
Vol.:(0123456789)1 3

Molecular Diversity (2022) 26:1893–1913 
https://doi.org/10.1007/s11030-021-10326-z

SHORT REVIEW

Artificial intelligence and machine learning approaches for drug 
design: challenges and opportunities for the pharmaceutical 
industries

Chandrabose Selvaraj1 · Ishwar Chandra1 · Sanjeev Kumar Singh1

Received: 5 April 2021 / Accepted: 24 September 2021 / Published online: 23 October 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract 
The global spread of COVID-19 has raised the importance of pharmaceutical drug development as intractable and hot 
research. Developing new drug molecules to overcome any disease is a costly and lengthy process, but the process continues 
uninterrupted. The critical point to consider the drug design is to use the available data resources and to find new and novel 
leads. Once the drug target is identified, several interdisciplinary areas work together with artificial intelligence (AI) and 
machine learning (ML) methods to get enriched drugs. These AI and ML methods are applied in every step of the computer-
aided drug design, and integrating these AI and ML methods results in a high success rate of hit compounds. In addition, 
this AI and ML integration with high-dimension data and its powerful capacity have taken a step forward. Clinical trials 
output prediction through the AI/ML integrated models could further decrease the clinical trials cost by also improving the 
success rate. Through this review, we discuss the backend of AI and ML methods in supporting the computer-aided drug 
design, along with its challenge and opportunity for the pharmaceutical industry.

Graphic abstract

From the available information or data, the AI and ML based prediction for the high throughput virtual screening. After 
this integration of AI and ML, the success rate of hit identification has gained a momentum with huge success by providing 
novel drugs.
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Introduction

The ground-breaking development in biomedical research 
has shown an increase in the availability of biomedical data 
[1]. But researchers have raised whether the transmission 
and transfer of biomedical data are done correctly to extract 
practical knowledge [2]. Especially in the pharmaceutical 
sector, there have been several pieces of research, research 
outcomes, clinical data, and ethnic population-wise data, 
and other experimental data are available [3]. In this case, 
the pharmaceutical sector with drug discovery is a process 
that is very costly, time-consuming, and subject to many 
formalities. The average cost for getting a new drug by the 
various phase of drug development can range from $1 to $2 
billion and consumes up to 15 years [4]. Upon considering 
the research question, the available data on this domain can 
be used to develop new drugs, which can be more accu-
rate, timely, and cost-effective [5]. Researchers worldwide 
are continuously developing innovative methods and algo-
rithms to obtain suitable molecules with a short time and 
cost-effectiveness. Significantly, the introduction of artifi-
cial intelligence (AI), deep learning (DL), machine learning 
(ML), and computational chemistry towards drug discovery 
has shown a significant impact on its success rate. These 
methods alone or jointly combine to form new strategies that 
incorporate a wide range of efficient algorithms that enhance 
the predictions [6].

Computation power and algorithms for developing new 
leads with therapeutic importance in the modern drug 
designing process play a vital role. This current technologi-
cal era is showing the technical update regularly [7]. Nowa-
days, several types of research offer deep atomic insights, 
which tend to establish the cause of disease, function, or 
inhibitions. Based on that, the algorithms are also updated 
to respond to the atom’s realistic mechanistic action that is 
core important for the drug designing process. For the Com-
puter-Aided Drug Designing (CADD), the designing process 
initiates with two methods. One approach is structure-based 
drug design (SBDD), and the other one is ligand-based drug 
design (LBDD) [8]. But both ways heavily rely on the back-
end algorithms, scoring functions, and force fields for rank-
ing and evaluating the energy contribution of lead molecules 
in the molecular systems. As of now, there have been many 
programmes or software applications that run with various 
algorithms, interpreting the results with predefined scoring 
functions for both SBDD and LBDD methods. But predict-
ing the exact parameterization and obtaining the accurate 
energy levels and transferable force fields are challenging 
tasks for filtering the possible drug molecules [9]. To solve 
those issues, the parameterization process with the input 

of quantum physics of significant dimensions with a small 
number of parameters and a simple, functional analytic form 
is also introduced. In this way, the CADD and molecular 
modelling approaches enhance the efficiency of predicting 
the lead molecules by lowering the error components [10]. 
The specialty of CADD and molecular modelling drives 
many small molecules or whole small molecules databases 
in a limited time and can show realistic interactions between 
the hit molecules and macromolecules. Macromolecules 
are composed of polymeric units of amino acids or nucleic 
acids and the predefined algorithms. The force fields are 
programmed to adjust these atoms in these macromolecules. 
There are several programmes, software applications, and 
web servers available, but the user must choose the backend 
algorithm and force fields according to the macromolecules 
of their requirements [11].

The introduction of modern AI methods offers highly reli-
able computational methods in pharmaceutics and biomed-
ical science. AI simulates human intelligence to machine 
models to rehabilitate or imitate human performance [12, 
13]. Specifically, the MI approach can correct complex 
chemical problems in the drug identification process. This 
field of interest is not limited to certain areas, as every 
domain applies the automation traits in link with human 
minds for thinking, learning, and problem-solving efficiency 
[14]. The integration of AI and ML into biomedical appli-
cations is shown in Fig. 1. It clearly shows the AI and ML 
with computational advances and statistical methods are 

Fig. 1   Classified machine learning approaches into supervised and 
unsupervised learnings into respective categories. Here, MLR: mul-
tiple linear regression; PLS: partial least squares; DT: decision trees; 
RF: random forest, KNN: K-nearest neighbours, MLP: multilayer per-
ceptron; SVM: support vector machines; SOM: self-organizing maps; 
PCA: principal component analysis
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incorporated into biomedical applications to mimic human 
thinking, reasoning, and implementation [15].

Artificial neural networks

Artificial neural networks (ANNs) are favourably recog-
nized computer models developed based on the Homo sapi-
ens brain and its networking trends [16]. The simplest case 
shows a fully connected network or feed-forward that shapes 
the computation chart with three layers (input layer, hidden 
layer, and output layer) [17]. The layer-wise single comput-
ing unit called neurons works as a nonlinear transformation 
to the input data. This information is propagated in layer-
wise mode and receives the output of the preceding layer as 
shown in Fig. 2. Molecular modelling and drug design pre-
dominantly rely on ANNs. It resolves the complexity associ-
ated with statistical models used in HTVS (high-throughput 
virtual screening), QSAR (quantitative structure–activity 
relationship), and pharmacokinetics and pharmacodynam-
ics studies [18]. For the numerical values determining the 
output, ANNs perform excellently in interpreting nonlinear 
relationships and predict the process of success in the drug 
finding process [19].

