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A B S T R A C T :   

Studying the influence of weather conditions on the COVID-19 epidemic is an emerging field. However, existing 
studies in this area tend to utilize time-series data, which have certain limitations and fail to consider individual, 
social, and economic factors. Therefore, this study aimed to fill this gap. In this paper, we explored the influence 
of weather conditions on the COVID-19 epidemic using COVID-19-related prefecture-daily panel data collected in 
mainland China between January 1, 2020, and February 19, 2020. A two-way fixed effect model was applied 
taking into account factors including public health measures, effective distance to Wuhan, population density, 
economic development level, health, and medical conditions. We also used a piecewise linear regression to 
determine the relationship in detail. We found that there is a conditional negative relationship between weather 
conditions and the epidemic. Each 1 ◦C rise in mean temperature led to a 0.49% increase in the confirmed cases 
growth rate when mean temperature was above − 7 ◦C. Similarly, when the relative humidity was greater than 
46%, it was negatively correlated with the epidemic, where a 1% increase in relative humidity decreased the rate 
of confirmed cases by 0.19%. Furthermore, prefecture-level administrative regions, such as Chifeng (included as 
“warning cities”) have more days of “dangerous weather”, which is favorable for outbreaks. In addition, we 
found that the impact of mean temperature is greatest in the east, the influence of relative humidity is most 
pronounced in the central region, and the significance of weather conditions is more important in the coastal 
region. Finally, we found that rising diurnal temperatures decreased the negative impact of weather conditions 
on the spread of COVID-19. We also observed that strict public health measures and high social concern can 
mitigate the adverse effects of cold and dry weather on the spread of the epidemic. To the best of our knowledge, 
this is the first study which applies the two-way fixed effect model to investigate the influence of weather 
conditions on the COVID-19 epidemic, takes into account socio-economic factors and draws new conclusions.   

1. Introduction 

The first case of Corona Virus Disease 2019 (COVID-19; also known 
as severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2), 
was identified in December 2019. In just two months, it had spread 
rapidly and evolved into a global public health crisis. On March 11, 
2020, the World Health Organization (WHO) declared the disease a 
global pandemic (Allam, 2020). As of August 6, 2021, the cumulative 
number of confirmed COVID-19 cases worldwide exceeded 200 million 
and the cumulative number of deaths exceeded 4.25 million. The 
pandemic led to a global crisis that collapsed the world economy to 
levels not seen since the 1918 influenza pandemic (Zoran et al., 2022). 
Moreover, more new transmissible variants of SARS-COV-2 have 

recently been identified (WHO, 2021a, 2021b), such as the Delta variant 
(B.1.617.2), which has spread globally. The increased incidence and 
severity of these variants raise grave risks to human health (Bakh
shandeh et al., 2021; Grubaugh et al., 2020) and add to the difficulty of 
implementing pharmacological interventions. There is growing evi
dence that COVID-19 has the potential to become a seasonal disease like 
influenza (Lavine et al., 2021), which emphasizes the importance of 
understanding the mode of transmission of SARS-CoV-2 under envi
ronmental conditions such as weather. Exploring the relationship be
tween weather conditions and the spread of COVID-19 is crucial for 
predicting future outbreaks as well as developing early warning systems, 
infection control approaches, and public health interventions. 

Weather variables are often considered to be key factors in infectious 
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disease outbreaks (Chan et al., 2011). The existing literature confirms 
the association of climate and weather with epidemic infectious diseases 
such as Spanish influenza (More et al., 2020), SARS-COV (Tan et al., 
2005; Lin et al., 2006), and MERS-COV (Gardner et al., 2019; Altamimi 
and Ahmed, 2020). Similar to other infectious diseases, weather con
ditions may affect the COVID-19 epidemic through changes in trans
mission dynamics, host susceptibility, and virus survival in the 
environment. However, since the COVID-19 virus is very different from 
known viruses in terms of pathogenicity and transmission, the influence 
of weather conditions on the COVID-19 epidemic is still an emerging 
research field, and the existing literature is still relatively limited. 
Because different research conclusions remain, it is indispensable to 
carry out further related research. Since the outbreak of the pandemic, 
extensive research has discussed the influence of weather conditions on 
the spread of COVID-19 globally, including locations such as China (Shi 
et al., 2020), the United States (Bashir et al., 2020), Spain (Zoran et al., 
2022), and Thailand (Sangkham et al., 2021). Most of them focus on 
temperature and humidity while a few address other weather conditions 
such as wind speed and precipitation. Nevertheless, research in this field 
is in its infancy, there are few relevant papers, and the evidence is very 
limited (McClymont and Hu, 2021). 

