8(e)). In cells carrying the
SNP, the expression was increased in normoxia as well as
compared to NQO1-NQO1 cells (Figure 8(e)).

4. Discussion

The overall goal of this study was to determine the role of
human NQO1 in hyperoxia-mediated cellular injury and
oxidative DNA damage. Specifically, we tested the hypothe-
sis that overexpression of NQO1 in BEAS-2B cells will mit-
igate cell injury and oxidative DNA damage caused by
hyperoxia and that A-1221C SNP in the NQO1 promoter
would display altered susceptibility to hyperoxia-mediated
toxicity.

Our results showing increased hyperoxia-mediated NQO1
expression in Ctr cells and in cells overexpressing NQO1 in
CMV-NQO1 and NQO1-NQO1 cells (Figure 1(a)) were in
agreement with earlier studies showing induction of NQO1
by hyperoxia [29, 39]. Our observation that SNP cells showed
lesser extent induction of NQO1 expression by hyperoxia
compared to NQO1-NQO1 cells was probably due to the reg-
ulatory elements in the SNP construct that were masked, lead-
ing to reduced induction of the gene (Figure 1(a)). However,
we did see increased NQO1 expression per se in the SNP cells
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Figure 5: Linear correlations between levels of 8,5′-cyclopurine-2′-deoxynucleotides (oxidative DNA lesions in 109 normal nucleotides)
and CYP1A1/OAZ1 (a) or NQO1/OAZ1 (b) in lung cell lines. Data of DNA adducts from all the individual samples (n = 20‐24) in room
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data from all individual samples. Significant inverse correlations were observed between levels of AcA, GcA, and Total cA (sum of AcA,
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Figure 6: Hyperoxia or NQO1 overexpression decreased 8-OHdG
formation. Three stably transfected BEAS-2B cell lines Ctr, NQO1-
NQO1, and SNP were incubated under RA or O2 for 48 h. Genomic
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exposed to hyperoxia, and additional work needs to be done to
explain this discrepancy. The induction of the CYP1A1 gene
by hyperoxia (Figure 1(b)) was in agreement with earlier
reports of induction of the CYP1A1 enzyme in vitro [40]
and in vivo [13–17]. The suppression of induction of CYP1A1
in NQO1-NQO1 cells was probably due to the metabolism of
ROS-mediated AHR ligands [41] that contributed to CYP1A1
enhancement by hyperoxia [34]. The restoration of CYP1A1
induction in the SNP cells by hyperoxia (Figure 1(b)) could
have been due to an increase in ROS levels in these cells, which
in turn may have resulted in increased formation of endoge-
nous ligands that contributed to CYP1A1 induction by
hyperoxia.

The suppression of CYP1B1 gene expression (Figure 1(c))
in CMV-NQO1 andNQO1-NQO1 cells in room air conditions
could be explained by the metabolism of ROS-mediated
endogenous AHR ligands that were responsible for CYP1B1
induction probably by CYP1A1. The fact that CYP1B1 expres-
sion was restored in SNP cells in room air and was induced in
these cells by hyperoxia lends credence to the theory that
endogenous AHR ligands contributed to CYP1B1 induction.

The fact that the decay of NADH was significantly faster
in CMV-NQO1, NQO1-NQO1, and SNP cells compared to
Ctr cells (Figure 2(a)) suggested that CMV-NQO1, NQO1-
NQO1, and SNP cells expressed higher NQO1 activities than
Ctr cells. Given that NQO1 is an antioxidant enzyme, we
first sought to evaluate the role of oxygen toxicity in human
lung cells that had been transfected with the WT- (NQO1-
NQO1) and SNP-containing NQO1 promoter/gene construct
compared to controls. Cells that had not been transfected with
the NQO1 constructs displayed decreased cell viability,
decreased live cell protease, and increased cell death under
hyperoxic conditions (Figures 3(a)–3(c)), suggesting that oxi-
dative stress contributed to cell injury. In the live cell and dead
cell protease assays (Figures 3(b) and 3(c)), cells transfected

with the constitutively active CMV promotor/NQO1gene con-
struct demonstrated enhanced ratio of live/dead cell protease
activities under hyperoxic conditions compared to room air,
which implied that the overexpression of CMV-NQO1 might
prevent the disruption of the cell membrane and keep the pro-
teases inside the cells. In cells transfected with SNP A-1221C,
the live cell protease activity was lesser in both room air and
hyperoxic conditions compared to the NQO1-NQO1 group
(Figure 3(b)), probably due to a partial loss of protection to cell
membrane integrity by NQO1 due to the SNP.