Application of artificial neural networks in drug 
discovery

As discussed above, ANNs have high reliability towards 
improving efficiency and target-based drug discovery. It 

has a massive ability towards complex investigation and 
nonlinear relationships, and so this ANN is alternatively 
called “Digitalized Model Brains” [20]. Neural network 
(NN) applications are highly accountable for STEM (Sci-
ence, Technology, Engineering and Medicine). Especially 
in the molecular modelling and pharmaceutical sciences, 
the ANNs’ application sets the trend by providing high reli-
ability of results [21]. Notably, the ANNs used to scrutinize 
the extensive database of small molecules (HTVS), prop-
erty prediction (ADME/T), QSAR, pharmacophore analysis, 
pose validation, formulation and development of leads are 
shown in Fig. 3.

Deep learning methods

DL method represents the neural network by possessing 
multiple hidden layers, and it is highly used for its flexibility 
to learn arbitrarily complex functions, as shown in Fig. 4. 
It can learn as much as possible with adequate data and the 
computational time investment, providing highly reliable 
outputs. The multiple layers hidden in DL patterns offer 
flexible access to learn arbitrarily complex modules, which 
directly provide suitable neurons and trained sets. The DL 
applies a backpropagation algorithm and a gradient-based 
optimization method that allows neuronal network training, 
resulting in end-to-end differentiation [22]. In addition to 
that, the feed-forward networks are interlinked with lay-
ers, conventional and graph convolutional architecture that 
proceeded towards the development of various domains 
and data types. The updated data reading tendency and 

Fig. 2   Basic model of artificial neural network architecture proposed 
where the input layer is modelled for network inputs, output layer 
is modelled for network outputs, and in between the hidden layer is 
modelled for the feed-forward and back-propagation functions

Fig. 3   ANN applications are widespread in the molecular modelling, 
especially in increasing the efficiency of drug discovery
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advanced products in algorithms and computational hard-
ware are driving the DL methodology. The neural networks 
are highly recognized among deep networks due to their 
difficulty training and understanding small sets [23]. From 
an algorithmic point of view, DL networks with more lay-
ers have often suffered from disappearance gradients and 
prevent models from learning efficiently. The novel method 
initialization schemes, neural activation function, and gra-
dient-based optimization methods significantly improve 
efficiently trained deep networks [24]. The recurrent neural 
networks (RNNs) are described as recurrent units mainly 
used to capture the temporal dependence in sequence-level 
data information. Conventional neural networks (CNNs) are 
notably emerging for image processing by catching local 

and spatial relationships with learning filters [25, 26]. Graph 
neural networks (GNNs) are mostly operated with unordered 
data like analysing the social networks, but this is a well-
suited model for representing the small molecules [27]. The 
representation and difference between these types of neural 
networks are represented in Fig. 5.

Machine learning method

ML is the basic paradigm that involves multiple method-
based domains and several algorithms to recognize the pat-
tern within the data. Every automation-based method uses 
DL and ML but holds the difference, as shown in Fig. 6. ML 
is further classified into several types, and DL is the subfield 
of ML which engages artificial networks that interlinks com-
puting elements [28]. This is equivalent to human biological 
neurons and imitates the transmission of electronic impulses. 
This model is the well-established mathematical model that 
shows underlying patterns available in the data and informa-
tion and applies to learn methods for predicting future data. 
The ML strength was due to solving complex mathematical 
problems and is used in various fields of modern biology. 
In terms of generalized ML methods, it has been applied 
to accurately predict the unseen data set in choosing the 
method for performance in complicated situations. Several 
models are used to train a single dataset to avoid brute force 
sensitivity and optimize specifically by understanding the 
viewpoint in various model architectures. In classification, 
ML methods are defined by supervised or unsupervised 
models, as shown in Fig. 1. In supervised models, the math-
ematical model relationship of variables found in the dataset 
is known as input and output variables. It is too difficult to 
comprehend the linear regression between the known bi-
variables by supervised learning models. At the same time, 
the unsupervised learning models find the hidden patterns 

Fig. 4   Deep learning architecture showing the input layer, and output 
layer in the external, while multiple hidden layers in the middle layer

Fig. 5   Other types of neural networks showing the input, output, and hidden layer architecture
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within input data that build the clusters based on intrinsic 
structure and predict the relationship between the data points 
[29]. Reinforcement learning is another major category of 
ML method that processes mainly towards the application in 
dealing complex environments that learn the optimal series 
of actions in response to opposed environmental information 
to the output similar to the supervised learning [30, 31]. In 
AutoDock, the ML methods are well prepared and trained 
for those specific types of protein/DNA, active site residues, 
small molecule, or drugs instead of showing scoring func-
tions that include the Drug score [32, 33]. The ML deals 
with multiple applications that offer too much success in 
various stages of HTVS of typical drug discovery in under-
standing the novel drugs and lead components. The binding 
site features of receptor information are mainly analysed by 
ML methods, in association with receptor homology and 
disease information [34, 35].

Machine learning for target identification

The typical drug discovery requires identifying target pro-
teins with casual aspects of pathophysiology and a plausible 
framework. Misunderstanding of target protein information 
may lead to modulation in the disease information, and in 
this sense, target selection is a mandatory step [36, 37]. 
Evidence of successful drug response will be considered 
and subsequently, lead efficiency in the randomized clinical 
trial tends to the identification of prominent drug targets. 
The ML algorithm predicts the unseen biological happen-
ings, events, and problems [38]. Costa et al. [39] devel-
oped a computational model for predicting the morbidity 
and druggable genes on a genome-wide scale. That model 
has been widespread in reducing the laborious experimen-
tal procedures and identifying the putative molecular drug 
targets linked with disease mechanisms. Here, this classi-
fier is modelled to uncover the biological rationale from a 

data-driven view. The main classification features are mRNA 
expression, gene essentiality, occurrence of mutations, and 
protein–protein network interactions. The meta-classifier 
analysis results initiated from 65% of known morbid gene 
recovery and 78% of unknown druggable gene recovery 
[40, 41]. The decision tree (DT) and uncover rules inspect 
the parameters that include the membrane localization and 
regulation of multiple transcription factors to identify bio-
logical traits [42]. This can also exhibit understanding and 
designing the Biosystems principles by applying the reverse 
engineering methods [43, 44]. Volk et al. [45] applied the 
ML methods to model the challenges at DNA, protein, spe-
cific pathway levels and process them for the genome and 
cellular communities. Jeon et al. [46] stated and developed 
a Support Vector Machine (SVM) method to analyse the 
genomic variety and systematic data set to distinguish the 
protein based on homologs or likelihood for drug binding in 
breast cancer cases, pancreatic cancer, and ovarian cancers. 
Momoshina et al. [47] applied the same concept of identify-
ing the drug target in the complicated disease by using the 
biomarker discovery approach in muscle tissue to detect the 
druggable targets considering the molecular basis of human 
ageing. In this approach, the SVM model is contracted with 
linear kernel and deep feature selection to find the gene of 
expression linked with ageing. This model also evaluates the 
gene expression samples from Genotype-Tissue Expression 
(GTEx) project and has obtained a 0.80 accuracy level [48].