Thus, there is still significant debate regarding the impact of tem
perature and humidity on the COVID-19 pandemic. Most of the existing 
literature concerning temperature takes minimum, maximum, or mean 
temperature as weather variables with quite different findings. Much of 
the literature on this discussion suggests a correlation between tem
perature and the spread of COVID-19. Although most literature believes 
that temperature negatively affects COVID-19 spread, with higher 
temperatures resulting in fewer confirmed cases (Nevels et al., 2021; 
Hossain et al., 2021; Meyer et al., 2020; Shi et al., 2020; Liu et al., 2020), 
some literature suggests that temperature is positively correlated with 
COVID-19 transmission (Sangkham et al., 2021; Iqbal et al., 2020; Islam 
et al., 2021; Pani et al., 2020). Only a few studies denies any correlation 
between temperature and outbreaks (Jahangiri et al., 2020; Briz-Redón 
and Serrano-Aroca, 2020). Regarding the relationship between humidity 
and the spread of COVID-19, the existing literature primarily uses ab
solute or relative humidity as weather variables and shows no agree
ment on the findings. Most literature reports a negative relationship 
between humidity and COVID-19 transmission (Wu et al., 2020; Qi et al., 
2020; Zhu et al., 2020). However, other studies suggest a positive or no 
correlation between these factors (Pan et al., 2021; Chien and Chen, 
2020). 

Some issues are still not well addressed in the existing literature. 
With regard to sample selection, most of the existing literature selects a 
single country or region with COVID-19 cases, and the data structure is a 
time series (Zoran et al., 2022; Islam et al., 2021; Huang et al., 2020; Qi 
et al., 2020; Ward et al., 2020). However, selecting geographic areas 
with cases as samples for statistical analysis is prone to sample selection 
bias (Chen and Astebro, 2001). To accurately verify the relationship 
between weather conditions and infectious diseases, a study requires the 
geographic area where the cases occurred and a control group without 
infectious diseases (Polgreen and Polgreen, 2018). In addition, using 
only a country-level sample fails to capture regional differences in 
weather conditions between countries with large areas and uneven 
population distributions, such as the United States, China, and Brazil. In 
terms of statistical analysis methods, the existing literature mainly uti
lizes Spearman’s correlation analysis (Alkhowailed et al., 2020; Bashir 
et al., 2020; Menebo, 2020; Tosepu et al., 2020), Pearson’s correlation 
analysis (Islam et al., 2021; Meraj et al., 2020), the generalized linear 
model (GLM; Liu et al., 2020), and the generalized additive model 
(GAM; Adekunle et al., 2020; Chien and Chen, 2020; Goswami et al., 
2020). However, these methods have certain limitations and may lead to 
bias in estimation due to the inability of the data to satisfy the method’s 
underlying assumptions. 

In addition to the above issues, the most important one not yet 
addressed in the existing literature is the near absence of consideration 

of how individual, social, and economic factors influence the spread of 
COVID-19. Factors such as human behavior patterns (Shammi et al., 
2020b; Brockmann and Helbing, 2013), public health measures (Lin 
et al., 2021), and socio-economic conditions (Jahangiri et al., 2020; 
Shammi et al., 2020a) are strongly associated with the spread of 
COVID-19, among which government’s involvement is the most prom
inent. The COVID-19 epidemic has prompted a broad variety of re
sponses from governments, including, but not limited to, school 
closures, travel restrictions, prohibitions on public meetings, contact 
tracing, and contact information sharing (Hale, 2020). These factors 
have been more influential than weather and climate variables (Oli
veiros et al., 2020). Moreover, the intensity of government intervention 
varies greatly between countries and regions, especially in China, which 
has taken unprecedentedly comprehensive, strict, and rapid preventive 
and control measures during this epidemic. However, due to data 
structure and methodology limitations, most existing studies did not 
consider these factors as control variables in statistical analysis. The 
omission of such critical variables will lead to a significant bias in the 
estimation results (Angrist and Pischke, 2008). The reasons for the 
spread of COVID-19 are complicated and involve important factors in 
addition to weather conditions. Therefore, all such factors must be 
controlled to more effectively analyze the impact of weather on the 
COVID-19 epidemic. 

This study intends to close this research gap. In this article, we 
collected prefecture-daily panel data for 279 prefecture-level adminis
trative regions in mainland China from January 1 to February 19, 2020, 
applied two-way fixed effect model of econometrics, and took into ac
count factors such as prevention and control measures taken in China, 
effective distance to Wuhan (which is the city with the most severe 
epidemic in China), population density, level of economic development, 
and health care conditions, to empirically test the effect of weather 
variables on the COVID-19 confirmed cases growth rate. Unlike other 
studies, this work is motivated to address the following issues: First, we 
examine the effects of mean temperature and relative humidity on the 
confirmed cases growth rate. Then we define “dangerous weather” 
based on the previous results, and identify “warning cities” that are most 
likely to have outbreaks based on the number of days with dangerous 
weather. Then, we explore the regional heterogeneity of weather effects. 
Finally, we discuss the moderating effects of diurnal temperature dif
ferences, public health measures, and social opinion on the effects of 
weather conditions by introducing interaction terms to examine the 
influence of these factors on the impact strength of weather conditions. 

2. Materials and methods 

2.1. Study area 

Our study included 279 prefecture-level administrative regions in 
China, covering most of mainland China. Fig. 1 illustrates the number of 
confirmed cases in China as of February 19, 2020. 