On the other hand, both CMV and NQO1-NQO1 cells
showed significantly decreased dead cell protease activities
under hyperoxic conditions, which was probably due to pro-
tection of cell membrane integrity by NQO1 overexpression
in these cells (Figure 3(c)). Figure 3(d) shows the increase of
caspase 3/7 activities by hyperoxia in CMV-NQO1 and
NQO1-NQO1 cells. This increase suggested that part of the
hyperoxia-damaged cells might have entered an apoptotic
pathway. This would also explain why the CMV and
NQO1-NQO1 cells exhibited increased live cell protease
activities compared to Ctr cells under hyperoxic conditions
(Figure 3(b)).

To further characterize the toxic effect of high levels of
oxygen exposure on cells transfected with the various
NQO1 promoter/gene constructs, we investigated the effect
of hyperoxia on oxidative DNA lesions by 32P-postlabeling.
Our observations (Figure 4(b)) showing decreased levels of
AcA, GcA, and total adducts in all cells were surprising, as
we would expect increased oxidative DNA damage by hyper-
oxia due to increased oxidative stress.

Firstly, we found an inverse correlation between oxida-
tive DNA adducts and CYP1A1 and NQO1 gene expression
(Figures 5(a) and 5(b)). This observation supports the
hypothesis that these enzymes are protective against oxida-
tive DNA damage. Our numerous studies in animal models
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Figure 7: Effect of CYP1A1 silencing on cell viability (a) and 8-OHdG (b) levels. Stably transfected BEAS-2B cell lines Ctr or NQO1-NQO1
were transfected with CYP1A1 siRNA or control siRNA and incubated under RA or O2 for 48 h, followed by determination of live cell
protease activity using the Promega ApoTox-Glo Triplex Assay (a) or the LS-MS/MS assay (b) (n = 3; ∗P < 0:05 by Student’s t-test.
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[13–19, 42] have clearly shown the role of both CYP1A1 and
NQO1 in the protection against oxidative injury. Our recent
study [19] showing the increased susceptibility to hyperoxic
lung injury of mice lacking the gene for nrf2, and the rescue
of this phenotype by the CYP1A1 inducer β-napthoflavone,
lends further credence to the hypothesis that both Nrf2-
regulated enzymes (e.g., NQ01) and CYP1A enzymes play
a beneficial role in oxygen injury. While CYP1A1 might pro-
tect the cells from oxidative stress by metabolizing toxic lipid
hydroperoxides [16–20], it is possible that NQO1 in the cur-
rent study might have protected cells from oxidative stress
by metabolizing quinones and semiquniones [21, 22]. The
innovative aspect of our current study is that our results
show a decrease in the extent of induction of CYP1A1 by
hyperoxia in NQO1-NQO1 cells, suggesting a role for
NQO1 in the regulation of CYP1A1 expression.

Our results showing the attenuation of 8-OHdG by
hyperoxia (Figure 6) in Ctr cells but not in NQO1-NQO1

or SNP cells were in agreement with our studies on bulky
oxidative lesions (Figure 4). Although studies reported in
the literature show increased levels of OHdG in rat alveolar
type II cells exposed to hyperoxia [43], Jin et al. [44] showed
that human 8-oxoguanine DNA glycolyase increases resis-
tance to hyperoxic toxicity in alveolar epithelial A549 cells.
In our studies, it is possible that hyperoxia in BEAS-2B cells
caused a decrease in OHdG levels in part by inducing DNA
repair.

Because hyperoxia-mediated induction of DNA repair
pathways [45] could in part play a role in the attenuation
of oxidative DNA lesions by hyperoxia in Ctr cells
(Figures 4 and 6), we determined the effect of hyperoxia
on base excision repair (BER) as well as nucleotide excision
repair pathways. We studied NEIL2, PARP1, and PCNA as
representative of the BER pathway and DDB2, XAB2, and
XPC as representative of the NER pathway [46]. While 8-
OHdG is repaired by BER [44], the oxidative DNA adducts
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Figure 8: Effect of hyperoxia on DNA repair genes. Four stably transfected BEAS-2B cell lines Ctr, CMV-NQO1, NQO1-NQO1, and SNP
were incubated in RA or O2 for 48 h and subjected to qPCR. ∗Statistically significant difference between RA and O2 groups.