Machine learning for imaging analysis

ML approaches are used in investigatory screens and auto-
mated or robotic image acquisition and investigations. For 
example, the potent inhibitors against the β2 adrenoceptor 
target and radiological binding assay through novel mol-
ecules are screened based on ability to interfere with radi-
olabels ligand with binding affinity [49]. This acute effect 

Fig. 6   Difference between machine learning and deep learning algorithm based on feature extraction
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of small molecules may cause the alteration in the surface 
plasma resonance (SPR) detected in the receptors. This ten-
dency allows the selection of small molecule inhibitors pro-
cessed into the lead optimization stage [50]. But this process 
is laborious and a long approach, and therefore, alternative 
methods such as phenotypic screening are highly focused. At 
this stage, ML-based analytics are applied to identify com-
plex phenotypes that have tended to increase the efficiency 
of the small molecule [51, 52]. Another technique, namely 
advanced imaging, is a mechanism applicable to finding the 
phenotypes and perturbation of small molecules, and this 
method is known to enhance prediction [53]. More broadly, 
imaging can be composed of two camps: 1. typically called 
phenotypic screening, which targets the predefined pheno-
types of intracellular signalling molecules associated with 
the disease mechanism; 2. the various subcellular structures 
with antibodies, infective or chemical agents, and fluorescent 
dyes categorize their responses.

Machine learning for high‑throughput screening

Identification and experimental validation of novel drug 
targets are costly and time-consuming. Significantly, vir-
tual screening or HTVS is essential for the drug discovery 
process and integrated with new methods for technologi-
cal updates. Hence, AI/ML methods are used to understand 
promising drug targets’ priorities, which are carried forward 
for the subsequent experiments [54]. Valentini et al. (2014) 
developed the combination of functionally different gene 
networks with kernel-based methods to rank the order of 
genes [55]. Later, Ferrero et al. [56] worked with target–dis-
ease association data available in public databases for pre-
dicting novel drug targets. Arabfard et al. [57] have predicted 
and ranked about 3000 targets associated with an ageing 
gene with three positive unlabelled methods such as Naïve 
Bayes, Spy, and Rocchio—SVM, categorized by ranking the 
human genes according to this implication ageing. Elaborate 
discussions are on the correlation between the drug targets 
and disease in drug discovery [58]. The subsequent imperial 
process begins with finding a small apt molecule to disturb 
the disease mechanism. Generally, a suitable drug candidate 
is designed and exposed to pharma companies or deposited 
in large compound libraries. Vapnik et al. [59] has devel-
oped the SVM method, and this SVM model is integrated 
with cheminformatics by Burbidge et al. [60]. The SVM 
classification resembles other sample methods as linear dis-
crimination, and in this hyperplane is the important feature 
to classify the dependency of boundary conditions [61]. Par-
ticularly, while the ranking is essential, the length between 
the instance and hyperplane is maximized and only a small 
subset of the training instance defines the boundary [62]. 
Experimental error data or noisy data can also be considered 
for allotting some instances positioned on the wrong side 

of the hyperplane. The Kernel trick is the SVM method’s 
unique feature applied in various applications, which extends 
the classification with both linear and nonlinear hyperplanes 
associated with Mercer’s theorem [63]. This feature allows 
the calculation of distances in high-dimensional nonlinear 
spaces that do not require the explicit distance transforma-
tion [64]. A variety of decomposition algorithms are also 
used in SVMs to analyse the large dataset, extended to its 
regression (SVR). Syngenta and Willett used SVM methods 
and were markedly inferior to the use of BKD to test about 
35,991 compounds in the NCI (National Cancer Institute) 
AIDS data set associated with UNITY fingerprint as descrip-
tors [65, 66]. After that, 125,657 compounds were studied 
for pesticide activity and the polynomial kernel of degree 
five outperformed binary kernel discrimination (BKD). 
Franke et al. (2005) has scrutinized 2.7 million small mol-
ecules from the COBRA ligand database based on 94 ref-
erence compounds having Cox-2 antagonist molecules as 
the training set. For this screening, several compounds were 
studied and yielded only three molecules with potent activ-
ity. Notably, one compound has shown stronger inhibitory 
profiles than the celecoxib and rofecoxib [67]. Lepp et al. 
[68] have screened 21 data sets related to depression from 
MDDR and classified 30,000 ligand molecules per data set 
with SVM and descriptors of atom counts. In the ML-based 
screening, the true negatives are well predicted and classified 
as positive recall ranging from 44 to 89% [69]. Jorissen and 
Gilson [70] have reported the screening of small molecules 
against four receptors, namely 1AAR, CoX-2, PDE5, and 
CDK2, from the 50 known compounds as a training set for 
each drug target and reported 1892 small molecules from the 
NCI database and 25,175 compounds from the Maybridge 
database [64, 71]. Using the SVM approach, 2D descriptors 
are predicted through the DRAGON software (http://​www.​
disat.​unimib.​it/​chm/), and through this, they have got more 
than 10% of the screened database than other fusion meth-
ods using fingerprints [72]. Saeh et al. (2005) used SVM 
methods for G protein-coupled receptor (GPCR) and found 
1573 compounds as top-ranked from the list of 129,994 
compounds, which also yield the success rate 69 times 
higher in comparison with random choice-based selections 
[73]. The application of support vector regression (SVR) in 
virtual screening is reported by Byvatov et al. (2005). By 
constructing the model based on 331 domain receptor inhibi-
tors for screening the SPECS database (https://​www.​specs.​
net/) and inter-bio-screen database, which have more than 
225,000 molecules yield 11 hit compounds with strong bind-
ing selectivity against the D3 receptor [74]. Recent reports 
on SVM support develop a variety of kernels that are applied 
for the data with various structures. The same process is also 
applied in the HTVS process. It represents the molecules as 
information data rather than vector descriptors and focuses 
kernels representing the pharmacophores, graphs, and trees 