China’s territory spans tropical, temperate, and frigid zones from 
south to north, where the Qinling-Huaihe line, as a geographic bound
ary, is 0 ◦C isotherm in January. That same month the mean temperature 
is above 0 ◦C south of the Qinling-Huaihe line and below 0 ◦C in the 
north. There is a big difference in temperature between the northern and 
southern prefecture-level administrative regions. In January 2020 the 
average high temperature in the northern city of Heihe was − 13 ◦C and 
the average low temperature was − 25 ◦C, while in the southern city of 
Sanya, it was 25 ◦C and 16 ◦C with a difference of 38 ◦C and 41 ◦C, 
respectively. In February 2020 the average high temperature in Heihe 
was − 9 ◦C and the average low temperature was − 21 ◦C, while in Sanya, 
it was 27 ◦C and 19 ◦C with a difference of 36 ◦C and 40 ◦C, respectively. 
In China, January is usually the coldest month, but the temperature 
starts to increase in February and rises sharply in March when spring 
begins. At that point the country’s temperatures are mostly above 0 ◦C 
and temperature differences between regions are greatly reduced. In 
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March 2020 the highest temperature in Sanya reached 30 ◦C; that in 
Heihe was 14 ◦C. The regional temperature difference between the north 
and south of China provides an excellent case for studying the influence 
of weather conditions on the COVID-19 epidemic, especially the large 
temperature differences in January and February between cold tem
peratures below 0 ◦C in the north and warm temperatures above 0 ◦C in 
the south. 

In addition, China also adopted stringent public health measures that 
brought the epidemic under control within a little more than two 
months. On February 12 the number of new cases reached a peak of 
15,152. On February 19 the number of nationwide cases dropped to 394; 
except for a few provinces, such as Hubei, most others had very low case 
numbers. For the first time on March 20, there were no new confirmed 
cases, and after that date most provinces had no new cases or only 

sporadic cases (see Fig. 2). In this paper, considering the temperature 
and the number of confirmed cases simultaneously, we selected the data 
set of all prefecture-level administrative regions in mainland China from 
January 1 to February 19, 2020, as the research sample. 

2.2. Data collection 

This paper selected a dataset of 279 prefecture-level administrative 
regions in mainland China from January 1 to February 19, 2020, as the 
study sample. Daily confirmed cases were collected from the official 
release of the national and local Health Commission. Weather variables 
were collected from the website of the National Meteorological Infor
mation Center (NMIC). Weather factors included daily mean tempera
ture and relative humidity. 

In terms of control variables, we first constructed the scoring data 
representing the intensity of prevention and control by referring to Lin 
et al. (2021) method as a proxy variable of public health measures. The 
comprehensive intervention measures implemented in China success
fully alleviated the spread of COVID-19, especially in the early stages of 
the outbreak, so we included that factor in the model. We conducted a 
very detailed evaluation through the manual collection of information 
or announcements issued by the prevention and control headquarters of 
the prefecture-level administrative districts (see Data Supplement A1). 

Brockmann and Helbing (2013) proposed a new concept: effective 
distance. They believed that the spread of disease has nothing to do with 
the geographic distance between cities but is closely related to the 
effective distance. Therefore, we calculated the effective distance from 
each prefectural-city to Wuhan, the city with the worst outbreak in 
China, by referring to Brockmann and Helbing (2013). The data of 
population movement used to calculate the effective distance comes 

Fig. 1. Confirmed cases in China (as of February 19, 2020).  

Fig. 2. New confirmed COVID-19 cases in China from January 1, 2019 to 
March 20, 2020. 
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from Baidu Migration, which is a website release the data of migration 
and outflow between different regions collected by Baidu Inc using big 
data technology (see Data Supplement A2). 

Other control variables included number of beds in medical in
stitutions, GDP per capita, and population density collected from the 
China City Statistical Yearbook. Due to the lack of statistical data in 
some prefecture-level administrative regions in this resource, the final 
number of regions used was 279. Variable explanation and data source 
were shown in Table 1. 

2.3. Calculation of actual cumulative case growth rate 

The explained variable in this paper is actual cumulative case growth 
rate; it can be described as follows:   

If there are no cases on the current day, actual caseit− 1 = 0; therefore, 
let. Actual cumulative case growth rate it = 0.

If there are no confirmed cases on that day, 
Actual cumulative casesit− 1 = 0; therefore, let the cumulative case 
growth rate be 0. 