†Statistically
significant difference compared to Ctr. ‡Statistically significant difference between NQO1-NQO1 and SNP (n = 3; P < 0:05).
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are repaired by NER mechanisms [36, 47]. Our observations
showing a marked induction of DDB2 and XPC by hyper-
oxia in Ctr cells (Figure 8) supported the idea that hyperoxia
in part caused attenuation of bulky oxidative DNA lesions
by enhancing NER pathways. The decrease of 8-OHdG by
hyperoxia in Ctr cells (Figure 6), but not in NQO1-NQO1
cells or SNP cells, was probably due to significant induction
of the proliferating cell nuclear antigen (PCNA), which
repairs DNA via BER in Ctr but not in NQO1-NQO1 or
SNP cells (Figure 8(d)). Also, the induction of XPC, a NER
enzyme, was induced by hyperoxia to a much higher degree
in Ctr than NQO1-NQO1 or SNP cells (Figure 8(f)). Thus,
we observed a significant modulation of both BER and
NER genes by hyperoxia in CMV-NQO1, NQO1-NQO1,
and SNP cells.

We did not see a striking difference of DNA repair gene
expression among the NQO1-NQO1 and SNP cells, suggest-
ing that the SNP A-1221C did not play a major role in the
regulation of DNA repair pathways. Our finding that the
protection against hyperoxic toxicity in SNP cells was par-
tially lost in spite of these cells having high NQO1 mRNA
(Figure 1(a)) could have been due to the fact that this SNP
produced a gene product that had lower NQO1 activity. Pre-
vious reports have implicated NQO1 promotor SNPs, specif-
ically the A-1221C SNP, as having a potential protective
effect on the severity of acute lung injury in patients suffer-
ing from ALI/ARDS [29]. That we did not observe a similar
protective effect could have been due to the fact that the
current study was in the human BEAS-2B cell line that
was exposed to hyperoxia (80% O2 and 5% CO2) for 48h,
and that mechanisms independent of NQO1 may have con-
tributed to the protective effects in humans expressing the
SNP A 1221C variant. Future successful creation of
in vivo knock-in mouse models that carry the wild-type
NQO1 or the A-1221C SNP will help us delineate the
mechanistic role of A-1221C SNP in oxygen toxicity in
relation to ARDS.

In summary, our data support a protective role for
human NQO1 against oxygen-mediated toxicity and oxida-
tive DNA lesions in human pulmonary cells, and this protec-
tion is partially lost in cells carrying the A-1221C SNP.
Moreover, we also demonstrate a novel protective role for
CYP1A1 in the attenuation of oxidative cell and DNA
injury. Future studies on the mechanisms of attenuation of
oxidative injury by NQO1 should help in developing novel
approaches for the prevention/treatment of ARDS in
humans.
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Supplementary Materials S1 Hyperoxia increased NQO1
protein expression. BEAS-2B cells stably transfected with
pcDNA3.1 (Ctr), pCD-NQO1 (CMV-NQO1), pWT-NQO1-
NQO1 (NQO1-NQO1), and pmut-NQO1-NQO1 (SNP) were
incubated under room air (RA) or 80% O2 conditions for
48 h and subjected to western blotting using 20μg total pro-
tein of cell lysates per well and 1 : 1000 dilution of A-180
NQO1 antibody (Santa Cruz Biotechnology). (A) Colorime-
try image of a representative blot. (B) Densitometry analysis
of 2 replicate blots. The result indicated that hyperoxia
slightly induced NQO1 protein expression in all 4 cell lines.
However, it did not show increased basal NQO1 expression
in any of the three NQO1-overexpressed cell lines. S2.
CYP1A1 siRNA downregulated CYP1A1 mRNA in both
Ctr cells and NQO1-NQO1 cells. Cells were transfected with
control siRNA or CYP1A1 siRNA and cultured in RA condi-
tion for 48 h. Total RNA were extracted and subjected to
qPCR of CYP1A1 and the reference gene OAZ1. The Ct value
of CYP1A1 was not detected in one group of sample, probably
“Ct value > 39.” (n = 1‐3). (Supplementary Materials)
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