http://www.disat.unimib.it/chm/
http://www.disat.unimib.it/chm/
https://www.specs.net/
https://www.specs.net/
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[75]. The model workflow of ML-integrated virtual screen-
ing is provided in Fig. 7. Eitrich et al. [76] suggested the 
kernel function to demonstrate the various costs linked with 
misclassified sections of both active and inactive molecules; 
different slack variables can consider that for various classes 
[77]. Prediction of the scoring function is the core com-
ponent of molecular docking used to validate the binding 
affinities of hit compounds with respective drug targets. Due 
to the stronger nonlinear mapping ability, the ML-driven 
scoring function shows the best results by extracting prop-
erties like chemical and geometric features and physical 
force fields [78]. These scoring methods are tagged as the 
data-driven black box model for the binding affinity predic-
tion that forms the interactions between the protein–ligand 
complex from the experimental data to eliminate the errors 
in physical function related to molecular docking methods 
[79]. ML tools such as SVM and random forest (RF) sig-
nificantly improve the performance of a scoring function 
[80]. This method uses a nonlinear relationship of individual 
energy values obtained through the docking program for 
the lead molecules and experimental binding affinity data 
instead of linear additive assumption energy. Hence, it shows 
improved screening power and scoring power. Wang and 
Zhang reported ΔvinaRF parameterization correction with 
a combination of RF and AutoDock scoring function with 
Glide XP Score for good performance [81]. Jimenez et al. 
(2018) have developed the 3D graph-based CNN model to 
predict protein–ligand interaction results in precise predic-
tion of binding affinities that highly match the experimental 

data [82, 83]. A DL method predicts the binding affinity by 
extracting the feature from the protein–ligand interaction 
image, similar to the knowledge-based scoring function [84]. 
Therefore, it was crucial to depict basic features such as 
atomic information representing its types, distance, charges, 
and amino acids.

Machine learning for structure‑based drug design

The computational drug discovery process initiates from the 
drug target identification, target evaluation, and finding the 
suitable drug candidates [85, 86]. Hence, target selection 
plays an imperial role in disease pathology, assessing the 
druggability of lead molecules and prioritizing candidate 
targets [87, 88]. However, due to the complex nature of the 
human disease, the target selection process needs compre-
hensive methods that take part in the heterogeneous data and 
understand the molecular-level mechanism of disease phe-
notypes and also help to identify the patient-specific changes 
[89]. Advanced methods like AI/ML have been applied to 
overcome these challenges. For example, the DL codes help 
in the prediction of retrosynthetic pathways to small mole-
cules with the desired bioactivity and develop new chemical 
structures [90]. One of the ML methods is self-organizing 
maps (SOM)-based prediction of the drug equivalence rela-
tionship (SPiDER) that widely applies the algorithm of neu-
ral network for discretizing the input vectors into feature 
maps in an unsupervised fashion [91]. The predictions of 
drug–protein relationships are inferred based on the 

Fig. 7   Model workflow for the prediction of lead molecules using machine learning approaches for the high-throughput virtual screening
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similarity of descriptors to the reference lead molecules in 
the same neuron without unambiguously allowing for the 
target identification [92]. This method is performed with the 
available set of pharmacophore descriptors and its topologi-
cal information (CATS2) to identify the non-hydrogen 
atoms. SOM is built based on the topological feature auto-
correlation molecules by using physicochemical parameters 
[93]. This software has been extensively applied in the de 
novo approach, especially to design natural products with 
high inhibitory potential. Several studies reported the appli-
cation of SPiDER including identification of farnesoid X 
receptor (EC50 = 0.2), 5-lypoxygenase (EC50 = 11 mM), and 
peroxisome proliferator-activated gamma receptor 
(EC50 = 8 mM) as drug targets [94]. In addition, it also pro-
vides the structural difference between small molecules used 
as reference compounds. The lead molecules such as iso-
macroin, graveolinine, and piperlongumine are potent bioac-
tive molecules with SPiDER as serotonin 2B receptor and 
transient receptor potential channel vanilloid modulators 
[95]. Recently, SPiDER has been applied in the de novo drug 
design to identify the new chemical structures fitting a 
defined model pharmacological space for the small molecule 
synthesis and their experimental validation [96]. Another 
method DEcRyPT is known for predicting network pharma-
cology; it can be performed either in single or in combina-
tion mode with SPiDER by employing random forest and 
CATS2 descriptors [97]. Through this method, the predictors 
defined by users independently analyse a different portion of 
the training set before aggregation of result outputs. For 
example, the application of β-lapachone leads the workflow 
confidently of the results of 5-lipoxygenase as a target [98]. 
Following the identification of an ideal target, a novel 
medicinal strategy hinges on finding befitting small mole-
cules that corrupt the native structure of the target [99]. Con-
temporary biology, especially current cancer research, 
depends on these small molecules and innovative drug pro-
cesses. We feel the necessity for molecule bearing structural 
resemblances to ligand with a few functional modifications 
to alter receptor molecule function; on the other hand, 
numerous desirable drug targets—might lack the domain 
described above for ligand binding (e.g. PARP), may get 
activated without the presence of ligand (e.g. EGFR), might 
have multiple ligands (e.g. CXCR2), or may have unknown 
ligand (e.g. HER2) [100]. Those above are the reasons 
behind the cross-reactivity of small molecules with other 
receptors. “Biologics” is generally regarded as a multitude 
of drug-targeting approaches that help overcome the limita-
tions mentioned above. Oncolytic viruses, bi-specific anti-
bodies, humanized monoclonal antibodies, engineered 
T-cells, and chimeric receptors are a few to name in oncol-
ogy [101]. Through these advancements, a large number of 
small molecules are predicted as drug-level candidates 
[102]. Meanwhile, contemporary in silico methods have 