Considering that the average incubation period of COVID-19 is 5.2 
days (H. Li et al., 2020), we take the fifth lead of reported cases as the 
proxy variable of the actual cases, namely: 

reported caseit = actual caseit+5 (2)  

2.4. Statistical analysis 

We applied the econometrics approach to empirically test the influ
ence of weather conditions on the epidemic. The econometric approach 

is commonly used to measure the effects of a factor on economic growth. 
Similar to early COVID-19 infections, economic output generally in
creases exponentially with a variable rate that can be affected by policies 
and other conditions (Hsiang et al., 2020). Therefore, it is appropriate to 
apply econometrics techniques to analyze the influence of weather 
condition on the outbreak of the epidemic. Compared to statistical 
methods such as Pearson’s correlation coefficient to identify the corre
lation between weather and COVID-19 (Alkhowailed et al., 2020; Bashir 
et al., 2020; Menebo, 2020), using the multiple linear regression 
approach of panel data is more conducive to overcoming the limitations 
of the time-series regression and the Spearman regression model adop
ted by most existing literature.The econometric approach pays more 
attention to identifying the causal relationship between the variables 
(Angrist and Pischke, 2008), that is, whether changes in temperature 

and humidity lead to changes in the epidemic spread. For causal infer
ence the key is to control the observable factors that interfere with the 
causal relationship. In order to avoid biased estimators created by 
omitting variables, we adopt the two-way fixed effect model to control 
the time-invariant individual heterogeneity and the individual-invariant 
time heterogeneity. The empirical model is as follows:  

where rateitis the explained variable, representing the actual cumulative 
case growth rate of city i on date t. 

f(Weatherit) denotes the polynomial of weather variables, including 
MTit, denoting mean temperature of city i on date t, and RHit, denoting 
relative humidity of city i on date t. 

Measureit denotes the total score of public health measures of city i 
on date t, distanceit denotes the effective distance from city i to Wuhan 
on date t, and lnbedit, lnpopit, lnpergdpit denotes number of beds in 
medical institutions, GDP per capita, and population density, respec
tively. δp is a region fixed effect to control the characteristics of prov
inces constant over time,δt is a time fixed effect to control the time 
factors that do not vary from individual to individual, εit is an error term, 
and we use cluster-robust standard error to estimate the standard de
viation (Cameron and Miller, 2015). 

According to the results from the baseline regression, we used a 
piecewise linear regression to determine in detail the relationship be
tween weather variables and COVID-19 confirmed cases’ growth rate 
(Xie and Zhu, 2020; Kim et al., 2016). In the sensitivity analysis, we first 
tried to exclude Hubei province, the most severely affected province in 
China, from the full sample. We then adjusted the assumptions of the 
length of the incubation period when calculating actual confirmed cases’ 
growth rate to examine whether our main results were robust. Based on 
the statistical analysis results above, we defined “dangerous weather” 
(that which is most conducive to the development of the epidemic), 
counted the frequency of dangerous weather in various Chinese cities, 
and identified the “warning cities” most likely to experience outbreaks. 

Further, we explored the regional heterogeneity of the effect of 
weather on the COVID-19 epidemic. We conducted subsample re
gressions according to the characteristics of China’s geographical con
ditions in the east-central-west and coastal-inland areas, respectively. 
Finally, we discussed the moderating effects of diurnal temperature 

Table 1 
Variable explanation and data source.  

Attribute Name Explanation Data Sources 

Explained 
variable 

Rate Increased rate of 
confirmed cases 

The official website of the 
National and local Health 
Commissions 

Explanatory 
variable 

RH Relative 
humidity 

NMIC 

AT mean 
temperature 

NMIC 

Control 
variable 

Hospital_bed Number of beds 
in medical 
institutions 

China City Statistical 
Yearbook 

Measure Total score of 
public health 
intervention 

Relevant announcements 
from the prevention and 
control headquarters of the 
COVID-19 epidemic in 
various provinces and cities 

pop registered 
population 

China City Statistical 
Yearbook 

distance effective 
distance 

Baidu Migration  

Actual cumulative case growth rateit =（Actual caseit − Actual caseit− 1）/Actual caseit− 1 (1)   

rateit = α + β1f(Weatherit) + β2Measureit + β3lnbedit + β4lnpopit + β5lnpergdpit + β6distanceit + t + δp + δt + εit (3)   
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differences, public health measures and social opinion on the impact of 
weather conditions by introducing interaction terms to examine the 
influence of these three factors on the impact strength of weather 
conditions. 

We used STATA (version 15.0) in this study to conduct the analysis. 
The statistical tests were two-sided, and the p-value told us if the result 
were statistically significant. P-values of <0.01 (***),< 0.05 (**) and 
<0.1 (*) were considered statistically significant. 

3. Result and discussion 

3.1. Descriptive analysis 

The data samples in this paper are composed of balanced panel data 
of 279 prefecture-level administrative regions from January 1 to 
February 19, 2020, and the descriptive statistics of related variables are 
shown in Table 2. 

Fig. 3 shows the distribution of the mean value of the mean tem
perature from January 1 to February 19, 2020, from which it can be seen 
that the mean temperature decreases in a step-like manner from south to 
north. Fig. 4 shows the distribution of the mean of the relative humidity 
from January 1 to February 19, 2020. It can be seen that the relative 
humidity in the southeast coastal area is higher, and it shows a 
decreasing trend in the northwest direction. 

3.2. Influence of weather conditions on confirmed cases growth rate: 
conditional negative linear relationship 

Table 3 reports the results of the baseline regression. The explanatory 
variable is the growth rate of cumulative cases, and the explanatory 
variable is the polynomial of mean temperature and relative humidity. 
Both the first and quadratic terms for mean temperature and relative 
humidity are significantly negative, which suggests a nonlinear rela
tionship between mean temperature, relative humidity, and cumulative 
case growth rates. Specifically, the relationship was approximately 
positive linear when the mean temperature was <-7 ◦C and became 
negative linear above − 7 ◦C, indicating that the single threshold of the 
temperature effect on COVID-19 was − 7 ◦C. Similarly, the threshold for 
relative humidity was 46%. 

We also analyze control variables. It is observed that the coefficient 
of public health measures is significantly negative, indicating that taking 
public health measures are essential to mitigating the epidemic. The 
better the public health measures are, the lower the number of 
confirmed cases growth rate is. The coefficient of population size was 
significantly positive. The vast population size will increase the diffi
culty of isolating person-to-person contact, which adversely effects 
blocking the further spread of infectious diseases. The coefficients of 
both the number of beds in health institutions and effective distance 
were significantly negative. The number of beds in health institutions 
represents the condition of the city’s medical resources, and cities with 

Table 2 
Statistical description.  

Variables Implication Notation N mean sd min max 

Explained variable Increased rate of confirmed cases Rate 13,950 0.0851 0.443 0 19 
Explanatory variable mean temperature MT 13,950 3.789 9.0667 − 31.2 26.4 

Relative humidity RH 13,850 71.17 17.15 6 102 
Control variable Public health measures score Measure 13,950 3.729 3.912 0 10 

Number of registered population Pop 13,950 171.3 226.3 16 2451 
Number of hospital beds Hospital_bed 13,950 12,906 17,135 920 142,708 
GDP per capita Per GDP 13,950 92,348 379,890 17,890 6.400e+06 
effective distance Distance 13,950 5.722 1.874 0 7.785  

Fig. 3. Mean Value of the mean temperature in China from January 1 to February 19, 2020.  
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richer medical resources are more capable of mitigating the impact of 
the epidemic. The shorter the effective distance to Wuhan, the more 
severe the epidemic’s outbreak, which is in line with theoretical 
expectations. 

Based on baseline results, a piecewise linear regression was adapted 
with a threshold at − 7 ◦C for mean temperature and 46% for relative 
humidity to quantify the effect of weather conditions above and below 
the threshold. Table 4 shows the results of the piecewise linear regres
sion. It can be seen that each 1 ◦C rise in mean temperature led to a 
0.49% increase in confirmed cases’ growth rate when mean temperature 

was above − 7 ◦C, while when mean temperature was below − 7 ◦C, the 
positive effect of temperature was not statistically significant. Similarly, 
when the relative humidity was greater than 46%, it was negatively 
correlated with the epidemic, with a 1% increase in relative humidity 
decreasing the rate of confirmed cases by 0.19%. However, when the 
relative humidity was less than 46%, the decrease in humidity no longer 
affected the outbreak’s spread. Therefore, we conclude that there is a 
conditional linear relationship between the weather variable and 
COVID-19 as shown in Fig. 5. 

Our results are in good agreement with other studies, concluding that 
mean temperature and relative humidity parameters play an important 
role in the COVID-19 epidemic (Liu et al., 2020; Liu et al., 2020; Xie and 
Zhu, 2020; Tobías and Molina, 2020; Tantrakarnapa et al., 2020; Pani 
et al., 2020). Regarding weather temperature, although most findings 
suggested a negative correlation between temperature and the 
COVID-19 epidemic (Zoran et al., 2022; Nevels et al., 2021; Hossain 
et al., 2021; Pahuja et al., 2021; Meyer et al., 2020; Shi et al., 2020; Liu 
et al., 2020; Tobías and Molina, 2020; Menebo, 2020; Kumar & Kumar, 
2020; Li et al., 2020; Menebo, 2020, 2020; Prata et al., 2020), some 
research indicated that temperature positively affects epidemics (Xie 
and Zhu, 2020; Iqbal et al., 2020; Islam et al., 2021; Pani et al., 2020; 

Fig. 4. Mean Value of the relative humidity in China from January 1 to February 19, 2020.  

Table 3 
Bseline regression.   

(1) (2) 

Rate Rate 

MT − 0.0030*** 
(0.0011)  

MT*MT − 0.0002*** 
(0.0001)  

RH  0.0032* 
(0.0019) 

RH*RH  − 0.00003*** 
(0.0000) 

Measure − 0.0216*** 
(0.0030) 

− 0.0223*** 
(0.0030) 

Pop 0.0304*** 
(0.0112) 

0.0313*** 
(0.0112) 

Hospital − 0.0126* 
(0.0065) 

− 0.0138** 
(0.0065) 

Distance − 0.0130*** 
(0.0038) 

− 0.0135*** 
(0.0038) 

Constant 0.0832 
(0.0652) 

− 0.0840 
(0.0874) 

Observations 12,555 12,555 
R-squared 0.041 0.041 
Time Trend YES YES 
Province FE YES YES 
Time FE YES YES 
-b/2a − 7 46 

Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

Table 4 
Results of piecewise linear regression.   