shown the believability of modelling protein structures, 
which is closer to the experimental structure [103]. Protein 
modelling techniques like homology modelling begin with 
a known protein structure that is > 40% in homology with 
the target sequence. It is considered most reliable compared 
to other methods, and homology modelled structures are 
usually validated by considering their stereochemical prop-
erties (e.g. Ramachandran plot). Following that, the folding 
protein’s binding energy in exposing to charges in functional 
groups is taken into consideration for modelling potential 
binding sites [104]. The Q-SiteFinder is one such energy-
based method to predict stable conformations of binding 
sites [105]. Protein building blocks linked with these active 
sites are annotated for the functional predictions. Synthe-
sized or computationally modelled target proteins are then 
extensively screened through experimental high-throughput 
screens and virtual screening using the lead molecules’ 
renowned small molecule database [106]. On execution of 
molecular docking methods with the predicted binding site 
information of a target protein, the hit compounds based on 
SBDD have obtained stable and strong binding free energies. 
Conversely, a de novo drug design can be utilized if the 
binding pocket is of sufficient resolution. Based on prede-
fined criteria like pharmacodynamic, pharmacokinetic, and 
toxicological criteria, the hit compounds are optimized. For 
instance, in an attempt to find the varying levels of success, 
several studies have tried to perform the ligand-based 
screening using ANNs [107]. DeepChem by Ram Sundar 
and colleagues is one such utilization of multitasking deep 
ANN. DeepChem is an open-source tool with simple Python 
scripts that enable the construction, fit, and evaluation of 
complex models and drive ligand screening for commercial 
drugs. Usually, multitask models of ANNs outperform 
standard ANNs such as random forests by synthesizing 
information from distinct sources. The authors intended to 
alleviate the hurdles with software availability amidst drug 
discovery industries, and their validations illustrated that 
multitask ANNs are robust [108, 109]. Wu and colleagues 
generated a small molecule database of 700 K compounds 
and its binding data, integrated into DeepChem to help with 
the benchmarking. Unknown ligand–receptor interaction 
mechanisms can be identified by combining multiple ANNs, 
Markov state models, and one-shot learning to reduce the 
amount of data required in a new experimental set-up [110]. 
The discovery of new allosteric sites, especially in analgesia 
and GPCR biology as new drug targets, will let modification 
or fine-tuning of receptors easily by eliminating the competi-
tion for receptor occupancy by the ligand. Drug pharmacoki-
netics properties prediction can be made using ANNs [111]. 
ANNs excelled in 13 out of 15 assay-based classification 
tasks to determine drug-like molecules and ADME param-
eters compared to other ML methods and RF in a competi-
tion [112]. DeepTox is a multitask ANN by Mayer et al. 
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(2016) that calculates the chemical descriptors and trains the 
ANN for determining the nuclear toxicity by normalizing 
chemical structures. This ANN was implemented in the 
Tox21 data set to predict silico toxicity of 12,000 small mol-
ecules through 12 high-throughput toxicity assays [113]. 
Apart from optimization and virtual screening of small mol-
ecules, ML-based approaches can be utilized to generate 
innovative chemical entities for enhancing de novo drug 
design [114]. Kadurin and colleagues reported that varia-
tional autoencoders combined with generalized adversarial 
networks (GANs) can be used for the computational design 
of selective antitumor agents. In de novo drug design, GANs 
are very intriguing because they train two ANNs simultane-
ously through various objective functions (the generator and 
the discriminator). To generate the best molecular structure, 
GAN must compete in the zero-sum game. Using variation 
autoencoders for finding the chemical structures from avail-
able databases in the latent space is an important task to be 
carried out before converting the molecules into SMILES 
format strings with latent vectors [115]. In this method, the 
3D structure of the drug target is mandatory to predict the 
binding of lead molecules with the active site. Structure-
based methods employed in virtual screening are the most 
acceptable methods for predicting high success rate candi-
dates with prominent interactions and energy [116]. The ML 
methods are implemented in structure-based methods to 
improve the robustness and functional scoring accuracy. 
ML-based algorithms such as RF, SVM, and NN were used 
to develop streamflow (SF) for the best prediction compared 
to other approaches [117]. ML-based SF shows superior 
prediction in all respects. However, the prediction of SF var-
ies depending on the types of targets. Advanced ML 
approaches target SFs to improve the efficiency of the avail-
able methods for the targets such as GPCRs, cytochrome 
p450 aromatase, and histone methyltransferases [118]. 
Moreover, ML methods are applied to the post-docking 
methods for improving the accuracy of molecular docking 
methods and scoring function [119].

Machine learning in druggability prediction

Several ML models are utilized to evaluate the druggability 
pockets of the drug targets by using different features. Sur-
face Cavity Recognition and Evaluation (SCREEN) is one of 
the known ML web servers built based on the RF classifier 
to analyse the structural, geometric, and physicochemical 
properties of drug interactions and non-drug-binding cavi-
ties in the drug targets [120]. The protein active site sur-
face, allocation space, and shape geometry of the active site 
cavities are essential in the classification process [118–123]. 
Previous studies have applied the SVM method to predict 
the active sites in the target proteins based on their physico-
chemical properties available in the protein sequences [124]. 

The DT-based meta-classifier has been used to predict non-
druggable and druggable genes based on the network topol-
ogy, tissue expression profile, and subcellular localization 
[125]. Dezso and Ceccarelli have developed an RF model 
to analyse the druggability prediction of cancer targets by 
comparing the similarity of approved drug targets [126].

Artificial intelligence models for de novo 
design

Various software and methodologies have been intro-
duced in de novo drug designing to generate the novel 
potent molecules without the information from the refer-
ence compounds. Unfortunately, these de novo methods 
are not widespread application in the drug design methods 
compared to the other structure-based screening meth-
ods. In this method, the compounds which are difficult to 
synthesize are generated. Variational autoencoder has two 
neuronal networks: the encoder and the decoder network 
[127]. The encoder network actively involves translating 
compounds’ chemical structure from its SMILE notation 
into a real-value continuous vector. Most of the dominant 
molecule’s back translation dominates and light conforma-
tional changes exist with a more negligible probability. In 
another study, the performance of the variations autoencoder 
was compared with the adversarial autoencoder [128]. These 
adversarial autoencoders have a generative model for the 
production of novel chemical structures [129]. Prediction of 
novel structures in combination with in silico model shows 
more active compounds against dopamine receptor type 2. 
Similarly, Kadurin et al. used a generative adversarial net-
work (GAN) and suggested the compounds with potent and 
effective anticancer properties [130]. In addition, recursive 
neural networks (RNNs) are intensively applied in de novo 
drug design. It emerged in natural language processing, and 
through this method, sequential information has been pro-
vided as input. Since SMILES notation strings encode the 
chemical structure format in a letter sequence, the RNN is 
applied to develop the chemical structures. RNNs are trained 
with a massive data set of chemical compounds taken from 
the collection, like ChEMBL or a large set of commercially 
available compounds to train the neuronal network for the 
SMILES string [131]. This approach has also been used in 
generating new and novel peptides either in sequence or 
in structural forms. Reinforcement learning is used to bias 
the generated compounds towards predicting their impor-
tant core properties. On the other hand, transfer learning is 
applied as a different strategy for generating potent novel 
compounds with the expected biological activity. In addi-
tion, the various types of architecture models are imple-
mented in ML methods capable of producing potent novel 
structures. The new chemical features can be explored by 
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this approach with similar properties of training set drug 
molecules [132].