(1) (2) (3) (4) 

MT < − 7 MT ≥ -7 RH < 46 RH ≥ 46 

MT − 0.0011 
(0.0014) 

− 0.0049*** 
(0.0013)   

RH   − 0.0002 
(0.0006) 

− 0.0019*** 
(0.0004) 

Observations 1541 11,014 1087 11,468 
R-squared 0.036 0.043 0.026 0.044 
Control Variables YES YES YES YES 
Time Trend YES YES YES YES 
Province FE YES YES YES YES 
Time FE YES YES YES YES 

Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 
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Tosepu et al., 2020), and a few found no relationship (Jahangiri et al., 
2020; Briz-Redón and Serrano-Aroca, 2020). 

Also, our findings are consistent with the belief that higher relative 
humidity can alleviate the COVID-19 outbreak, which was also 
demonstrated by most of the existing studies examining the same hy
pothesis with different data and approaches (Wu et al., 2020; Qi et al., 
2020; Zhu et al., 2020；Sahin, 2020；Ahlawat et al., 2020). Conversely, 
other studies revealed a positive correlation (Alkhowailed et al., 2020; 
Chien and Chen, 2020; Pani et al., 2020), and a few reported no rela
tionship (Pan et al., 2021). 

3.3. Sensitivity analysis 

First, considering that the epidemic first broke out in the city of 
Wuhan and had a severe impact on other cities in Hubei Province, we 
eliminated Hubei Province sample. Second, we adjusted the incubation 
period length hypothesis, assuming that the incubation period is 6 days 
and 7 days, respectively, and then performed the regression again. The 
results of the robustness were reported in Table 5. It can be seen that the 
sign and significance of the coefficients are consistent with the baseline 
regression, indicating that the conclusion was still robust after changing 
the sample selection and basic assumptions. 

3.4. Defining “dangerous weather” and identifying “warning cities” 

In China, a county with vast territory and wide differences in climatic 
conditions, it is necessary to further explore which cities have weather 
conditions that are more likely to have outbreaks. We defined a tem
perature of − 7 ◦C ± one standard deviation (9.0667) as “dangerous 
temperature” and a relative humidity of 46% ± one standard deviation 
(17.15) as “dangerous humidity.” We counted the number of days with 
“dangerous weather” in each city in China from January 1 to February 
19, 2020. Then, we defined the top 10 cities with the number of days 
with “dangerous weather” that would designate them as “warning cit
ies,” that is, cities more at risk of COVID-19 outbreaks. Table 6, panels A, 
B, and C, lists the “warning cities” in China that are the top 10 cities with 

Fig. 5. a. Relationship between mean temperature and confirmed cases growth rate. Fig. 5b. Relationship between relative humidity and confirmed cases 
growth rate. 

Table 5 
Robustness.  

Panel A without Hubei Province  

(1) (2) (3) (4) 

MT ≥ − 7 ◦C RH ≥ 46% 

MT − 0.0048*** 
(0.0010) 

− 0.0048*** 
(0.0010)   

RH   − 0.0018*** 
(0.0003) 

− 0.0016*** 
(0.0003) 

Observations 10,474 10,474 10,845 10,845 
R-squared 0.042 0.052 0.041 0.053 
Control 

Variables 
No YES NO YES 

Time Trend YES YES YES YES 
Province FE YES YES YES YES 
Time FE YES YES YES YES  

(1) (2) (3) (4) 

Panel B Adjust the incubation period  

incubation 
period = 6 
days 

incubation 
period = 7 
days 

incubation 
period = 6 
days 

incubation 
period = 7 
days  

MT ≥ -7 ◦C RH ≥ 46% 

MT − 0.0057*** 
(0.0014) 

− 0.0065*** 
(0.0014)   

RH   − 0.0020*** 
(0.0004) 

− 0.0011*** 
(0.0004) 

Observations 10,757 10,510 11,101 10,826 
R-squared 0.043 0.041 0.044 0.042 
Control 

Variables 
YES YES YES YES 

Time Trend YES YES YES YES 
Province FE YES YES YES YES 
Time FE YES YES YES YES 

Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

Table 6 
“Warning cities” of the COVID-19 outbreak in China.  

Level 2 warning cities Level 1 warning cities 

Panel A the number of 
days with “dangerous 
temperature” 

Panel B the number of 
days with “dangerous 
humidity” 

Panel B the number of 
days both with 
“dangerous temperature” 
and “dangerous humidity” 

City number 
of days 

City number 
of days 

City number 
of days 

Chengde 45 Chifeng 47 Zhangjiakou 42 
Hohhot 45 Zhangjiakou 47 Chifeng 39 
Wuhai 45 Longnan 46 Ulanqab 37 
Bayannur 45 Ulanqab 44 Chengde 36 
LanZhou 45 Jinzhou 42 Jinzhou 35 
Baiyin 45 Lijiang 42 Zhangye 33 
Zhangye 45 Chaoyang 40 Xinzhou 33 
Dingxi 45 Chengde 40 Chaoyang 32 
Xining 45 Zhangye 38 Liaoyang 31 
Shizuishan 45 Baoshan 37 Anshan 31  
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dangerous temperatures, dangerous humidity (level 2), and with both 
dangerous temperatures and dangerous humidity (level 1), respectively. 
The results show that, in winter, cities such as Chifeng and Zhangjiakou 
were shortlisted as early warning cities with weather conditions more 
favorable for an epidemic outbreak. 