Prediction of protein folding from sequence

Most of the pathological conditions are associated with 
protein dysfunctions. Hence, understanding the structural 
aspects of proteins plays an imperial role in the SBDD 
approach. It can be used to identify the potentially active 
molecules towards the drug target proteins. Predicting and 
measuring the 3D structure of all the protein targets via 
in vitro approaches will be a cost-effective and time-con-
suming process [133]. Hence, the development of appropri-
ate algorithms for predicting the model structure of a protein 
is highly appreciable at present [134]. Though the protein 
sequence is available, it is still an unresolvable problem to 
expect accurate de novo prediction of corresponding 3D 
structures [135]. Due to the presence of advanced features, 
DL techniques are applied for the prediction of secondary 
structure, topology information, backbone torsion angle, and 
residue contacts. DL methods were also used to combine the 
one-dimensional and two-dimensional structures, and CNN 
was used to predict the residue-wise contacts. The advanced 
feature of DL may accurately study the association between 
the sequence and structure of the protein via feature extrac-
tion approach; currently, it is still a goal to precisely predict 
the 3D structure and DL shows a highlight of the future 
development. Homology modelling and de novo methods 
are traditionally used to predict the 3D structure of target 
proteins and have become more accurate and sophisticated 
[136]. However, the recent valuation of protein structure 
with AI tools is developed and performed to predict the 3D 
structure of the protein. For instance, AI tool AlphaFold is 
used for the 3D structure of target protein, which accurately 
predicts about 25 structures from 45 structures.

Prediction of protein–protein interactions

Evaluation of protein–protein interactions (PPIs) is func-
tionally essential for several biological processes and dis-
eases. STRING is one of the widely used PPI databases 
comprising 1.4 billion PPIs obtained by computational and 
experimental approaches. The interface of PPI is predicted 
by protein–protein binding sites composed of many amino 
acids [137]. It can be raised as a new class of drug targets 
entirely different from the traditional drug targets, includ-
ing GPCR, nuclear receptor, ion channels, and kinases. For 
instance, about 1756 non-peptide inhibitors from 18 fami-
lies of PPIs are reported as the protein–protein blockers in 
the protein–protein database (iPPI-DB) [138]. It extends the 
target space and promotes the development of potent small 

molecules. Compared to the available traditional methods, 
PPIs reduced the adverse effects, because it has efficiently 
increased its biological activity. Compound DCAC50 is the 
potent inhibitor of ion channels; it can block copper (Cu2+) 
ion transport in cells by binding with the Cu2+ transfer inter-
faces and effectively inhibits the specific cell proliferation 
of cancer cells without affecting the normal cells [139]. For 
example, eFindSite is a web server that predicts the interface 
of protein–protein interaction based on the templates. AI 
methods such as SVM and NBS models are used to predict 
the residue-based and sequence-based features. Based on 
this principle, various protein–protein docking (ZDOCK, 
SymmDock) can be used to predict the interface of PPIs 
[140]. Among these methods, the prediction of conforma-
tional changes when two proteins bind is a more challeng-
ing issue. DL methods effectively extract the most relevant 
sequence features for the prediction of the PPI interface, 
which shows improvements compared to other ML methods 
like SVM. Due to the large buried area of the interface, the 
binding site or local regions should predict in the interface. 
With the contribution of a large amount of energy, the hot 
spots of the protein may be the druggable sites at the inter-
face [141]. Bai et al. used other unique properties such as 
fragment docking and direct coupling analysis (FD-DC) to 
predict druggability available in PPI sites. In this method, 
they developed a fragment-based docking methodology ini-
tially called iFitDock to seek the hot spot in the PPI inter-
face. Then, the predicted host spot is categorized with clus-
ters to form the enzyme binding site. Finally, the scoring 
function based on the algorithm provides the scoring values 
based on the conservative evolutionary levels to find the 
active site information which is not available or identified 
in previous [142].

Quantum chemistry with artificial 
intelligence and machine learning

Understanding the drug binding mechanism and the inter-
action with target proteins is a primary step in the drug 
designing pipelines. Quantum mechanics (QM) or integrated 
quantum mechanics/molecular mechanics (QM/MM) hybrid 
methods are used to predict protein–ligand interaction in 
the drug discovery process [143]. These methods are highly 
ruminated quantum effects for the simulation of the system 
at the atomistic level and offer higher accuracy levels than 
the other available classical methods [144]. In classical MM 
methods, the simple energy function is considered based on 
the atomic coordinates involved. Recently, the implementa-
tion of AI methods to QM calculation offers much better 
accuracy due to the inclusion of QM charges and favourable 
time–cost than the classical MM method [145]. In AI, meth-
ods are highly trained to deliver the actual energies available 
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in atom coordinates and the MM methods speed. Gener-
ally, AI methods are used to predict electrical properties 
with atomic simulation. In contrast, DL methods are applied 
extensively for the energy prediction of small molecules, 
hence replacing it with accurate computationally demanding 
quantum chemistry calculation via ML methods. For exam-
ple, quantum chemistry-derived density functional theory 
(DFT)-based potential energies are calculated even for large 
database holding 2 million elpasolite crystals, and the accu-
racy of the ML model is enhanced for increasing the sam-
ple data size and reached 0.1 eV/atom for DFT calculation 
trained on 10,000 molecules [146]. ML approach with QM 
properties has made drug development into atomist poten-
tial by integrating Kernel ridge regression (KRR), Gaussian 
process regression (GPR), and neural network (NN). Consid-
ering the reliability of low numerical complexity and high 
accuracy of ML algorithms makes it comfortable, attractive, 
and an alternative for ab initio and DFT calculations [147]. 
With the remarkable ability to understand the complexity 
in the data, the ML integrated methods are most efficient 
for calculating the force fields and empirical QM. However, 
the predicted ML models relied on the trained quality and 
quantity of the data. Neural networks effectively and effi-
ciently model baseline data with high flexibility, and reli-
able, cost-effective, and a large amount of baseline data are 
used to train them for accurate prediction. Recently, Smith 
et al. (2018) developed an ANAKIN-ME (Accurate NeurAl 
networK engINe for Molecular Energies) or ANI to evaluate 
the extensive data set of 22 million minor molecule confor-
mations that yield potential capability for predicting energies 
in large systems, which are much different from the training 
sets. The performance, applicability of the system shown up 
to 70 atoms. ANI-1 is exceptional for predicting energy with 
external molecular size with RMSE versus DFT energy at 
room temperature. Koohy et al. reports the extensive organic 
system, trained into fragmented small molecules with the 
addition of DFT for the larger systems [148].