Although there have been several studies that explored the impact of 

weather conditions on the COVID-19 epidemic in China (Shi et al., 2020; 
Liu et al., 2020; Xie and Zhu, 2020; Ma et al., 2020), these studies only 
analyzed and discussed the relationship between weather conditions 
and outbreaks without further indicating which cities in China were 
more likely to have outbreaks based on the results. Our study filled in the 
void. 

Table 7 
Sub-sample results.  

Panel A East Middle and West  

(1) (2) (3) (4) (5) (6) 

MT ≥ -7 ◦C RH ≥ 46% 

East Middle West East Middle West 

MT − 0.0059*** 
(0.0020) 

− 0.0025 
(0.0035) 

− 0.0056*** 
(0.0015)    

RH    − 0.0021*** 
(0.0006) 

− 0.0025*** 
(0.0008) 

− 0.0015*** 
(0.0004) 

Observations 4128 3604 3257 4082 4255 3040 
R-squared 0.054 0.041 0.040 0.054 0.041 0.047 
Control Variables YES YES YES YES YES YES 
Time Trend YES YES YES YES YES YES 
Province FE YES YES YES YES YES YES 
Time FE YES YES YES YES YES YES 

Panel B Coastal and Inland  
(1) (2) (3) (4)    
MT ≥ -7 ◦C RH ≥ 46%   

MT − 0.0098** 
(0.0040) 

− 0.0044*** 
(0.0015)     

RH − 0.0018* 
(0.0010) 

− 0.0017*** 
(0.0004) 

− 0.0021* 
(0.0011) 

− 0.0017*** 
(0.0004)   

Observations 2191 8798 2101 9276   
R-squared 0.051 0.043 0.051 0.044   
Control Variables YES YES YES YES   
Time Trend YES YES YES YES   
Province FE YES YES YES YES   
Time FE YES YES YES YES   

Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 
Note: According to the classification of the National Bureau of Statistics of China, http://www.stats.gov.cn/, the eastern region includes Beijing, Tianjin, Hebei, 
Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, and Hainan. The middle region includes Shanxi, Inner Mongolia, Jilin, Heilongjiang, Anhui, 
Jiangxi, Henan, Hubei, Hunan and Guangxi. The western region includes Sichuan, Guizhou, Yunnan, Tibet, Shanxi, Gansu, Qinghai, Ningxia, and Xinjiang. 
According to the China Marine Statistical Yearbook, coastal areas are defined as areas with coastlines, which are divided into coastal provinces, autonomous regions 
and municipalities. At present, there are 53 coastal cities and 242 coastal counties. 

Table 8 
Exploration of moderating effects.   

(1) (2) (3) (4) (5) (6) 

rate rate rate rate rate rate 

MT − 0.0033** 
(0.0015)  

− 0.0063*** 
(0.0014)  

− 0.0056*** 
(0.0014)  

RH  − 0.0018*** 
(0.0004)  

− 0.0034*** 
(0.0004)  

− 0.0022*** 
(0.0004) 

MT*hightf − 0.0034*** 
(0.0011)      

RH* hightf  − 0.0005*** 
(0.0001)     

MT*highpolicy   0.0040*** 
(0.0013)    

RH* highpolicy    0.0028*** 
(0.0002)   

MT*highconcern     0.0030*** 
(0.0011)  

RH*highconcern      0.0004*** 
(0.0001) 

Observations 10,989 11,377 10,989 11,377 10,989 11,377 
R-squared 0.038 0.037 0.038 0.050 0.037 0.036 
Control Variables YES YES YES YES YES YES 
Time Trend YES YES YES YES YES YES 
Province FE YES YES YES YES YES YES 
Time FE YES YES YES YES YES YES 

Standard errors in parentheses, ***p < 0.01, **p < 0.05, *p < 0.1. 

R. Lin et al.                                                                                                                                                                                                                                      

http://www.stats.gov.cn/


Environmental Research 206 (2022) 112272

9

3.5. Regional heterogeneity of weather effect 

Furthermore, this paper conducted sub-sample regression according 
to geographical location to explore the heterogeneity of the influence of 
weather conditions. The results were shown in Table 7. Panel A in 
Table 7 reports the results according to the samples in the east, middle, 
and west areas. It can be seen that the coefficient of mean temperature is 
still significantly negative in the eastern and western regions, where the 
influence of mean temperature in the east is greater than in the west. 
However, this doesn’t work in the middle areas. The effect of relative 
humidity is most significant in the middle, followed by the east, and is 
the weakest in the west. Panel B in Table 7 reportes the sub-sample re
sults of the coastal and inland areas. It shows that the influence of both 
mean temperature and relative humidity is greater in the coastal areas, 
and the impact of weather conditions is more significant in coastal areas 
than inland areas. 