Ligand‑based virtual screening

Ligand-based virtual screening (LBVS) methods are con-
siderably applied when the 3D structure information of 
the protein drug target is unknown or lacking [149, 150]. 
It stands opposite to the available docking method by pre-
dicting the binding orientation of ligand, excluded volumes, 
and charge space requirement of the binding pocket of the 
drug target [151, 152]. The basic principle of LBVS is that 
structurally similar lead molecules with known active com-
pounds have similar reference activity. In the LBVS, known 
compounds information is required, and based on it, active 
molecules set is predicted from the test molecules set in the 
functional assays, even without the information of the target 

protein structure [153]. In such a case, LBVS methods are 
effectively used to find the potent lead molecules by assess-
ing the similar structures of active molecules. Recently, 
ML has been implemented in LBVS methods to find more 
potent lead molecules and boost the predictive ability of 
LBVS models [154]. The crucial goal of ML methods is 
to advance the prediction of the active molecules against a 
specific protein target using the trained data set on input that 
discriminates lead molecules from a huge non-drug com-
pound database and prioritizes the excellent lead molecules 
activity with the statistical probabilities. To overcome these 
issues, researchers have applied the SVM models, Bayes-
ian architecture, and ANNs. For example, Stokes et al. have 
successfully identified several new antibiotics using graph 
convolutional networks (GCNs), performed by ML models 
in predicting molecular properties [155]. Researchers have 
executed a high-throughput screening on a large data scale in 
implementing the GCN model and have identified a promis-
ing new antibiotic, namely halicin. The potency of the DL 
methods in drug discovery approaches has come up with 
extraordinary techniques for finding the new lead molecule 
with DL and Spark-H2O platform Python for LBVS [156]. 
In the ligand-based methods, QSAR models are applied to 
understand the statistical values of small molecule physico-
chemical properties represented by molecular descriptors, 
along with its biological activity. These QSAR models play 
a crucial role in small molecule optimization. Also, they 
offer primary theoretical evaluation of essential character-
istic features related to inhibitory activity, binding selectiv-
ity, and toxicity of the lead molecules. The QSAR approach 
drastically decreases the count of lead molecules to be tested 
in vitro and in vivo experiments [157]. This method can be 
assessed based on a regression or classification model that 
depends on the computational strategy. Implementing the 
AI/ML approach in the QSAR model has been extensively 
used in recent years. The ML tools such as RF, SVM, Naïve 
Bayesian, and ANN are the often used algorithms in QSAR 
[158, 159]. In the implementation of NN with QSAR mod-
els, single assay data with molecular descriptors are utilized 
for training an NN and record activities of training labels 
[160]. In 2012, a state-of-the-art method was developed 
with multiple DNNs to predict the accuracy by 15% over 
the baseline RF method. Since it was implemented in the 
QSAR model, the RF-based QSAR method was often used 
in drug discovery approaches [161]. Recently, Zakharov 
et al. developed a QSAR model combined with multitask-
ing DNNs and consensus modelling to model the large-
scale QSAR prediction for improved accuracy and better 
prediction over the concept of QSAR models [162]. ML 
approaches with ensemble integration are combined with 
several available basic models to overcome the weakness 
of each learning model and aimed to improve the perfor-
mance task of QSAR. Various ensemble models like data 
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sampling ensembles, representation ensembles, and methods 
ensembles are integrated into QSAR. Kwon et al. developed 
a model with a combination of all the three ensemble models 
with end-to-end NN-based individual classifiers to achieve 
better performance than individual models [163].

Artificial intelligence and machine learning 
for ADME/T properties

Predicting poor physiochemical properties of a lead mol-
ecule in the primary drug discovery stage pipeline will 
significantly reduce the risk of failure. For that, the model 
representation is provided in Fig.  8. Several DL-based 
methods have been developed and implemented with clas-
sical models. The study carried out by Duvenaud et al. used 
CNN-ANN algorithms for the solubility prediction of a lead 
molecule by extracting information from a molecular graph 
with an effective predictive performance with high interpret-
ability [164]. In this method, the back-tracking method can 
obtain molecular fragments of solubility like the hydrophilic 
R-OH group. Followed by Devenaud, Coley et al. devel-
oped a tensor-based convolutional embedding of attributes 
molecular graph method for predicting the solubility of 
molecules in an aqueous environment, which outperformed 
Duvenaud’s model. Coley’s model applies the deep atom-
level information to predict the solubility of lead molecules 
in an aqueous medium. Since a suitable correlation matrix 
is obtained between oral drug absorption and the Caco-2 

permeability coefficient, the prediction of this Caco-2 per-
meability coefficient plays a crucial role in evaluating the 
pharmacokinetic properties of lead molecules [165]. The 
study carried out by Wang et al. included 1272 ligand mol-
ecules with Caco-2 permeability data and boosted the mod-
els with SVM regression, partial least squares (PLS), and 
multiple linear regression (MLR) algorithms to develop the 
prediction models with 30 descriptors. These boosting mod-
els showed better results with the good predictive ability 
(R2 = 0.81, RMSE = 0.31) for the test set molecules, and this 
model strictly follows the principles of organization for eco-
nomic cooperation and development (OECD) about QSAR/
QSPR, which assures the rationality and reliability of the 
model [166].

In early times, pharmaceutical companies were spending 
approximately more than 5 billion dollars per year. Later in 
the 2000s, it was estimated to be 30 billion USD dollars. 
The R&D investment rose about 875 billion USD; in 2010, 
it was estimated around 96 billion USD. In the last decades, 
pharmaceutical companies have applied some rules based on 
Lipinski’s rule, drug-likeness, and lead-like filters to avoid 
the undesirable ADME/T profiles [167]. The bioavailability 
of the lead molecule is a crucial pharmacokinetic param-
eter. Hence, the prediction of bioavailability can direct the 
medicinal chemist for the optimization of test molecules. 
ML techniques and implementation in ADME studies focus 
on building predictive models that extract the effective 
training data patterns and predict the PK values of new lead 
molecules [168]. Several types of ML models were used in 

Fig. 8   Development of ML- and DL-based toxicity predictions from the source of clinical data information
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the ADME process and are highly helpful to establish the 
relationship between the molecular descriptors such as PLS, 
MR, and DT matrix. Followed by absorption, drug distribu-
tion is the important prediction where the drug circulation of 
blood to intestinal fluid and intercellular fluid was predicted; 
the steady state of drug distribution of the drug is the ratio 
of its dose in vivo to its plasma concentration. Predicting the 
steady-state distribution in the tissues is an important crite-
rion for evaluating the drug distribution mechanism [169]. 
Hence, the prediction drug metabolism site with high accu-
racy can lead to the optimization of drugs for obtaining the 
stability mechanism of the molecules. Large data sets are 
predicted with ML methods. It is also used to predict the site 
of metabolism and the enzymes involved in metabolisms, 
such as cytochrome P450, UDP-glucuronosyltransferase 
(UGTs), and aldehyde oxidase. For instance, the develop-
ment of the neural network method XenoSite provides the 
possibility of the site of metabolism with an overall accuracy 
of 87%. Excretion is the crucial step for the consumed drugs, 
and their metabolites should be excreted from the body. 
Drug metabolites are known for their solubility in water and 
can be excreted easily, while most of the drug can be directly 
eliminated without metabolism. Lambardo et al. apply the 
PLS model to predict human clearance, which shows good 
discrimination results with an accuracy of prediction of 84%. 
Based on the mechanism of elimination, the predicted PLS 
model was used to predict the drug excretion [170].