Most of the literature exploring the impact of weather conditions on 
the epidemic in China used time series data (Qi et al., 2020; Shi et al., 
2020; Ma et al., 2020) with single samples, such as the whole country or 
a specific city. Limitations of sample and data structure prevented these 
studies from further exploring the regional heterogeneity of the weather 
effect. While there are some studies with samples of multiple cities in 
China (Liu et al., 2020; Xie and Zhu, 2020) they also don’t discuss 
regional heterogeneity. In truth, weather conditions vary greatly among 
regions in China, which are affected not only by large north-south lati
tude span, but also by significant differences in altitude and the location 
of coastal and inland areas. Therefore, it is necessary to conduct a het
erogeneity analysis on the impact of weather conditions to explore the 
differences in the impact of mean temperature and relative humidity on 
the epidemic in various regions. Our study complements this issue. 

3.6. Moderating effects of temperature variation, public health measures 
and social opinion on the impact of weather conditions 

We introduced the interaction term of the explanatory variables with 
diurnal temperature variations, public health measures, and social 
concern respectively to explore the moderating effects of these factors 
on weather conditions affecting the epidemic. Data collection for diurnal 
temperatures difference and social opinion variables are shown in Data 
Supplement A3. 

We divided the three variables of diurnal temperature differences, 
public health measures, and social concern into high, medium, and low, 
respectively. We then generated dummy variables, and constructed the 
interaction terms between the dummy and weather condition variables. 
The results are shown in Table 8. Column (1) introduces the interaction 
between mean temperature and high diurnal temperature variations 
(hightf). Column (2) introduces the interaction between relative hu
midity and the item. Similarly, column (3) and column (4) presents the 
results of public health measures, and column (5) and column (6) pre
sents the results of social opinion. 

It can be seen that, whether involving mean temperature or relative 
humidity, the coefficient of the interaction with high diurnal tempera
ture differences (hightf) is significantly negative, that is, the increase in 
diurnal temperature differences leads to a stronger impact of weather 
conditions on the increase in the rate of confirmed COVID-19 cases, 
especially in dry and cold regions, where higher diurnal temperature 
differences increase the risk of epidemic spread. On the contrary, the 
coefficients of the interaction with high public health measures (high
policy) and high social concern (highconcern) are both significantly 
positive, indicating that the improvement of public health measures and 
social concern can weaken the influence of mean temperature and 
relative humidity on the growth rate of COVID - 19 confirmed cases. It 
can be concluded that strict public health measures and high social 
concern can mitigate the adverse effects of cold and dry weather on the 
spread of the epidemic, which reinforces the importance of public health 
measures and attention to public response. 

The main factors influencing temperature differences between day 
and night are latitude, altitude, and location of the land and sea. A large 
temperature difference between day and night weakens the immune 
system and makes people more susceptible to infection under equal 
conditions (Jaagus et al., 2014). Although the role of temperature dif
ferences has been analyzed in the literature (Liu et al., 2020; Park et al., 
2020), no studies have focused on the interaction of temperature dif
ferences with other weather conditions. In fact, temperature differences 
should be taken into account even under the same temperature and 
humidity conditions, especially in areas with dry and cold climates, 
where higher diurnal temperature differences will exacerbate the risk of 
outbreak spread. 

Studies of the impact of weather conditions cannot occur separately 
from the effect of public health interventions and human behavior 
patterns on the spread of the epidemic (Polgreen and Polgreen, 2018; 
Paraskevis et al., 2020). It has been proved that rapid and strict public 
health measures can effectively prevent the further spread of the 
epidemic (Lin et al., 2021; Thu et al., 2020), and high social concern can 
enhance the public’s attention on the epidemic to improve prevention 
awareness (Hussain, 2020). However, to date, no studies have further 
explored the moderating effects of public health measures and social 
opinion on weather impactes. By exploring the effects of climatic con
ditions on the COVID-19 pandemic, this study found that the adoption of 
strict public health measures and the availability of good social opinion 
can mitigate the adverse effects of dry and cold weather on the spread of 
the epidemic. These findings provide a realistic argument for stricter 
preventive and control measures and better social opinion in warning 
cities with frequent dangerous weather. 

4. Conclusions 

To the best of our knowledge, this is the first study which applies the 
two-way fixed effect model using prefecture-daily panel data to explore 
the impact of weather conditions on the COVID-19 epidemic. It con
siders important influencing factors such as human behavior patterns, 
public health measures, and socio-economic conditions, and then draws 
new conclusions. 

Future research can adopt more detailed investigation methods. 
Under the legal framework of privacy protection, questionnaire surveys 
could be carried out with patients’ consent to draw more accurate 
conclusions. At the same time, in terms of the mechanism of the role of 
weather variables, more in-depth interdisciplinary cooperation with 
epidemiologists is needed to study the specific impact of weather con
ditions on the survivability of the COVID-19 virus and the immunity of 
susceptible populations to obtain a clearer picture and offer compelling 
conclusions. 

To conclude, combating the COVID-19 pandemic is a difficult un
dertaking. Instead of depending only on changes in weather conditions, 
a portfolio of tactics should be created. Given the current climate-change 
framework, it is important to raise the alarm about the possibility of a 
more severe pandemic in the near future. 
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