During the drug development process, most of the lead 
molecules can fail in pre-clinical and clinical toxicity. There-
fore, toxicity prediction is application-wise mandatory in 
drug optimization and decreases the risk of error. Tradition-
ally, liver and kidney toxicity studies have been practised to 
predict the drug toxicity profile by rule-based expert knowl-
edge and structural alert [171]. Hence, in recent years, DL 
methods have been implemented to automatically handle 
the various chemical characteristic features and their merits 
and obtain strong performance in toxicity prediction. For 
instance, a molecular graph encoding convolutional neural 
network (MGE-CNN), with the acute oral toxicity predic-
tion model, obtains more accurate results than previously 
reported SVM model-based results. Their study mapped 
all the toxicological properties of fingerprints in atom-level 
information with structural alerts defined by the ToxAlt-
ers [172]. In another study, Mayr et al. have developed a 
multitask DNN model (DeepTox) for toxicity prediction, 
and this model provides better outperformance than others. 
The ADME/T properties of drug molecules show some rel-
evance, and multitasking NNs can improve the performance 
[173]. The study was carried out with ML-driven approaches 
that accurately predict some important physicochemi-
cal properties like water solubility, lipophilicity, etc. An 
improved model of ML algorithm results in the better pre-
diction of molecular properties with limited progress. The 

other classification models such as DT, K-nearest neighbour 
(KNN), SVM, NN, and RF have been widely used to pre-
dict ADME/T properties of the lead molecules, though they 
need further developments in this area. The recent advance-
ment of AI- and ML-based ADME/T prediction imputes 
heterogeneous drug discovery data like cell-based assay and 
biochemical activities [174]. Prediction of lipophilicity is an 
important physicochemical property in the drug discovery 
process because lipophilicity stands in modulating several 
key pharmacokinetic properties. Lipophilicity of lead mol-
ecules explicitly affects the membrane permeability of lead 
molecules and impacts ADME behaviours [172–177]. Tra-
ditionally, octanol–water partition coefficient/pH-dependent 
distribution coefficient (log D) and alternative method lipo-
some/water partitioning and immobilized artificial mem-
brane (IAM) methods are used as a standard gold method 
for predicting quantitative characterization lipophilicity. 
However, the conventional computational approaches such 
as group contribution method (GC), equation state, quantum 
chemistry-driven methods like molecular simulation, and 
linear/nonlinear QSAR are used as highly adopted methods 
to predict the highly correlated log P/log D with molecular 
descriptors [178]. Riniker et al. developed novel molecular 
dynamics feature representing MDFP + to predict the log P. 
They found more information-rich fingerprints than rigorous 
MD calculation [179, 180]. Hence, the AI-based methods 
are utilized and predict log P. However, the protocols may 
differ from each other based on the accuracy and efficiency 
of all trained datasets, which limits the applicability domain 
compared to other physics-based methods [181].

Challenges and scope

In recent years, AI has often been used in the pharmaceutical 
and biomedical industries. These industries heavily adopt 
several AI-based tools with more efficient and automated 
processes that integrate predictive and data-driven decisions 
(Table 1). It provides a significant amount of data that is 
utilized for successive trained models. The data accession 
model from various databases highly suffered due to extra 
cost to a company. Also, the data should be reliable and in 
large quantity to ensure the pharmaceutical analysis [182]. In 
addition, the lack of skilled persons to operate the AI-based 
platforms is the other challenge that prevents full-fledged 
adoption of AI in the pharma and biomedical industries. The 
limited budget for a small organization and the replacement 
of humans in pharma and other large-scale companies with 
AI and ML tools leads to job loss. In such cases, the data 
generated by AL may be incredulity due to the black box 
phenomenon. Many companies widely adopt AI platforms, 
and it is projected that revenues of US$2.199 billion will 
be generated by 2022 in the pharmaceutical sector. Hence, 
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pharma and biomedical companies and other organizations 
need clarity about the potential of AI- and ML-based tools to 
find the appropriate solution to problems once implemented 
with a clear understanding of the problems [183]. The spe-
cific task of drug development and clinical trials and sales 
will take more time, and all these can be narrowed by AI 
and ML programmes. Hence, it needs programmers with 
deep knowledge of thinking abilities of AI- and ML-based 
techniques and skilled data scientists and also a transparent 
company business target that can be adapted to use the full 
potential of AI and ML platforms [184].

AI- and ML-based platforms also make a significant con-
tribution to the drug development process to find the cor-
rect dosage form and its optimization, helping to aid quick 
decision-making for faster manufacturing with good-quality 
products [185]. It can help to predict the customers using AI, 
and lead to improvements in predicting the ability [186]. In 
future, multiple research opportunities will emerge related 
to different customer purchase behaviours and marketing. 
In health care domains, AI- and ML-based techniques will 
be helpful to ensure the adoption in daily clinical practice 
[187]. The utilization of AI and ML systems increases the 
efficiency of handling large-scale clinical data and increases 
their efforts to care for patients [188]. The research find-
ing should use AI and ML technologies for future inves-
tigation in smart logistics in industrial firms for effective 
implementation of technologies in various research areas 
like mechanical engineering, statistics, or mathematics in 
future projects. It also pays to establish the safety-cum effi-
cacy of the clinical trials and ensure proper positioning via 
comprehensive market analysis and prediction. Hence, AI 
and ML tools will become vital approaches in the pharma 
and biomedical industries in future.

Concluding remarks and future perspectives

ML and DL methods of AI can be widely used in the phar-
maceutical field to understand the chemical structure and 
activity relationship of lead molecules from many pharma-
ceutical data. In recent days, AI-based tools have been used 
in computer-assisted drug development because of their 
excellent data mining capability. However, this method has 
some issues, for example, a large amount of data in the data 
mining technology directly influence the performance of 
both deep learning and machine learning methods. Since the 
successful formation of deep learning methods has a poten-
tial approach to overcoming these problems, another major 
disadvantage is that understanding the mechanism of deep 
learning models remains unclear. In addition, neural mod-
els of formation are involved in adjusting different param-
eters, but only a few practical guidelines have optimized 
these models. The applications of AI-based techniques have 

mainly been increased in recent years. The large data sets 
form the drug discovery process, such as de novo design and 
identification of lead molecules. With advances in different 
fields, it can expect the trend towards the more automated 
drug discovery process with the help of computers and pro-
duce more accurate results than other methods. Therefore, 
further research in essential and missing areas, new ideas 
in biological research fields, and a drug discovery pipeline 
could provide several findings in the drug design process.
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